Audio Networking Special 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Emerging Technology Trends Report Dante Q-LAN EBU N/ACIP
Emerging Technology Trends Report AES Technical Committee on Network Audio Systems November 2011 Editor, Tim Shuttleworth; [email protected] This document is a compilation of contributions from numerous members of the Technical Committee on Networked Audio Systems. The committee has identified the following important topics related to emerging audio networking technologies. Technologies which have emerged since the last published Emerging Trends Report from the committee in 2007 are included. To provide structure to the report items are discussed in order of their maturity; commercialized technologies implemented in products available for purchase being discussed first and embryonic concepts in early development come up last. Other categorizations referred to in this document are consumer market orientation versus professional market focus, as well as media transport methods versus command and control protocols. Dante Dante is a media networking solution developed by Audinate. In addition to providing basic synchronization and transport protocols Dante provides simple plug and play operation, PC sound card interfacing via software or hardware, glitch free redundancy, support for AVB and support for routed IP networks. The first Dante product arrived in 2008 via a firmware upgrade for the Dolby Lake Processor and since then many professional audio and broadcast manufacturers have adopted Dante. From the beginning Dante implementations have been fully IP based, using the IEEE 1588-2002 standard for synchronization, UDP/IP for audio transport and are designed to exploit standard gigabit Ethernet switches and VoIP-style QoS technology (e.g. Diffserv). Dante is evolving with new networking standards. Audinate has produced versions of Dante that use the new Ethernet Audio Video Bridging (AVB) protocols, including IEEE 802.1AS for synchronization and RTP transport protocols. -
Media Gateways NX4600 Media Gateway
datasheet Media Gateways NX4600 Media Gateway The NX4600 is Nevion’s latest generation media transport and compression platform, Applications offering simultaneous H.264/AVC encoding • Professional broadcast contribution and decoding in a compact 1RU form factor. • Outside broadcast live sports & event contribution • Studio-to-studio media exchange The NX4600 is an H.264/AVC encoder, decoder and TS media gateway all built into one. • Managed media services over ASI or IP Up to four baseband SDI video signals can be Key features encoded using H.264/AVC or MPEG-2 compression • Multi-channel H.264/AVC encoder and/or decoder and transported over ASI and IP. The possibility and/or TS gateway with IP & ASI interfaces to combine encoding, decoding and TS over IP • Combine up to 4 channels of encoding and/or transport in the same unit increases flexibility in decoding in the same 1RU unit deployment of new services and gives a very • Software license approach ensures easy and tight and compact offering for outside broadcast future-proof upgrade path production applications (sports, news and other live events) and managed media services. • Best in class video quality with 4:2:2 10-bit H.264/ AVC compression up to 80 Mbit/s The Media Gateway includes Nevion’s trademark • 16-channel audio compression or pass-through advanced protection mechanisms that enable real- with full audio routing matrix built-in time transport of professional media over IP networks with extremely high availability. The NX4600 offers • Built-in TS monitoring (ETSI TR 101 290 Priority 1) of built-in aggregation of TS over IP streams on one or encoder output and decoder input, with option for multiple GbE ports. -
Produktinformation Directout Technologies
SG.MADI SOUNDGRID / MADI CONVERTER DirectOut GmbH Leipziger Str. 32 | D-09648 Mittweida [email protected] I www.directout.eu SG.MADI TECHNICAL DETAILS is a SoundGrid / MADI converter linking SoundGrid® and MADI (AES10) and offering extra features tailored MADI Ports (I/O): 2 x ports - individually confi gurable: for broadcast, live and studio applications. Housed in - SC-Socket multi/single-mode a robust 1U 19“ casing it makes economical use of - coaxial BNC, 75 Ω valued rack space. - SFP (empty cage without module)* SoundGrid®: 2 x RJ45 Socket (Gigabit-Ethernet) SoundGrid® is a layer2-based network protocol offered by Waves for Audio-over-Ethernet networking Microphone Input: 2 x XLR female and real-time processing solutions for live, broadcast PAD switchable (20 dB) and music production facilities, using SoundGrid® phantom power switchable (P48) technology to deliver uncompressed, multi-channel, Line Output: 2 x XLR male, +24 dBu, balanced low-latency digital audio over ethernet networks. with analogue trim controller Headphone Output: 1 x 6.3 mm TRS jack, unbalanced Quick overview with analogue trim controller The front panel provides status LEDs for sync, sample rate and level metering of the microphone Word Clock (I/O): 2 x coaxial BNC inputs. (75 Ω termination switchable) Sample Rates: 44.1, 48, 88.2, 96 kHz Interfacing MADI Formats (I/O): 48k Frame, 96k Frame, Analog I/Os allow for immediate interfacing with the 56/64 channel, S/MUX network audio and the MADI signal: – 2 x microphone inputs with switchable PAD GPI: 2 x Voltage input -
