Quick viewing(Text Mode)

Recursos Alimentares Utilizados Pela Ave Chauna Torquata E O Gado Em Áreas Úmidas Na Planície Costeira Do Sul Do Brasil

Recursos Alimentares Utilizados Pela Ave Chauna Torquata E O Gado Em Áreas Úmidas Na Planície Costeira Do Sul Do Brasil

Universidade Federal do Rio Grande - FURG pf Instituto de Ciências Biológicas

Pós-graduação em Biologia de Ambientes

Aquáticos Continentais

Recursos alimentares utilizados pela ave torquata e o gado em áreas úmidas na planície costeira do sul do Brasil

Cínthia Negrine Fernandez

Orientador: Leandro Bugoni Coorientadora: Lizandra Jaqueline Robe

Rio Grande 2019

Universidade Federal do Rio Grande - FURG Instituto de Ciências Biológicas Pós-graduação em Biologia de Ambientes Aquáticos Continentais

Recursos alimentares utilizados pela ave Chauna torquata e o gado em áreas úmidas na planície costeira do sul do Brasil

Aluna: Cínthia Negrine Fernandez Orientador: Leandro Bugoni Coorientadora: Lizanda J. Robe

Dissertação apresentada ao Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais como

requisito parcial para a obtenção do

título de Mestre em Biologia de

Ambientes Aquáticos Continentais.

Rio Grande 2019

Dedico essa dissertação aos meus pais, ao Roberto (Betinho) e a todos que acreditam na mudança pela educação.

AGRADECIMENTOS

Ao meu orientador Dr. Leandro Bugoni pela confiança, por propor desafios constantes, pelo exemplo de ética e profissionalismo e por sempre me incentivar a ir além na pesquisa. À minha co-orientadora Dra Lizandra Robe por aceitar embarcar em um ramo totalmente novo para ela, sempre disposta a solucionar minhas inúmeras dúvidas. Podes ter certeza que contribuisse para o meu gosto inesperado pela molecular. Ao Getúlio e ao Edinho por proporcionarem a realização desse trabalho nas fazendas, em especial ao Edinho e a todo o pessoal da Fazenda Invernada que estiveram envolvidos nas coletas, sempre dispostos a ajudar. À todo o pessoal da Estação Ecológica do Taim (ESEC TAIM/ICMbio), pela colaboração nas atividades de campo e pelo incentivo a cada campo, em especial ao Ângelo que se dispôs a ir a campo em busca de tachã novamente. À Dra. Ioni Colares pelo auxílio nas identificações. À CAPES pela concessão da bolsa de mestrado. À todos os colegas e amigos do Laboratório de Aves Aquáticas e Tartarugas Marinhas (LAATM) pelo acolhimento, conversas e trocas de experiências. Aos colegas do Laboratorio de Evolução e Ecologia Molecular (LABEEM) pelo acolhimento e ajuda com a biologia molecular. A técnica Bruna Nornberg por todo o suporte na execução das extrações de DNA e a técnica Daiane Carrasco pelo suporte mas principalmente pela companhia enquanto eu realizava as análises. Aos técnicos da Laboratório de Limnologia, Clara Lima, Cláudio Trindade e Leonardo Furlanetto pelo suporte na execução deste trabalho. Aos meus colegas e amigos Cindy Barreto, Danilo Filipkowski, Fernanda Marques, Fernanda Valls, Fernando Faria, Francisco Borges, Gabriela Oliveira, Gustavo Leal, Gustavo Martins, Juliana Gaiotto, Laura Alma, Leonardo Soares, Roberto Almeida, Rodrigo Moraga, Silvia Gastal e Vitória Muraro pela enorme ajuda em campo e no laboratório. Aos meus amigos de longa data, Crislaine Barbosa, a mestre dos peixes anuais, que teve uma importância fundamental na minha iniciação no mundo da biologia molecular. Ao melhor taxonomista vegetal que eu conheço, William Matzenauer, pela enorme ajuda nas identificações das plantas, sempre disposto a me ajudar e a ir a campo. Ao Mateus Negrini, que deve estar ciente da minha dificuldade em escrever o seu sobrenome da forma errada (só para lembrar, Negrine é com “E”), pelas conversas e pela amizade. À Aline Fregonezzi, que conheci no período final do trabalho mas que estava sempre disposta em solucionar minhas dúvidas na molecular, por dividir o espaço na bancada e deixar o ambiente de trabalho menos estressante. Agradeço também a Luciana Medeiros pelo auxílio com as minhas dúvidas na molecular e na disposição enorme em solucioná-las. As minhas amigas de laboratório, Gabriela Oliveira e Cindy Barreto pelo companheirismo de anos, pela ajuda nas revisões, pelas conversas e por serem as “gurias do holofote” nos campos. À Vitória Muraro pela ajuda na bancada e em campo, pela empolgação com o trabalho e como eu sempre digo: “é uma vitória da minha vida”, porque as análises funcionavam quando ela estava presente. Ao meu pai, Climério Fernandez, que apesar da distância agora, teve um papel fundamental nas escolhas da minha vida. À minha mãe, Nair Negrine, que sempre estava disposta a escutar e discutir sobre o único assunto que eu tinha no momento: minhas conquistas e dificuldades no mestrado, e agradeço a ambos por entenderem a minha ausência. Agradeço também aos meus pais emprestados, Marli Borba e Luzardo Almeida por todo suporte em Rio Grande e pela preocupação com o meu bem estar. Ao meu companheiro de vida, Roberto Almeida (Betinho), por ser meu melhor amigo e me apoiar em todas as etapas da minha formação acadêmica, as vezes como psicólogo e outras como programador, por escutar eu falar sem parar sobre isótopos e molecular (também tive que escutar sobre circuitos elétricos haha). Te Amo! Ao Dr. Alexandre Garcia, Dr. Gerhard Overbeck e Dra. Ana Rolon pelas contribuições na banca e sugestões para o manuscrito. RESUMO

