OCEAN and CLIMATE SCIENTIFIC NOTES Ocean-Climate.Org

Total Page:16

File Type:pdf, Size:1020Kb

OCEAN and CLIMATE SCIENTIFIC NOTES Ocean-Climate.Org ocean-climate.org OCEAN AND CLIMATE SCIENTIFIC NOTES ocean-climate.org Why an “Ocean and Climate” platform ? The ocean is a key element of the global climate system, but so far it has been relatively absent from discussions on climate change. For all of us participating in the Ocean and Climate Platform, it is essential to include the ocean among the issues and challenges dis- cussed in the context of climate negociations. Covering 71 % of the globe, the world ocean It is therefore urgent to maintain the functional is a complex ecosystem that provides essential quality of marine ecosystems and restore those services for the maintenance of life on Earth. that are deteriorating. More than 25 % of the CO2 emitted annually by humans into the atmosphere is absorbed by the The Ocean and Climate Platform was esta- ocean, and it is also the largest net supplier of blished from an alliance of non-governmen- oxygen in the world, playing an equally impor- tal organizations and research institutes, with tant role as the forests. support from the UNESCO Intergovernmental Oceanographic Commission. The ocean is therefore the principle “lung” of the planet and is at the center of the global cli- Today the Platform includes scientific organiza- mate system. tions, universities, research institutions, non-profit associations, foundations, science centers, pu- Although the ocean continues to limit global blic institutions and business organizations, all warming, for several decades the pressure acting to bring the ocean to the forefront in cli- of human beings – principally CO2 emissions, mate discussions. over-exploitation of resources and pollution have degraded marine ecosystems. The role of the ocean in regulating the climate is likely to be disrupted. ocean-climate.org Our objectives In December 2015 in Paris the 21st United Nations Climate Conference will take place. This conference will establish the roadmap that will enable the international community to meet the challenges of climate change in the coming years. The Ocean and Climate Platform aims to : INTEGRATE THE OCEAN IN THE DEBATE ON CLIMATE, PROMOTE SCIENTIFIC KNOWLEDGE ABOUT THE AND CONTRIBUTE TO SUCCESSFUL NEGOTIATIONS LINKS BETWEEN OCEAN AND CLIMATE FOR AN AMBITIOUS AGREEMENT AT THE COP21 The links between ocean and climate are gra- The Paris Agreement must take into account dually becoming better defined, but the needs the ocean and its role in the climate to best for knowledge and research are still very impor- confront the major climate challenges in the tant. Having a set of indicators will allow us to years to come. better monitor the evolution of the ocean within the climate system. INCREASE PUBLIC AWARENESS ABOUT THE INFORM AND INSTRUCT PUBLIC AND PRIVATE POLICY IMPORTANCE OF THE OCEAN IN THE GLOBAL MAKERS ON OCEAN AND CLIMATE ISSUES CLIMATE SYSTEM Policy makers at all levels – heads of state, re- Advancing the general public’s knowledge presentatives of international organizations and about the links between the climate with ocean national governments, private actors – have too and coastal areas will contribute to a better un- little knowledge about the role of the ocean in derstanding and consideration of the impacts of climate. The issues related to the impacts of climate climate change on the marine environment. change on marine and terrestrial ecosystems of the coast (where nearly 80 % of the world population will concentrate in 2050) must be clearly identified. FOR FURTHER INFORMATION, PLEASE CONTACT: Scientific Committee Coordinator Françoise Gaill [email protected] WITH THE HELP OF: Nausicaá: Christine Causse Tara Expeditions: Marion Di Méo, Marc Domingos, Eloïse Fontaine Surfrider Foundation Europe: Elodie Bernollin Institut Océanographique, Prince Albert Ier de Monaco: Corinne Copin Ocean and Climate Platform: Ludovic Frère Escoffier UMR AMURE: Marianne Biron Translation: Joséphine Ras, Patrick Chang, Dana Sardet Graphic design: Elsa Godet CITATION OCEAN AND CLIMATE, 2015 – Scientific Notes. www.ocean-climate.org, 116 pages. October 2015 With the support of ocean-climate.org Table of contents Foreword Françoise Gaill............................................................................................................................................................................06 Ocean, Heat Reservoir Sabrina Speich, Gilles Reverdin, Herlé Mercier and Catherine Jeandel…..................................................................08 The Ocean: a Carbon Pump Laurent Bopp, Chris Bowler, Lionel Guidi, Éric Karsenti and Colomban de Vargas…................................................13 Sea Level Rise Benoit Meyssignac and Gilles Reverdin................................................................................................................................19 How does the ocean acquire its chemical composition? Valérie Chavagnac and Catherine Jeandel......................................................................................................................23 Ocean Acidification Jean-Pierre Gattuso and Lina Hansson................................................................................................................................27 The Ocean is Out of Breath Kirsten Isensee, Lisa Levin, Denise Breitburg, Marilaure Gregoire, Veronique Garçon and Luis Valdés.....................30 The Deep Ocean: Which Climate Issues? Nadine Le Bris..............................................................................................................................................................................36 