Real Time Volumetric Ultrasound Imaging System and Extensive Operator Interaction That Preclude Has Been Developed for Medical Diagnosis

Total Page:16

File Type:pdf, Size:1020Kb

Real Time Volumetric Ultrasound Imaging System and Extensive Operator Interaction That Preclude Has Been Developed for Medical Diagnosis Real Time Volumetric Ultrasound lmaging System Olaf T. von Ramm and Stephen W. Smith A real time volumetric ultrasound imaging system and extensive operator interaction that preclude has been developed for medical diagnosis. The scan- imaging of dynamic structures without sophisti- ner produces images analogous to ah optical camera cated gating techniques. and supplies more information than conventional sonograms. Potential medical applications include In the field of diagnostic ultrasound, 3D imag- improved anatomic visualization, tumor tocalization, ings systems have been proposed in the past. and better assessment of cardiac function. The However, these have been too slow for clinical system uses pulsa-echo phased array principias to applications 4'5 or have operated primarily in a steer a two-dimensional erray trensducer of 289 through-transmission mode requiring a complex elements in a pyramidal sean format. Parallel process- ing in the receive moda produces 4992 scan lines eta water-path apparatus. 6'70ur objective was to rata of approximately 8 frames/second. Echo data develop ah ultrasound system, which uses a for the scanned volume is presented es projection hand-held transducer, capable of scanning a images with depth perspectiva, steraoscopic pairs, volume rapidly and enabling the 3-D visualiza- multiple tomographic images, or C-moda scans. tion of dynamic structures in real time. 9 1990 by W.B. Saunders Company. In order to extend cross-sectional ultrasound KEY WORDS: diagnostic ultrasound, phased array. imaging to volumetric imaging, three advances three-dimensional, volumetric, diagnostic imaging, were necessary: (1) a hand-held transducer was real time. needed that could be steered rapidly and focused at ~.ny desired orientation in the volume; (2) the A HIGH-SPEED volumetric ultrasound imag- data acquisition rate had to be increased signifi- ing system that uses pulse-echo principles cantly to obtain image data from many planes in analogous to sonar and radar has been developed real time; (3) a display method was required, for medical application. Conventional ultrasound which allowed the visualization of all or part of cross-sectional imaging has become a valuable the echo data obtained from the scanned tissue diagnostic modality in virtually every medical volume. speciality. ] In routine clinical practice, ultra- In order to demonstrate expeditiously the fea- sound pulse-echo images of soft tissue are ob- sibility of high-speed volumetric ultrasound imag- tained with high spatial resolution (1 to 2 mm), ing, the extant Duke University phased array at real time, vŸ frame rates (30/sec) using research scanner 8 was appropriately modified. portable systems. Currently, the most sophisti- Figure 1 illustrates the concept of a volumetric cated medical ultrasound scanners use a phased phased array ultrasound imaging system that linear array of approximately 100 piezoelectric uses a two-dimensional (2D) array of transducer transducer elements to steer and focus the ultra- r to produce a pyramidal scan composed sonic beam along approximately 150 directions of eight steering directions in the azimuth dimen- in a sector sean format. Beam steering and sion, O, by 16 steering directions in the elevation focusing is accomplished by properly delaying dimension, ~. the transmit pulses and the echoes returning to the transducer array from tissue structures within the body. ~ From the Department of Biomedical Engineering, Duke Over the years, there has been interest in the University, Durham, NC; the Centerfor Devices and Radio- medical imaging community in constructing logical Health, Food & Drug Administration, Rockville. three-dimensional (3D) rendcrings from serial MD; and the Department of Radiology, Duke University, cross-sectional images obtained via magnetic Durham, NC. Supported in part by Health and Human Sciences Grant resonance imaging, x-ray computed tomography No. NCI CA37586, National Science Foundation/Engineer- and diagnostic ultrasound. 3 The advantages of ing Research Center Grant No. CDR-86222, and by the Food such renderings include more realistic anatomic and Drug Administration. visualization and improved localization and siz- Address reprint requests to Olaf T. von Ramm, Depart- ment of Biomedical Engineering, Duke University, Durham, ing of mass lesions for surgical procedures. Cur- NC 27706. rent techniques are limited by lengthy data 9 1990 by W.B. SaundersCompany. acquisition times, computer processing times, 0897-t 889/90/0304-0002503.00/0 Journa/ofDigita//maging, Vol 3, No 4 (November), 1990: pp 261=266 261 262 VON RAMM AND SMITH Fig 1. Pyramidal sean for- mar of 3D ultresound imeging system showing 2D phesed ar- rey trensducer, and the trans- mit and receive elements within the arrey. Trensmit directions sre indicated by dotted lines. receive directions by dashes. Dots st end of scan volume ate "/~_~\.