O compartilhamento de áreas entre herbívoros domésticos e selvagens pode levar a conflitos entre os fazendeiros e os animais nativos. Estudos de dieta podem auxiliar na compreensão da partição de recursos entre estes animais, informando sobre o nicho ocupado e a ocorrência de sobreposição trófica. A análise microhistológica de fezes é um método de fácil obtenção de amostras, porém é uma análise exaustiva e demorada. Técnicas complementares como o metabarcoding e a análise de isótopos estáveis (AIE) contribuem para a compreensão do uso de recursos, pela identificação e quantificação dos itens ou por trazer informações de conteúdo assimilado, respectivamente. Além disso, a AIE, quando aplicada em fezes, pode elucidar o hábito alimentar dos animais. No presente estudo, a dieta da ave nativa herbívora tachã, Chauna torquata, assim como do gado bovino (Bos taurus) e ovino (Ovis aries) que habita a planície costeira do Rio Grande do Sul, Brasil, foi analisada por meio de metodologias complementares (microhistologia, metabarcoding e AIE) em amostras de fezes. Além disso, a AIE foi aplicada no sangue dos animais, de modo a inferir sobre a assimilação do alimento e sobreposição de nicho isotópico entre eles. A sobreposição de nicho isotópico não foi encontrada entre a ave e o gado (bovino e ovino), uma vez que os mesmos utilizaram os recursos de maneiras distintas. Similarmente, a avaliação do nicho trófico indicou uma sobreposição limitada entre os herbívoros não nativos, pelo uso de itens em comum. Neste sentido, a AIE nas fezes revelou maior similaridade no hábito e no nicho dos herbívoros domesticados. A abundância das plantas encontradas pela análise de metabarcoding revelou o uso de plantas em diferentes proporções na dieta de cada herbívoro. No entanto, esta análise não revelou o uso de espécies de Cyperaceae, que somente foram detectadas pela análise microhistológica. Por outro lado, a técnica de metabarcoding revelou-se mais efetiva que a análise microhistológica na detecção de Onagraceae e Poaceae, indicando, inclusive, um potencial papel de C. torquata no controle biológico de algumas espécies da família. A principal diferença encontrada na dieta de C. torquata foi o uso predominante de plantas do ciclo C3, de maior valor nutricional, para a síntese do sangue. Por outro lado, na dieta dos animais domésticos, foi encontrado um predomínio de Poaceae e Cyperaceae e a complementação da dieta por plantas de maior valor nutricional. Conclui-se, portanto, que a ave nativa, parece não interferir no uso de recursos pelos herbívoros domésticos, podendo ainda auxiliar no controle de algumas plantas no ambiente que esses utilizam.