The Southern Ocean Philippe Koubbi, Gabriel Reygondeau, Claude De Broyer, Andrew Constable and William W.L. Cheung.........41 The Arctic: Opportunities, Concerns and Challenges Emmanuelle Quillérou, Mathilde Jacquot, Annie Cudennec and Denis Bailly…......................................................51 Ocean, Biodiversity and Climate Gilles Bœuf...................................................................................................................................................................................62 Ecosystem Services and Marine Conservation Denis Bailly, Rémi Mongruel and Emmanuelle Quillérou…..............................................................................................66 Coral Reefs and Climate Change Denis Allemand..........................................................................................................................................................................73 Exploited Marine Biodiversity and Climate Change Philippe Cury...............................................................................................................................................................................80 Aquaculture and Global Changes Marc Metian...............................................................................................................................................................................83 Small Islands, Ocean and Climate Virginie Duvat, Alexandre Magnan and Jean-Pierre Gattuso.......................................................................................88 Informing Climate Investment Priorities for Coastal Populations Adrien Comte, Linwood Pendleton, Emmanuelle Quillérou and Denis Bailly............................................................101 Lifestyles and attitudes in Tabiteuea: a dam against the Pacific? Guigone Camus.......................................................................................................................................................................109 ocean-climate.org Foreword Françoise Gaill For decades, climate change negotiations did results in the acidification of the ocean. Ocean not take the ocean into consideration. The fol- acidity has increased by 30% over two and a half lowing texts reveals a change in mindset and centuries and this phenomenon continues to am- that this planetary environment has finally been plify, thus directly threatening marine species. given the importance it deserves in climate is- sues. This document addresses concerns such as In fact, the ocean is clearly a carbon sink, as it the part the ocean plays for the climate and the can concentrate fifty times more carbon than impacts of climate change on the ocean. the atmosphere. Both physical and biological mechanisms contribute to the absorption and The climate of our planet is largely dependent storage of oceanic carbon, the planktonic upon the ocean, but who is aware of this nowa- ecosystem being the main contributor to the days? biological pump. Although this biological car- bon pump has been identified, the scope of its The ocean regulates the climate at a global action still remains to be determined. It is worth scale due to its continuous exchanges with noting that marine biodiversity only represents the atmosphere, whether they are radiative, 13% of all described living species on Earth. This is mechanical or gaseous. The heat from the sun particularly low, considering the colossal volume is absorbed, stored and transported by the of the ocean. The future should tell whether this ocean, thus affecting the atmospheric tem- is related to a lack of knowledge. Nonetheless, perature and circulation. Although its ability to the still unknown domain of the deep ocean store heat is much more efficient than that of may provide an answer once it is explored, as the continents or the atmosphere, the limits of this deep environment represents more than this storage capacity are still unknown.
Recommended publications
  • Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
    G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats.
    [Show full text]
  • CP-2019-161 Lessons from a High CO2 World: an Ocean View from ~3 Million Years Ago Reply to Editor
    CP-2019-161 Lessons from a high CO2 world: an ocean view from ~3 million years ago Reply to Editor This document addresses the concerns of the Editor on our revised manuscript. We also include the “tracked changes” manuscript text. No changes have been made to the Supplement text. We thank the Editor for the remaining comments, which are addressed here and shown as tracked changes in the document below: Upon final reading of the manuscript I noticed 2 areas, that I feel need addressing before the manuscript can be published. These are minor and the second I think is a result of some changes you made to the manuscript in the most recent submission. 1. Please reference the underlying SST data in Figure 2. At present, the figure caption only makes reference to the the PlioVAR sites. Thank you for flagging this, we had omitted to cite our source data. The PlioVAR sites have been overlaid on the World Ocean Atlas (2018) mean annual SSTs. We have cited this source in the caption. We also felt that we should highlight that the compiled information on sites and proxies is included in the Supplement file and in the Pangaea archive. Our caption has been edited accordingly: Figure 2: Locations of sites used in the synthesis, overlain on mean annual SST data from the World Ocean Atlas 2018 (Locarnini et al., 2018). A full list of the data sources and K proxies applied per site are available in Table S3 (U 37’) and Table S4 (Mg/Ca), and can be accessed at https://pliovar.github.io/km5c.html.
