bioRxiv preprint doi: https://doi.org/10.1101/590794; this version posted March 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Cell signalling stabilizes morphogenesis against noise. Authors: Pascal Hagolani 1*, Roland Zimm1,2*, Miquel Marin-Riera3,4 and Isaac Salazar-Ciudad1,5,6** Author affiliations: 1 Evo-devo Helsinki community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland 2 Institute of Functional Genomics, École Normale Superieure, France 3 European Molecular Biology Laboratory, Barcelona 4 Pompeu Fabra University, Barcelona 5 Genomics, Bioinformatics and Evolution. Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain 6 Centre de Rercerca Matemàtica, Cerdanyola del Vallès, Spain * Co-first authors **Corresponding author: E-mail:
[email protected]. Abstract: Embryonic development involves gene networks, extracellular signaling, cell behaviors (cell division, apoptosis, adhesion, etc.) and mechanical interactions. How should gene networks, extracellular signaling and cell behaviors be coordinated to lead to complex and robust morphologies? To explore this question, we randomly wired genes and cell behaviors into a huge number of networks in EmbryoMaker. EmbryoMaker is a general mathematical model of animal development that simulates how embryos change, i.e. how the 3D spatial position of cells change, over time due such networks. Real gene networks are not random. Random networks, however, allow an unbiased view on the requirements for complex and robust development. We found that the mere autonomous activation of cell behaviors, especially cell division and contraction, was able to lead to the development of complex morphologies.