~~~/,.: :: .': .~/ image points used to produce the perspective display of Fig 3. Adjustable C-scan plane is indi- cated by darkened region, In order to obtain best image quality, aU of the by the velocity of sound in tissue, ~-1540 m/sec. 17 x 17 elements of the array should be used. The data acquisition was increased through par- However, the Duke system is limited to 32 allel signal processing in the receive ruede in independent .transmit channels and 32 indepen- which eight steering directions were obtained dent receive channels. In this study, the Mills simultaneously for each transmitted ultrasound cross antenna design of radio astronomy9 was pulse. chosen for the transmit aperture (shown by the This parallel processing technique, which we solid cross in Fig 1) and ah independent Mills have described previously, I~ is illustrated in Fig 1 cross for the receive transducer aperture (shown for a few representative lines. In the 9direction, by the shaded diamonds of Fig 1) to provide the orientation of the two transmit pulses T 1 and adequate sampling of the 2D array. The two T 2 (produced by the transmit array) are shown crosses are positioned at 450 with respect to each by the dotted lines. By using the smaller transmit other and neither one utilizes the center element. cross array, the transmit beato is broadened to a This design enabted the imaging system to be width of =6 o. On each side of each transmit steered and focused to any desired angle with a beam, four receive mode scan lines spaced at 0.5 ~ small number of phased array channels while increments (shown by the dashed lines) are maintaining adequate spatial resolution for high- obtained in parallel by the receive mode array. contrast targets. The tradeoff associated with The steering directions are shown on an exagger- this transducer design increases the undesired ated scale in the figure. off-axis energy from the transducer. The receive mode parallel processing is accom- The 2D array of 289 transducer elements plished by the addition of smail independent illustrated in Fig 1 was fabricated in our labora- tapped delay lines to the principle electronic tory with independent transmit and receive crosses delay lines used for steering and focusing. These of 32 elements each. ]'he array operates at 1.7 small delays add the desired steering angle incre- MHz with inter-element spacing of 0.64 mm ment in the receive mode of the phased array yielding a spatial resolution of =4 o. The phased system. The eight to one parailel processing array time delays were calculated using the increases the data acquisition rate of the echo Pythagorean theorem for each transducer array signals by a factor of eight. Thus, in the volumet- etement at each transmit and receive focal point ric scanner 12 transmitted pulses steered in the for each line in the pyramidal sean. elevation (,I,) direction over a 65 ~ sector produce Conventional pulse-echo data acquisition is 96 steer… directions. In the azimuth direction limited by the round trip propagation time of ah (0), no parailel processing is currently imple- ultrasound pulse into the body that is determined mented, so that 52 transmit pulses yield 52 scan REAL TIME VOLUMETRIC ULTRASOUND IMAGING SYSTEM 263 lines steered over a 65 ~ sector. Thus, in each image. Since the echo data is written on the pyramidal sean, 624 transmit pulses produced screen continuously, the viewer's eye integrates 4992 scan lines per image at a frame rate of 8 the data to a single brightness value. This tech- images/second. As a trade-off, the broadened nique is illustrated in Fig 1 in which the 8 • 16 transmit beam, necessary for the increased data scan directions are represented by a matrix of acquisition rate of parallel processing, increases 8 x 16 dots. In this way, the ultrasound scanner undesired off-axis energy from the transducer produces a projection image and functions as the and degrades the image contrast by =13 dB in direct analogue of a normal optical camera. The the resulting 3D images. (x, y) position of each point in the display is Figure 2 is a block diagram of the high-speed proportional to the tangent of the steering angle volumetric ultrasound phased array scanner. The of the corresponding sean line (tan O, tan ~). In figure shows the PDP-11 computer that serves as this display, a more distant object that subtends a the imaging system controller and provides the smaller angle within the pyramidal sean is dis- phased array delay data to the rest of the played as a smaller image. Thus depth is encoded imaging system. Also shown are the 32 transmit in the display as in the human eye ora conven- pulsers that ¡ the transmit transducer array tional optical camera. and the 32 preampli¡ that amplify the ultra- Figure 3 shows preliminary results of our 3D sonic echoes from the receive mode array. The imaging system in water tank evaluations of the figure also shows the electronic delay lines that projection display. Figure 3 A is a 4992-1ine provide the receive mode delays for steering and pyramidal sean of a 14 mm (9/16 in) wrench in focusing as well as providing the 8 to 1 receive water positioned parallel to the transducer face mode parallel processing.