    [Show full text]
  • World Ocean Thermocline Weakening and Isothermal Layer Warming
    applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer.
    [Show full text]
  • Marine Nature Conservation in the Pelagic Environment: a Case for Pelagic Marine Protected Areas?
    Marine nature conservation in the pelagic environment: a case for pelagic Marine Protected Areas? Susan Gubbay September 2006 Contents Contents......................................................................................................................................... 1 Executive summary....................................................................................................................... 2 1 Introduction........................................................................................................................... 4 2 The pelagic environment....................................................................................................... 4 2.1 An overview...................................................................................................................... 4 2.2 Characteristics of the pelagic environment ....................................................................... 5 2.3 Spatial and temporal structure in the pelagic environment ............................................... 6 2.4 Marine life....................................................................................................................... 10 3 Biodiversity conservation in the pelagic environment........................................................ 12 3.1 Environmental concerns.................................................................................................. 12 3.2 Legislation, policy and management tools...................................................................... 15
    [Show full text]
  • MARINE ENVIRONMENTS Teaching Module for Grades 6-12
    MARINE ENVIRONMENTS Teaching Module for Grades 6-12 Dear Educator, We are pleased to present you with the first in a series of teaching and learning modules developed by the DEEPEND (Deep-Pelagic Nekton Dynamics) consortium and their consultants. DEEPEND is a research network focusing primarily on the pelagic zone of the Gulf of Mexico, therefore the majority of the lessons will be based around this topic. Whenever possible, the lessons will focus specifically on events of the Gulf of Mexico or work from the DEEPEND scientists. All modules in this series aim to engage students in grades 6 through 12 in STEM disciplines, while promoting student learning of the marine environment. We hope these lessons enable teachers to address student misconceptions and apprehensions regarding the unique organisms and properties of marine ecosystems. We intend for these modules to be a guide for teaching. Teachers are welcome to use the lessons in any order they wish, use just portions of lessons, and may modify the lessons as they wish. Furthermore, educators may share these lessons with other school districts and teachers; however, please do not receive monetary gain for lessons in any of the modules. Moreover, please provide credit to photographers and authors whenever possible. This first module focuses on the marine environment in general including biological, chemical, and physical properties of the water column. We have provided a variety of activities and extensions within this module such that lessons can easily be adapted for various grade and proficiency levels. Given that education reform strives to incorporate authentic science experiences, many of these lessons encourage exploration and experimentation to encourage students to think and act like a scientist.