Palavras-chave: Análise de isótopos estáveis, , dieta, herbívoros, metabarcoding, microhistologia, sobreposição trófica.

ABSTRACT

Areas shared between domestic and native herbivores can lead to conflicts between farmers and native . Dietary studies can provide a better understanding on resource partitioning between herbivores, informing about the niche occupied by animals and the occurrence of trophic overlap. Microhistological analysis of faeces is a method in which samples are easily obtained, but laboratory analysis is exhaustive and time-consuming. Complementary techniques such as metabarcoding and stable isotopes analysis (SIA) can help to understand resources used by identifying and quantifying food items or by providing information on assimilated content, respectively. In addition, SIA when applied in faecal samples, can elucidate dietary habit of animals. In the present study, the diet of a native herbivore , the southern , Chauna torquata, as well as cattle (Bos taurus) and sheep (Ovis aries) that inhabit the coastal plain of Rio Grande do Sul state, Brasil, was analyzed thought complementary methodologies (microhistology, metabarcoding and SIA) of feces analysis. In addition, SIA was carried out in blood of animals in order to infer isotopic niche overlap between herbivores. Isotopic niche overlap was not found among and the livestock, as they used resources in different ways. Similarly, the evaluation of trophic overlap indicated a limited overlap between the non-native herbivores, which use similar items. SIA applied to feces revealed greater similarity in food habit and niche of domestic herbivores. The abundance of plants found by metabarcoding revealed the use of plants in different proportions in the diet of each herbivore. However, this analysis did not reveal the use of Cyperaceae species, which were only detected by microhistological analysis. On the contrary, metabarcoding revealed more effective than microhistology in de detection of Onagraceae and Poaceae, suggesting a potential important role of C. torquata in the biological control of some species. The main difference found in the diet of the native bird was the predominance of C3 plants, of higher nutritional value, for blood synthesis. On the other hand, a predominance of Poaceae and Cyperaceae was found in the diet of domestic animals, with diet supplemented by plants with higher nutritional value. In conclusion, the native bird does not seem to interfere with the use of resources by domestic herbivores and can also help in the control of some plants in their environments.

Key-words: Anseriformes, diet, herbivores, metabarcoding, microhistology, overlap, stable isotopes analysis APRESENTAÇÃO

Esta dissertação está dividida em três partes. A primeira parte é composta pela introdução geral, onde são abordados temas como a importância dos herbívoros nos ecossistemas, as técnicas utilizadas na determinação da ecologia trófica em herbívoros, características fundamentais na compreensão do uso de recursos pelos herbívoros do presente estudo, assim como a caracterização do ambiente estudado. A segunda parte é composta pelo capítulo 1, que consiste em um manuscrito em forma de artigo, onde o uso de recursos pela ave herbívora Chauna torquata e pelo gado bovino e ovino no Bioma Pampa foram analisados por diferentes técnicas (microhistologia, metabarcoding e isótopos estáveis). O manuscrito segue as normas de formatação da revista Methods in Ecology and Evolution. A última parte compreende as considerações finais e perspectivas futuras do estudo.