Recommended publications
  • 3D Ultrasound Elastography for Early Detection of Lesions. Evaluation on a Pressure Ulcer Mimicking Phantom
    3D Ultrasound Elastography for Early Detection of Lesions. Evaluation on a Pressure Ulcer Mimicking Phantom. Jean-François Deprez, Guy Cloutier, Cedric Schmitt, Claudine Gehin, André Dittmar, Olivier Basset, Elisabeth Brusseau To cite this version: Jean-François Deprez, Guy Cloutier, Cedric Schmitt, Claudine Gehin, André Dittmar, et al.. 3D Ultrasound Elastography for Early Detection of Lesions. Evaluation on a Pressure Ulcer Mim- icking Phantom.. Conference proceedings : .. Annual International Conference of the IEEE En- gineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, Institute of Electrical and Electronics Engineers (IEEE), 2007, 1, pp.79-82. 10.1109/IEMBS.2007.4352227. inserm-00192829 HAL Id: inserm-00192829 https://www.hal.inserm.fr/inserm-00192829 Submitted on 29 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HAL author manuscript Conf Proc IEEE Eng Med Biol Soc 2007;1:79-82 3D Ultrasound Elastography for Early Detection of Lesions. Evaluation on a Pressure Ulcer Mimicking Phantom. Jean-François Deprez, Guy Cloutier, Cédric Schmitt, HAL author manuscript inserm-00192829, version 1 Claudine Gehin, André Dittmar, Olivier Basset and Elisabeth Brusseau Abstract— A pressure ulcer is a damaged tissue area induced of bedsores affect these two locations.
    [Show full text]
  • Benefits and Risk of Fetal 3D Ultrasound
    Benefits and Risk of Fetal 3D Ultrasound ABSTRACT The purpose of this literature review was to survey available information and research related to routine three- dimensional (3D) ultrasound technology in obstetrics, with an emphasis on current medical uses, safety, and availability issues. Several data bases, including Cochrane, WHO, NIH, CINALH, Blackwell Synergy, ERIC, PubMed, and Medline, were used along with information from Internet search engines. Although fetal 3D ultra- sound is used in both medical and commercial settings, recent studies focus on its possible uses rather than the more difficult issues of safety and commercial applications. Professional organizations associated with ul- trasound technology support limiting ultrasounds in pregnancy to medically necessary events, whereas com- mercial venues use “direct to consumer” marketing to promote this technology as a way to “see” the baby be- fore it is born. How safe is routine or frequent use of 3D ultrasound? Further research is needed to address these important questions. Key Words: Fetal ultrasonography; Ultrasonography, fetal; Ultrasonography, prenatal. 102 VOLUME 32 | NUMBER 2 March/April 2007 ince the early 2000s, opportunities for captur- images of the body, it replaces the need for ionizing (x- ing the lifelike image of a developing fetus have ray) methods to obtain the same information. Fetal scan- emerged in shopping malls around the world ning with two-dimensional (2D) ultrasounds, which de- (Gordon, 2003). Parents can now purchase pict length and width, has been used routinely in obstet- Sthree-dimensional (3D) ultrasound images by rics since the 1960s, but these images are black and white, merely entering a mall and leaving with pic- flat and grainy, and need an expert to interpret the results.