XMOS for AVB Ethernet Based Networking for Audio/Video
Only a few years ago, computer networks were complex beasts tended by special acolytes and running on different standards. Today they have become commonplace in many homes and offices, simply plugged together using Ethernet technology. The same revolutionary change is coming for Audio/Video (AV) networking, as AVB (Audio XMOS for AVB: Video Bridging) products that run over the same network, Ethernet based networking begin to enter the market. for Audio/Video Putting together networks of AV equipment for professional and consumer use, or for use in How Ethernet Works vehicles, is about to become simpler while also Within Ethernet, data is transmitted between delivering better quality. No longer will devices (such as a computer and a printer) in specialist connectors and cables be needed to packets. Each packet carries one or more create a rats' nest of connectivity. Instead addresses for its destination. Like a postal packet traversing the postal system, the network has no Audio Video Bridging (AVB), a set of knowledge of what is in the packet, but uses the international standards, will make setting up address to pass the packet to the next point in the and managing networks almost as simple as network. just plugging together the different elements. In an Ethernet based network, each endpoint Sound and video sources will be mixed and (computer, storage element, printer etc.) is distributed to screens and speakers, with high identified by a unique address and has a single quality, low latency and tight synchronization. connection to the network, through an Ethernet Furthermore, the connectors and cables are switch. -
DANTE DOMAIN MANAGER IT Issues Resolved
Lessons from the past for the future BOSCH, DUTCH GUILD AND MEDIANET VLAANDEREN Julian Carro EMEA System Solution Account Director AUDINATE Visionary companies push the technology forward, standards keep them pushing Telegraph 1830s Bell We get beeps, that’s enough to send a message Telephone 1870s We can hear a voice, that’s enough Television 1920s Lucent We can see and hear Data Networks 1920s We can send instructions to a machine Nortel Arpanet 1960s We can send instructions to other people’s machines VOIP introduced 1990s VOIP, not on my network! Cisco VOIP overtakes analogue and digital handsets in mid 2000s 2 Copyright 2017 Audinate Pty Ltd. All rights reserved There have been many AOIP standards… Cobranet Ravenna Mediornet ADAT Ethersound Soundgrid Livewire Supermac QLAN Dante Optocore HyperMac 3 Copyright 2017 Audinate Pty Ltd. All rights reserved How many can claim the following… .Tens of thousands of installations .Standards based architecture, DiffServ, QoS, DHCP, DNS etc. .Proven connection management and discovery .Deterministic latency, user selectable .AN ENVIABLE ECO SYSTEM .380 OEM manufacturers ….. provides user choice .Over 1200 available products …. provides user choice .Dante Just Works!! 4 Copyright 2017 Audinate Pty Ltd. All rights reserved 5 Copyright 2017 Audinate Pty Ltd. All rights reserved 6 Copyright 2017 Audinate Pty Ltd. All rights reserved 7 Copyright 2017 Audinate Pty Ltd. All rights reserved Audinate brings you the next step IP Digital Audio Convergence with IT Same network Same cables Same switches Same concerns about security, control, monitoring Same story, a story as old as time … 8 Copyright 2017 Audinate Pty Ltd. -
Calrec Network Primer V2
CALREC NETWORK PRIMER V2 Introduction to professional audio networks - 2017 edition Putting Sound in the Picture calrec.com NETWORK PRIMER V2 CONTENTS Forward 5 Introduction 7 Chapter One: The benefits of networking 11 Chapter Two: Some technical background 19 Chapter Three: Routes to interoperability 23 Chapter Four: Control, sync and metadata over IP 27 The established policy of Calrec Audio Ltd. is to seek improvements to the design, specifications and manufacture of all products. It is not always possible to provide notice outside the company of the alterations that take place continually. No part of this manual may be reproduced or transmitted in any form or by any means, Despite considerable effort to produce up to electronic or mechanical, including photocopying date information, no literature published by and scanning, for any purpose, without the prior the company nor any other material that may written consent of Calrec Audio Ltd. be provided should be regarded as an infallible Calrec Audio Ltd guide to the specifications available nor does Nutclough Mill Whilst the Company ensures that all details in this it constitute an offer for sale of any particular Hebden Bridge document are correct at the time of publication, product. West Yorkshire we reserve the right to alter specifications and England UK equipment without notice. Any changes we make Apollo, Artemis, Summa, Brio, Hydra Audio HX7 8EZ will be reflected in subsequent issues of this Networking, RP1 and Bluefin High Density Signal document. The latest version will be available Processing are registered trade marks of Calrec Tel: +44 (0)1422 842159 upon request. -