SUMÁRIO

RESUMO ...... vi ABSTRACT ...... vii LISTA DE FIGURAS ...... x LISTA DE TABELAS ...... xi INTRODUÇÃO GERAL ...... 12 O papel dos herbívoros nos ecossistemas ...... 12 Nicho trófico e metodologias aplicadas na descrição da dieta de herbívoros ...... 15 A vegetação da Planície Costeira e os animais do estudo ...... 19 OBJETIVO GERAL ...... 23 OBJETIVOS ESPECÍFICOS ...... 23 HIPÓTESES ...... 23 REFERÊNCIAS DA INTRODUÇÃO GERAL ...... 24 CAPÍTULO 1 ...... 31 1 INTRODUCTION ...... 34 2 MATERIALS AND METHODS ...... 38 3 RESULTS ...... 47 4 DISCUSSION ...... 50 REFERENCES ...... 56 Tables and figures ...... 68 CONSIDERAÇÕES FINAIS E PERSPECTIVAS ...... 80 Anexos ...... 81 LISTA DE FIGURAS

INTRODUÇÃO GERAL

Figura 1. Sequência simplificada dos procedimentos envolvidos na aplicação da técnica de metabarcoding para estudos de dieta

Figura 2. Mapa da área de estudo, com destaque para a Estação Ecológica do Taim (ESEC- TAIM). As coletas do presente estudo foram realizadas em áreas adjacentes à Estação

Figura 3. Ave nativa Chauna torquata, tachã, em uma das fazendas amostradas no presente estudo

CAPÍTULO 1

Fig. 1 Contribution of resources by functional plant group in the diet of southern screamer, sheep and cattle in southern . (A) Frequency of ocurrence (%) inferred from microhistological analysis. (B) Relative Read Abundance (%) based on metabarcoding data

Fig. 2 Contribution of families of plants in the diet of southern screamer, sheep and cattle in southern Brazil. (A) Prey-specific Index of Relative Importance (%PSIRI) infered from microhistological analysis. (B) Relative Read Abundance (RRA) based on metabarcoding data

Fig. 3 Values of δ15N and δ13C (‰) in blood of southern screamer, sheep and cattle (empty symbols) and potential plant items (full symbols) (a, c, e), and the respective contribution estimated in diet (b, d, f) for each herbivore in southern Brazil. The intervals of credibility of 95% (lines) and 50% (colored symbols) were used for stable isotope mixing models in simmr package

Fig. 4 Differences in values of carbon (δ13C, ‰) infered in the same faecal samples analyzed for microhistological and metabarcoding inferences for southern screamer, sheep and cattle in southern Brazil

Fig. 5 Isotopic niche of non-native herbivores (cattle and sheep), and the native southern screamer bird, based on samples, represented in delta (δ) space, based on 95% Standard Ellipse x

Area for small sample sizes (SEAc) elipses values modeled using Stable Isotope Bayesian Ellipses in R (SIBER). (A) Isotopic niche based in blood values from herbivores. (B) Isotopic niche based in faecal values from herbivores

LISTA DE TABELAS

CAPÍTULO 1

Table 1. Contribution of plants in the diet of southern screamer, cattle and sheep in the coastal plain of southern Brazil, as determined from microhistological analysis

Table 2. Plant species that composed the reference database used in Blast searches performed in the metabarcoding analysis. All these species are encountered in areas where the herbivores (southern screamer, sheep and cattle) were sampled in coastal plains of southern Brazil

Table 3. Main families identified in faecal samples of southern screamer, cattle and sheep in the coastal plain of southern Brazil, and their respective Relative Read Abundance (RRA), as determined through metabarcoding analysis

Table 4. Isotopic values of blood and faeces from southern screamer, cattle and sheep, and their potential food items as detected through SIA for samples collected in the coastal plain of southern Brazil

Table 5. Values of Morisita-Horn index (CH) in the diet of southern screamer, sheep and cattle in southern Brazil infered for each pair of herbivores based on microhistological quantification (lower diagonal) and metabarcoding reads (upper diagonal)