    [Show full text]
  • AIUM Practice Parameter for the Performance of an Ultrasound Examination of the Abdomen And/Or Retroperitoneum
    1 AIUM Practice Parameter for the Performance of an Ultrasound Examination of the Abdomen and/or Retroperitoneum Parameter developed in conjunction with the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Radiologists in Ultrasound (SRU). The American Institute of Ultrasound in Medicine (AIUM) is a multidisciplinary association dedicated to advancing the safe and effective use of ultrasound in medicine through professional and public education, research, development of parameters, and accreditation. To promote this mission, the AIUM is pleased to publish, in conjunction with the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Radiologists in Ultrasound (SRU), this AIUM Practice Parameter for the Performance of an Ultrasound Examination of the Abdomen and/or Retroperitoneum. We are indebted to the many volunteers who contributed their time, knowledge, and energy to bringing this document to completion. The AIUM represents the entire range of clinical and basic science interests in medical diagnostic ultrasound, and, with hundreds of volunteers, the AIUM has promoted the safe and effective use of ultrasound in clinical medicine for more than 65 years. This document and others like it will continue to advance this mission. © 2017 American Institute of Ultrasound in Medicine 14750 Sweitzer Ln, Suite 100 Laurel, MD 20707-5906 USA www.aium.org 2 Practice parameters of the AIUM are intended to provide the medical ultrasound community with parameters for the performance and recording of high-quality ultrasound examinations. The parameters reflect what the AIUM considers the minimum criteria for a complete examination in each area but are not intended to establish a legal standard of care.
    [Show full text]
  • Training in Diagnostic Ultrasound: Essentials, Principles and Standards
    This report contains the collective views of on international group of experts and does not necessarily represent the decisions or the stated policy offe World Health Organization TRAINING IN DIAGNOSTIC ULTRASOUND: ESSENTIALS, PRINCIPLES AND STANDARDS Report of a WHO Study Group Geneva 1998 WHO L~braryCataloguing In Publ~catlonData Training in diagnostic ultrasound : essentials, principles and standards : report of a WHO study group (WHO technical report series ; 875) 1 .Ultrasonography 2.Diagnostic imag~ng- standards 3.Guidelines 4.Health per- sonnel - education I Title II.Series (NLM Classification: WN 200) The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full Applications and enquiries should be addressed to the Office of Publications, World Health Organization, Geneva, Switzerland, which will be glad to prov~dethe latest information on any changes made to the text, plans for new editions, and reprlnts and translations already available. O World Health Organization 1998 Publications of the World Health Organization enjoy copyright protect~onin accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opnlon whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organ~zat~onin preference to others of a simllar nature that are not mentioned.
    [Show full text]
  • Three-Dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with External Vibration
    Physics in Medicine & Biology PAPER Three-dimensional shear wave elastography on conventional ultrasound scanners with external vibration To cite this article: Chengwu Huang et al 2020 Phys. Med. Biol. 65 215009 View the article online for updates and enhancements. This content was downloaded from IP address 130.126.255.71 on 25/11/2020 at 16:30 Phys. Med. Biol. 65 (2020) 215009 https://doi.org/10.1088/1361-6560/aba5ea Physics in Medicine & Biology PAPER Three-dimensional shear wave elastography on conventional RECEIVED 3 March 2020 ultrasound scanners with external vibration REVISED 2 July 2020 Chengwu Huang1, Pengfei Song1,3,4, Daniel C Mellema1, Ping Gong1, U-Wai Lok1, Shanshan Tang1, ACCEPTED FOR PUBLICATION 1,5 1 1 2 2 14 July 2020 Wenwu Ling , Duane D Meixner , Matthew W Urban , Armando Manduca , James F Greenleaf and 1 PUBLISHED Shigao Chen 2 November 2020 1 Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States of America 2 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States of America 3 Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America 4 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America 5 Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China E-mail: [email protected] Keywords: ultrasound, shear wave elastography, three-dimensional imaging, liver fibrosis Supplementary material for this article is available online Abstract Two-dimensional (2D) ultrasound shear wave elastography (SWE) has been widely used for soft tissue properties assessment.