Developments in Audio Networking Protocols By: Mel Lambert
TECHNICAL FOCUS: SOUND Copyright Lighting&Sound America November 2014 http://www.lightingandsoundamerica.com/LSA.html Developments in Audio Networking Protocols By: Mel Lambert It’s an enviable dream: the ability to prominent of these current offerings, ular protocol and the basis for connect any piece of audio equip- with an emphasis on their applicability Internet-based systems: IP, the ment to other system components within live sound environments. Internet protocol, handles the and seamlessly transfer digital materi- exchange of data between routers al in real time from one device to OSI layer-based model for using unique IP addresses that can another using the long-predicted con- AV networks hence select paths for network traffic; vergence between AV and IT. And To understand how AV networks while TCP ensures that the data is with recent developments in open work, it is worth briefly reviewing the transmitted reliably and without industry standards and plug-and-play OSI layer-based model, which divides errors. Popular Ethernet-based proto- operability available from several well- protocols into a number of smaller cols are covered by a series of IEEE advanced proprietary systems, that elements that accomplish a specific 802.3 standards running at a variety dream is fast becoming a reality. sub-task, and interact with one of data-transfer speeds and media, Beyond relaying digital-format signals another in specific, carefully defined including familiar CAT-5/6 copper and via conventional AES/EBU two-chan- ways. Layering allows the parts of a fiber-optic cables. nel and MADI-format multichannel protocol to be designed and tested All AV networking involves two pri- connections—which requires dedicat- more easily, simplifying each design mary roles: control, including configur- ed, wired links—system operators are stage. -
CCSDS 766.3-R-1, Specification for RTP As Transport for Audio And
Draft Recommendation for Space Data System Standards SPECIFICATION FOR RTP AS TRANSPORT FOR AUDIO AND VIDEO OVER DTN DRAFT RECOMMENDED STANDARD CCSDS 766.3-R-1 RED BOOK December 2019 Draft Recommendation for Space Data System Standards SPECIFICATION FOR RTP AS TRANSPORT FOR AUDIO AND VIDEO OVER DTN DRAFT RECOMMENDED STANDARD CCSDS 766.3-R-1 RED BOOK December 2019 DRAFT CCSDS RECOMMENDED STANDARD FOR REAL-TIME TRANSPORT PROTOCOL OVER DELAY TOLERANT NETWORKING FOR VIDEO APPLICATIONS AUTHORITY Issue: Red Book, Issue 1 Date: December 2019 Location: Not Applicable (WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:) This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4), and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the email address below. This document is published and maintained by: CCSDS Secretariat National Aeronautics and Space Administration Washington, DC, USA Email: [email protected] CCSDS 766.3-R-1 Page i December 2019 DRAFT CCSDS RECOMMENDED STANDARD FOR REAL-TIME TRANSPORT PROTOCOL OVER DELAY TOLERANT NETWORKING FOR VIDEO APPLICATIONS STATEMENT OF INTENT (WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF INTENT:) The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. -
Improving Mobile IP Handover Latency on End-To-End TCP in UMTS/WCDMA Networks
Improving Mobile IP Handover Latency on End-to-End TCP in UMTS/WCDMA Networks Chee Kong LAU A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering (Research) in Electrical Engineering School of Electrical Engineering and Telecommunications The University of New South Wales March, 2006 CERTIFICATE OF ORIGINALITY I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged. (Signed)_________________________________ i Dedication To: My girl-friend (Jeslyn) for her love and caring, my parents for their endurance, and to my friends and colleagues for their understanding; because while doing this thesis project I did not manage to accompany them. And Lord Buddha for His great wisdom and compassion, and showing me the actual path to liberation. For this, I take refuge in the Buddha, the Dharma, and the Sangha. ii Acknowledgement There are too many people for their dedications and contributions to make this thesis work a reality; without whom some of the contents of this thesis would not have been realised. -
AES67 Standard and What It Means for the AV Industry