Table 6. Standard Ellipse Area for small sample sizes (SEAc), overlap area (‰2) and the proportion (%) of overlap between southern screamer, sheep and cattle, as mensured from stable isotopes values of blood and faecal samples in southern Brazil

xi

INTRODUÇÃO GERAL O papel dos herbívoros nos ecossistemas Em ecossistemas naturais, o uso do ambiente por grandes herbívoros como búfalos, gados e zebras, ressalta a importância desses animais como peças-chave na manutenção estrutural da vegetação (van Wieren, 1995). Na Estação Biológica de Konza Prairie, nos Estados Unidos, testes com queimadas de pastagens resultaram em uma vegetação predominante de plantas do ciclo fotossintético C4 e diminuição daquelas com ciclo C3 (Knapp et al., 1999). Entretanto, o pastejo nessas áreas pelo bisão-americano (Bison bison) resultou em uma maior diversidade de plantas do ciclo C4 e C3 (Knapp et al., 1999). Na floresta amazônica, no Brasil, um estudo com a anta, Tapirus terrestris, revelou a importância de herbívoros na dispersão de sementes (Paolucci et al. 2019). Nesse estudo, observou-se que as sementes nas fezes das antas tinham potencial de recolonização de áreas degradadas por queimadas ou fragmentação, demonstrando a importância dos herbívoros nativos na conservação e manutenção dos ambientes. A distribuição e o sucesso dos herbívoros são dependentes de suas necessidades energéticas. A relação entre a massa corpórea e a alimentação é influenciada por fatores como a disponibilidade de alimento e qualidade nutricional de um determinado recurso (Olff, Ritchie & Prins, 2002). Nesse sentido, os herbívoros menores como gazelas e antílopes preferem plantas com maior valor nutricional, enquanto que grandes herbívoros consomem os recursos mais abundantes (Olff et al., 2002). Em um estudo pioneiro com herbívoros africanos, Hofmann (1989) sugeriu que a escolha do tipo de recurso é determinada pela complexidade e eficiência do sistema digestório. Segundo este autor, os herbívoros podem ser classificados em comedores de plantas de alto crescimento (browsers), principalmente de plantas arbóreas como a maioria das eudicotiledôneas, pastejadores (grazers), cuja alimentação é baseada em vegetação herbáceas, muitas vezes com o predomínio de gramíneas, e os de hábitos mistos (mix-feeders), com a dieta menos seletiva baseada nestes dois grupos de plantas. Em qualquer um destes casos, o forrageio pelos herbívoros tem a capacidade de influenciar a comunidade de plantas por meio de mudanças na abundância ou no crescimento das mesmas (Huntly, 1991). Além disso, o pastejo realizado pelos animais pode favorecer algumas plantas em detrimento de outras, uma vez que pode interromper a sucessão ecológica e modificar a produção vegetal nos ecossistemas (Gauthier, Rochefort & Reed, 1996; de Mazancourt, Loreau & Abbadie, 1998).