    [Show full text]
  • Meeting Name
    Josh Morse, Director March 20, 2015 WA –Health Technology Assessment Program Overview Josh Morse, Director Health Technology Assessment Program March 20, 2015 WA ‐ Health Technology Assessment Program Updates Today: • Testosterone Testing May 15, 2015: • Bariatric Surgery • Imaging for Rhinosinusitus WA ‐ Health Technology Clinical Committee 1 Josh Morse, Director March 20, 2015 WA –Health Technology Assessment WA ‐ Health Technology Assessment Background . The Health Technology Assessment Program (HTA) is located within the Health Care Authority (HCA) . 2006 legislation designed HTA program to use evidence reports and a panel of clinicians to make coverage decisions for certain medical procedures and tests based on evidence of: • Safety • Efficacy/ Effectiveness • Cost‐Effectiveness WA ‐ Health Technology Assessment Background . Multiple state agency programs participate to identify topics and implement policy decisions: • Health Care Authority – Uniform Medical Plan – Medicaid • Labor and Industries • Corrections . Implementation: Agencies implement determinations of the HTA program within their existing statutory framework. 4 WA ‐ Health Technology Clinical Committee 2 Josh Morse, Director March 20, 2015 WA –Health Technology Assessment WA ‐ Health Technology Assessment Purpose: Pay for What Works Ensure medical treatments, devices and services paid for with state health care dollars are safe and proven to work. Provide resources for state agencies purchasing health care . Develop scientific, evidence‐based reports on medical devices,
    [Show full text]
  • Incidental Findings General Medical Ultrasound Examinations: Management and Diagnostic Pathways Guidance
    w Incidental Findings General Medical Ultrasound Examinations: Management and Diagnostic Pathways Guidance September 2020 Acknowledgements The British Medical Ultrasound Society (BMUS) would like to acknowledge the work and assistance provided by the following in the production of this guideline: The Professional Standards Group BMUS 2019-2020: Chair: Mrs Catherine Kirkpatrick Consultant Sonographer Professor (Dr.) Rhodri Evans BMUS President. Consultant Radiologist Mrs Pamela Parker BMUS President Elect. Consultant Sonographer Dr Peter Cantin PhD. Consultant Sonographer Dr Oliver Byass. Consultant Radiologist Miss Alison Hall Consultant Sonographer Mrs Hazel Edwards Sonographer Mr Gerry Johnson Consultant Sonographer Dr. Mike Smith PhD. Physiotherapist/Senior Lecturer Professor (Dr.) Adrian Lim, Consultant Radiologist In addition, the documentation and protocol evidence from Hull University Teaching Hospitals NHS Trust, Plymouth NHS Trusts and United Lincolnshire Hospitals NHS Trust for template derivation. Foreword The introduction of this guidance document regarding the diagnosis and management of incidental findings is timely. The changing landscapes of ultrasound practice combined with the significant communication challenges within a variety of referral sources can often add to the pressures exerted on the ultrasound practitioner. The demand for diagnostic ultrasound examinations is ever increasing. Faster patient throughput and increasing complexities of patient management, coupled with advancing ultrasound technologies leads to an inevitable increase in ‘incidentalomas’. The challenges facing ultrasound practitioners include the re-definition of ‘normal’ due to increased resolution of imaging, dilemmas around reporting of incidental findings and managing the effects of this for the patients and the referring clinicians. These guidelines are a resource that can be used as a basis for diagnostic pathways and reporting protocols, and can be modified as appropriate to align with locally agreed protocols.