    [Show full text]
  • New Constraints on Ocean Carbon
    Ref. Ares(2020)7216916 - 30/11/2020 New constraints on ocean carbon Deliverable D1.6 Authors: Peter Landschützer, Nicolas Gruber, Jens D. Müller, Lydia Keppler, Luke Gregor This project received funding from the Horizon 2020 programme under the grant agreement No. 821003. Document Information GRANT AGREEMENT 821003 PROJECT TITLE Climate Carbon Interactions in the Current Century PROJECT ACRONYM 4C PROJECT START 1/6/2019 DATE RELATED WORK W1 PACKAGE RELATED TASK(S) T1.2.1, T1.2.2 LEAD MPG ORGANIZATION AUTHORS P. Landschützer, N. Gruber, J.D. Müller, L. Keppler and L. Gregor SUBMISSION DATE x DISSEMINATION PU / CO / DE LEVEL History DATE SUBMITTED BY REVIEWED BY VISION (NOTES) 18.11.2020 Peter Landschützet (MPG) P. Friedlingstein (UNEXE) Please cite this report as: P. Landschützer, N. Gruber, J.D. Müller, L. Keppler and L. Gregor, (2020), New constraints on ocean carbon, D1.6 of the 4C project Disclaimer: The content of this deliverable reflects only the author’s view. The European Commission is not responsible for any use that may be made of the information it contains. D1.6 New constraints on ocean carbon| 1 Table of Contents 2 New observation-based constraints on the surface ocean carbonate system and the air-sea CO2 flux 5 2.1 OceanSODA-ETHZ 5 2.1.1 Observations 5 2.1.2 Method 5 2.1.3 Results 6 2.1.4 Data availability 7 2.1.5 References 7 2.2 Update of MPI-SOMFFN and new MPI-ULB-SOMFFN-clim 8 2.2.1 Observations 9 2.2.2 Method 9 2.2.3 Results 9 2.2.4 Data availability 10 2.2.5 References 11 3 New observation-based constraints on interior
    [Show full text]
  • IPLS Pages 0110 Phes09 GRSW Ch15.QXD 5/9/07 3:37 PM Page 113
    0110_phes09_GRSW_Ch15.QXD 5/9/07 3:37 PM Page 112 Name ___________________________ Class ___________________ Date _____________ Chapter 15 Ocean Water and Ocean Life Section 15.2 The Diversity of Ocean Life This section describes the diversity of organisms found in the ocean. Reading Strategy Building Vocabulary As you read, add definitions and examples to complete the table below. For more information on this Reading Strategy, see the Reading and Study Skills in the Skills and Reference Handbook at the end of your textbook. Definitions Examples Plankton: organisms that drift with bacteria ocean currents Phytoplankton: a. b. Zooplankton: c. d. Nekton: e. f. Benthos: g. h. 1. What organism directly or indirectly provides food for the majority © Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. of organisms? Classification of Marine Organisms 2. How are marine organisms classified? Match each classification to its example. Classification Example 3. plankton a. adult sea star 4. nekton b. diatom 5. benthos c. salmon Marine Life Zones 6. What are the three factors used to divide the ocean into distinct marine life zones? Earth Science Guided Reading and Study Workbook ■ 112 IPLS Pages 0110_phes09_GRSW_Ch15.QXD 5/9/07 3:37 PM Page 113 Name ___________________________ Class ___________________ Date _____________ Chapter 15 Ocean Water and Ocean Life 7. Circle the letter of each sentence that is true about life in the ocean. a. In the euphotic zone, phytoplankton use sunlight to produce food. b. Phytoplankton is the basis of most oceanic food webs. c. Photosynthesis occurs from the surface to deep into the abyssal zone of the ocean.
    [Show full text]
  • Ecologically Or Biologically Significant Areas in the Pelagic
    Ecologically or Biologically Significant Areas in the Pelagic Realm: Examples & Guidelines Workshop Report INTERNATIONAL UNION FOR CONSERVATION OF NATURE Report of a scientific workshop organized by the Global Ocean Biodiversity Initiative (GOBI) and the Marine Geospatial Ecology Lab (MGEL) at Duke University, in Sidney, B.C., Canada, from May 12th–14th, 2011. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, terri- tory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Published by: IUCN, Gland, Switzerland Copyright: © 2011 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Dunn, D.C. (ed.), Ardron, J., Ban, N., Bax, N., Bernal, P., Bograd, S., Corrigan, C., Dun- stan, P., Game, E., Gjerde, K., Grantham, H., Halpin, P.N., Harrison, A.L., Hazen, E., Lagabrielle, E., Lascelles, B., Maxwell, S., McKenna, S., Nicol, S., Norse, E., Palacios, D., Reeve, L., Shillinger, G., Simard, F., Sink, K., Smith, F., Spadone, A., Würtz, M. (2011). Ecologically or Biologically Significant Areas in the Pelagic Realm: Ex- amples & Guidelines – Workshop Report. Gland, Switzerland: IUCN.