TECH TALK 78 Systems Integration Asia August - September 2015 About AES67 Standard And What It Means For The AV Industry AES67 is not intended to replace existing solutions, but to offer means for interoperability among them Many of you would have heard about the AES67 standard that was developed by the Audio Engineering Society and published in September 2013. To promote the adoption of AES67, The Media Networking Alliance (MNA) was formed in October 2014. SI Asia speaks to Andreas Hildebrand,Senior Product Manager at ALC NetworX GmbH, the company that is responsible for RAVENNA networking technologies and also a member of MNA, to know more about AES67. What is AES67 all about? guidelines. A prerequisite was not In the overall audio eco- What loophole or space is to invent yet another, completely system, how does AES67 this meant to fill which was new solution, but to try to identify and the solutions fit into the not previously available? commonalities among the existing picture? AES67 is a standard published by solutions and use available technology The advantage of having an the Audio Engineering Society on standards and protocols already interoperability standard for various September 11th, 2013, addressing employed. The idea was to allow solutions is obvious: while there may be “High-performance Streaming Audio- current solution providers to adopt a sound ecosystem of products already over-IP Interoperability”. It defines a AES67 with as little effort as possible available for individual solutions, none set of guidelines which provide a basis and provide AES67 interoperability of these solutions can fit all applications for achieving interoperability between either via a special mode of operation areas. -
Overview on IP Audio Networking Andreas Hildebrand, RAVENNA Evangelist ALC Networx Gmbh, Munich Topics
Overview on IP Audio Networking Andreas Hildebrand, RAVENNA Evangelist ALC NetworX GmbH, Munich Topics: • Audio networking vs. OSI Layers • Overview on IP audio solutions • AES67 & RAVENNA • Real-world application examples • Brief introduction to SMPTE ST2110 • NMOS • Control protocols Overview on IP Audio Networking - A. Hildebrand # 1 Layer 2 Layer 1 AVB EtherSound Layer 3 Audio over IP Audio over Ethernet ACIP TCP unicast RAVENNA AES67 multicast RTP UDP X192 Media streaming Dante CobraNet Livewire Overview on IP Audio Networking - A. Hildebrand # 3 Layer 2 Layer 1 AVB Terminology oftenEtherSound Layer 3 Audio over IP • ambiguousAudio over Ethernet ACIP TCP unicast • usedRAVENNA in wrongAES67 context multicast RTP • marketingUDP -driven X192 Media streaming • creates confusion Dante CobraNet Livewire Overview on IP Audio Networking - A. Hildebrand # 4 Layer 2 Layer 1 AVB Terminology oftenEtherSound Layer 3 Audio over IP • ambiguousAudio over Ethernet ACIP TCP Audio over IP unicast • usedRAVENNA in wrongAES67 context multicast RTP • marketingUDP -driven X192 Media streaming • creates confusion Dante CobraNet Livewire Overview on IP Audio Networking - A. Hildebrand # 5 Layer 7 Application Application Application and Layer 6 Presentation protocol-based layers Presentation HTTP, FTP, SMNP, Layer 5 Session Session POP3, Telnet, TCP, Layer 4 Transport UDP, RTP Transport Layer 3 Network Internet Protocol (IP) Network Layer 2 Data Link Ethernet, PPP… Data Link Layer 1 Physical 10011101 Physical Overview on IP Audio Networking - A. Hildebrand # 10 Physical transmission Classification by OSI network layer: Layer 1 Systems Transmit Receive Layer 1 Physical 10011101 Physical Overview on IP Audio Networking - A. Hildebrand # 12 Physical transmission Layer 1 systems: • Examples: SuperMac (AES50), A-Net Pro16/64 (Aviom), Rocknet 300 (Riedel), Optocore (Optocore), MediorNet (Riedel) • Fully proprietary systems • Make use of layer 1 physical transport (e.g. -
OEM Cobranet Module Design Guide
CDK-8 OEM CobraNet Module Design Guide Date 8/29/2008 Revision 1.1 © Attero Tech, LLC 1315 Directors Row, Suite 107, Ft Wayne, IN 46808 Phone 260-496-9668 • Fax 260-496-9879 620-00001-01 CDK-8 Design Guide Contents 1 – Overview .....................................................................................................................................................................................................................................2 1.1 – Notes on Modules .................................................................................................................................................... 2 2 – Digital Audio Interface Connectivity...........................................................................................................................................................................3 2.1 – Pin Descriptions ....................................................................................................................................................... 3 2.1.1 - Audio clocks ..................................................................................................................................................... 3 2.1.2 – Digital audio..................................................................................................................................................... 3 2.1.3 – Serial bridge ..................................................................................................................................................... 4 2.1.4 – Control............................................................................................................................................................