    [Show full text]
  • LNCS 5242, Pp
    Real-Time Simulation of Medical Ultrasound from CT Images Ramtin Shams1, Richard Hartley1,2, and Nassir Navab3 1 RSISE, The Australian National University, Canberra 2 NICTA, Canberra, Australia 3 Computer Aided Medical Procedures (CAMP), TU M¨unchen, Germany Abstract. Medical ultrasound interpretation requires a great deal of experience. Real-time simulation of medical ultrasound provides a cost- effective tool for training and easy access to a variety of cases and ex- ercises. However, fully synthetic and realistic simulation of ultrasound is complex and extremely time-consuming. In this paper, we present a novel method for simulation of ultrasound images from 3D CT scans by breaking down the computations into a preprocessing and a run-time phase. The preprocessing phase produces detailed fixed-view 3D scatter- ing images and the run-time phase generates view-dependent ultrasonic artifacts for a given aperture geometry and position within a volume of interest. We develop a simple acoustic model of the ultrasound for the run-time phase, which produces realistic ultrasound images in real-time when combined with the previously computed scattering image. 1 Introduction Ultrasound is a challenging imaging modality to master due to a multitude of pa- rameters involved in acquisition and interpretation of resulting images. Real-time simulation of ultrasound can be used for training to complement a theoretical study program. A recent study in [1] reports a significant improvement in skills of subjects who received additional simulator-based training. The main advantage is easy access to a wealth of standard and rare cases collected over time. Existing methods for real-time simulation of ultrasound such as [2,3,4] are based on acquisition of actual ultrasound images and creating a compounded 3D volume of the region of interest.
    [Show full text]
  • Scope of Practice and Clinical Standards for the Diagnostic Medical Sonographer
    Scope of Practice and Clinical Standards for the Diagnostic Medical Sonographer April 13, 2015 This page intentionally left blank. © 2013-2015 by the participating organizations as a “joint work” as defined in 17 U.S. Code § 101 (the Copyright Act). Contact the Society of Diagnostic Medical Sonography for more information. 2 SCOPE OF PRACTICE REVISION PROCESS In May 2013, representatives of sixteen organizations came together to begin the process of revising the existing Scope of Practice and Clinical Practice Standards. Thus began a process that engaged the participating organizations in an unrestricted dialogue about needed changes. The collaborative process and exchange of ideas has led to this document, which is reflective of the current community standard of care. The current participants recommend a similar collaborative process for future revisions that may be required as changes in ultrasound technologies and healthcare occur. PARTICIPATING ORGANIZATIONS The following organizations participated in the development of this document. Those organizations that have formally endorsed the document are identified with the “†” symbol. Supporting organizations are identified with the "*" symbol. • American College of Radiology (ACR) * • American Congress of Obstetricians and Gynecologists (ACOG) * • American Institute of Ultrasound in Medicine (AIUM) * • American Registry for Diagnostic Medical Sonography (ARDMS) * • American Registry of Radiologic Technologists (ARRT) * • American Society of Echocardiography (ASE) † • American Society of
    [Show full text]
  • 3D and 4D ULTRASOUND Lynn Dony Stephanie Cheung
    3D AND 4D ULTRASOUND Lynn Dony Stephanie Cheung OUTLINE 29/11/10 Introduction to Ultrasound Why 3D / 4D is used Clinical Uses Concept of 3D ultrasound Acquisition 3 methods Rendering / Reconstruction Navigation 3 types of images 4D ultrasound History of Ultrasound Future Ethics 2 INTRODUCTION TO ULTRASOUND 29/11/10 High-frequency sound waves (MHz) Medical imaging technique: use of sound waves to visualize internal structures Basic concept: transducer sends out sound waves Sound waves reflect off of internal structures Image generated from data: Time for the echo to be received Intensity of echo Depends on density of material, location in body Different types: 1D, 2D, Doppler, 3D, 4D 3 WHY 3D / 4D? 29/11/10 Accuracy and repeatability Less dependent on technician’s ability to visualize 2D images in 3D setting Easier to track growth of tumours /diseases, lesions No health risks from moderate use Potential health problems Too intense Over-usage Useful to see structures in motion Surgery Diagnosis 4 CLINICAL USES 29/11/10 3D Imaging during surgery, radiotherapy planning Find instruments with respect to structures in the body Looking at structures / sections of larger structures Eg: fetal screening, breast biopsy, carotid artery, intestine, eye, intravascular, rectal, gynaecological 4D Fetal screening Echocardiography Pelvic floor surgery Venous system imaging 5 CONCEPT OF 3D ULTRASOUND 29/11/10 Take 2D images, process with position to form 3D visualization Processes: 1. Acquisition 2. Rendering