    [Show full text]
  • The Difference of Sea Level Variability by Steric Height and Altimetry In
    remote sensing Letter The Difference of Sea Level Variability by Steric Height and Altimetry in the North Pacific Qianran Zhang 1, Fangjie Yu 1,2,* and Ge Chen 1,2 1 College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; [email protected] (Q.Z.); [email protected] (G.C.) 2 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China * Correspondence: [email protected]; Tel.: +86-0532-66782155 Received: 4 December 2019; Accepted: 22 January 2020; Published: 24 January 2020 Abstract: Sea level variability, which is less than ~100 km in scale, is important in upper-ocean circulation dynamics and is difficult to observe by existing altimetry observations; thus, interferometric altimetry, which effectively provides high-resolution observations over two swaths, was developed. However, validating the sea level variability in two dimensions is a difficult task. In theory, using the steric method to validate height variability in different pixels is feasible and has already been proven by modelled and altimetry gridded data. In this paper, we use Argo data around a typical mesoscale eddy and altimetry along-track data in the North Pacific to analyze the relationship between steric data and along-track data (SD-AD) at two points, which indicates the feasibility of the steric method. We also analyzed the result of SD-AD by the relationship of the distance of the Argo and the satellite in Point 1 (P1) and Point 2 (P2), the relationship of two Argo positions, the relationship of the distance between Argo positions and the eddy center and the relationship of the wind.
    [Show full text]
  • NOAA Atlas NESDIS 81 WORLD OCEAN ATLAS 2018 Volume 1
    NOAA Atlas NESDIS 81 WORLD OCEAN ATLAS 2018 Volume 1: Temperature Silver Spring, MD July 2019 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service National Centers for Environmental Information NOAA National Centers for Environmental Information Additional copies of this publication, as well as information about NCEI data holdings and services, are available upon request directly from NCEI. NOAA/NESDIS National Centers for Environmental Information SSMC3, 4th floor 1315 East-West Highway Silver Spring, MD 20910-3282 Telephone: (301) 713-3277 E-mail: [email protected] WEB: http://www.nodc.noaa.gov/ For updates on the data, documentation, and additional information about the WOA18 please refer to: http://www.nodc.noaa.gov/OC5/indprod.html This document should be cited as: Locarnini, R.A., A.V. Mishonov, O.K. Baranova, T.P. Boyer, M.M. Zweng, H.E. Garcia, J.R. Reagan, D. Seidov, K.W. Weathers, C.R. Paver, and I.V. Smolyar (2019). World Ocean Atlas 2018, Volume 1: Temperature. A. Mishonov, Technical Editor. NOAA Atlas NESDIS 81, 52pp. This document is available on line at http://www.nodc.noaa.gov/OC5/indprod.html . NOAA Atlas NESDIS 81 WORLD OCEAN ATLAS 2018 Volume 1: Temperature Ricardo A. Locarnini, Alexey V. Mishonov, Olga K. Baranova, Timothy P. Boyer, Melissa M. Zweng, Hernan E. Garcia, James R. Reagan, Dan Seidov, Katharine W. Weathers, Christopher R. Paver, Igor V. Smolyar Technical Editor: Alexey Mishonov Ocean Climate Laboratory National Centers for Environmental Information Silver Spring, Maryland July 2019 U.S. DEPARTMENT OF COMMERCE Wilbur L.
    [Show full text]
  • Lesson Plan – Ocean in Motion
    Lesson Plan – Ocean in Motion Summary This lesson will introduce students to how the ocean is divided into different zones, the physical characteristics of these zones, and how water moves around the earths ocean basin. Students will also be introduced to organisms with adaptations to survive in various ocean zones. Content Area Physical Oceanography, Life Science Grade Level 5-8 Key Concept(s) • The ocean consists of different zones in much the same way terrestrial ecosystems are classified into different biomes. • Water moves and circulates throughout the ocean basins by means of surface currents, upwelling, and thermohaline circualtion. • Ocean zones have distinguishing physical characteristics and organisms/ animals have adaptations to survive in different ocean zones. Lesson Plan – Ocean in Motion Objectives Students will be able to: • Describe the different zones in the ocean based on features such as light, depth, and distance from shore. • Understand how water is moved around the ocean via surface currents and deep water circulation. • Explain how some organisms are adapted to survive in different zones of the ocean. Resources GCOOS Model Forecasts Various maps showing Gulf of Mexico surface current velocity (great teaching graphic also showing circulation and gyres in Gulf of Mexico), surface current forecasts, and wind driven current forecasts. http://gcoos.org/products/index.php/model-forecasts/ GCOOS Recent Observations Gulf of Mexico map with data points showing water temperature, currents, salinity and more! http://data.gcoos.org/fullView.php Lesson Plan – Ocean in Motion National Science Education Standard or Ocean Literacy Learning Goals Essential Principle Unifying Concepts and Processes Models are tentative schemes or structures that 2.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]