    [Show full text]
  • Breast Ultrasound Tomography with Two Parallel Transducer Arrays
    Breast ultrasound tomography with two parallel transducer arrays Lianjie Huang, Junseob Shin, Ting Chen, Youzuo Lin, Kai Gao, Miranda Intrator, Kenneth Hanson Los Alamos National Laboratory, MS D452, Los Alamos, NM 87545, USA ABSTRACT Breast ultrasound tomography is an emerging imaging modality to reconstruct the sound speed, density, and ultrasound attenuation of the breast in addition to ultrasound reflection/beamforming images for breast cancer detection and charac- terization. We recently designed and manufactured a new synthetic-aperture breast ultrasound tomography prototype with two parallel transducer arrays consisting of a total of 768 transducer elements. The transducer arrays are translated verti- cally to scan the breast in a warm water tank from the chest wall/axillary region to the nipple region to acquire ultrasound transmission and reflection data for whole-breast ultrasound tomography imaging. The distance of these two ultrasound transducer arrays is adjustable for scanning breasts with different sizes. We use our breast ultrasound tomography pro- totype to acquire phantom and in vivo patient ultrasound data to study its feasibility for breast imaging. We apply our recently developed ultrasound imaging and tomography algorithms to ultrasound data acquired using our breast ultrasound tomography system. Our in vivo patient imaging results demonstrate that our breast ultrasound tomography can detect breast lesions shown on clinical ultrasound and mammographic images. Keywords: Breast cancer, reflection, sound speed, synthetic-aperture ultrasound, transmission, ultrasound attenuation, ultrasound imaging, ultrasound tomography. 1. INTRODUCTION Breast cancer is the second-leading cause of cancer death among American women. The breast cancer mortality rate in the U.S. changed little from 1930s-1990s, and has decreased only approximately 20% since the 1990s.
    [Show full text]
  • MI Lab 2011, Images and Stories
    www.ntnu.no/milab MI Lab 2011 MI Lab 2011 Verdana Impact Established by the Research Council of Norway Verdana Impact Established by the Research Council of Norway MI Lab partners MI Lab 2011 MI Lab partners TM MI Lab leader published. These two landmarks confirm the MI Lab Professor olav Haraldseth vision that innovations in medical imaging can facilitate [email protected] cost efficient health care and improved patient outcome at the same time. For MI Lab 2011 was a good year. As MI Lab leader I am happy about two things: We now have a broad research • It is nice to see the competence and enthusiasm of activity with a multi-disciplinary the group of PhD and post doc students. They obtain group of 31 on-going PhD experience in medical R&D in the crossroad between students and post doctoral fellows, and we c ontinuously university, industry and hospital, and will be a future get new ideas that have potential for the MI Lab vision of pool for recruitment of high-quality personnel for inventions that may facilitate cost efficient health care Norwegian industrial R&D, health care and academia. and improved patient outcome. • Our experience so far is that we in MI Lab are able to build an arena for open innovation and long-term The MI Lab partner MediStim ASA obtained an official industrial research with high scientific quality and recommendation in the United Kingdom of the health good commitment from the partners. In 2011 this benefits of the ultrasound system VeriQ: “The case resulted in a publication list of 34 scientific papers for adopting the VeriQ system in the National Health printed in international journals with referee, and MI System for assessing graft flow during coronary artery Lab also have several important inventions in differ- bypass graft surgery is supported by the evidence.
    [Show full text]