12

Compreender as relações entre os herbívoros é importante principalmente onde a introdução de pastejadores para a pecuária pode influenciar o forrageamento de herbívoros nativos (Karmirir, Platis, Kazantzidis & Papachristou, 2011). O pastejo, por sua vez, pode ser utilizado como uma ferramenta de gestão na conservação de ambientes, uma vez que o uso da terra por animais herbívoros pode atuar como um agente modificador de paisagens naturais (Bakker & Londo, 1998). O conflito ou a facilitação entre herbívoros utilizados pela pecuária e herbívoros nativos pode se fazer presente em ambientes naturais, assim como naqueles destinados à agricultura. No entanto, o desafio é conciliar as estratégias de conservação com o uso crescente e intensivo da terra (WallisDeVries, 1998). Nesse sentido, o uso das pastagens destinadas ao gado e à conservação não devem ser tratados como contraditórios e podem estar associados (WallisDeVries, 1998). Dentre as famílias de herbívoros mais representativas em número de espécies estão os Bovidae (Ripple et al., 2015). Enquanto outros herbívoros decrescem em número de espécies devido a pressões como a caça, os bovídeos aumentam em número pelo elevado potencial para a pecuária (Ripple et al., 2015). A pecuária é uma das atividades com maior uso da terra, uma vez que utiliza áreas tanto para o uso direto para pastejo do gado como para o cultivo de alimentos, como a soja, para fabricação de ração (Naylor et al., 2002). O Brasil é um dos países com os maiores rebanhos de gado do mundo, de forma que a pecuária é um importante fator para o desenvolvimento econômico do país. A crescente ocupação de áreas de pasto nativo pelos bovinos diminui as áreas potencialmente disponíveis para outros grupos animais, devido à alteração e degradação destes ambientes (Nicholson, Blake, Reid & Schelhas, 2001). Assim, com a diminuição de áreas naturais disponíveis para os animais nativos, a pecuária obriga estes a ter sua área de distribuição restrita ou compartilhada com os animais introduzidos (Nicholson et al., 2001). Dentre os animais nativos que são prejudicados pela introdução do gado, as aves estão entre os mais afetados (Develey, Setubal, Dias & Bencke, 2008). A influência de herbívoros domésticos sobre as aves nativas pode ocorrer tanto na dieta, quanto no uso de habitat, uma vez que ambos utilizam a vegetação local para essas finalidades, com potenciais efeitos positivos e negativos. Em relação ao uso de habitat, na Austrália o pastejo do gado proporcionou o reestabelecimento de Paspalum distichum, uma planta que contém altos níveis nutricionais e que aumentou a densidade de invertebrados, favorecendo o íbis-preto (Plegadis falcinellus) (Taylor & Taylor, 2015). O reestabelecimento da planta facilitou o forrageamento de íbis-preto, uma ave que teve um declínio populacional de 40% da população na Austrália entre os anos de 1970 e 2002, e que se alimenta de

13 invertebrados aquáticos. A coexistência de animais nativos e animais domesticados pode ainda acarretar em atitudes equivocadas dos seres humanos em relação à fauna nativa. Nos pampas da , aves Anseriformes (patos, gansos, cisnes e afins) são perseguidas pelos fazendeiros devido à alegada interferência na agricultura e pecuária. Com o avanço destas atividades os gansos foram considerados como “praga” no país, com conflitos históricos com fazendeiros (Pedrana, Bernad, Maceira & Isacch, 2014). Estudos realizados nas ilhas Malvinas/Falkland relatam que os gansos (Chloephaga picta e C. rubidiceps) são perseguidos por fazendeiros devido à aparente competição com ovinos pela vegetação (Summers & Grieve, 1982; Summers, 1985; Kerr & McAdam, 2008; Pedrana, Bustamante, Rodriguez & Travaini, 2011). Entretanto, os fazendeiros podem estar equivocados quanto aos gansos, pois antes da ocupação pelo gado, principalmente ovino, havia nestas áreas maior diversidade de plantas (Summers & Grieve, 1982). Nos locais onde há o pastejo de ovelhas houve uma diminuição da gramínea Poa flabelatta, que poderia ser utilizada por outros animais, inclusive pelas aves da região, por exemplo, para a reprodução (Summers, 1985). Além disso, o consumo de plantas pelos gansos equivale a apenas 7% do que é consumido por todos os herbívoros na região, incluindo-se o gado bovino e ovino, o que corresponde a apenas 2% da produção anual da biomassa de plantas nas ilhas (Summers, 1985). Além disso, o pastejo pelos gansos nativos pode trazer benefícios para o ecossistema, como o consumo de plantas daninhas e maior aporte de nitrogênio através das fezes (Gorosabél et al., 2019). O compartilhamento de habitat entre a fauna silvestre e os animais domésticos pode levar a mudanças de comportamento alimentar (Karmiris et al., 2011). Herbívoros alóctones, como o gado, podem modificar o forrageio de herbívoros nativos quando ocupam áreas em conjunto. Por outro lado, herbívoros nativos podem competir por alimento ou auxiliar o forrageamento de animais introduzidos. Para animais nativos, como a capivara (Hydrochoerus hydrochaeris) na Argentina, o compartilhamento de habitat com o gado ocasionou uma busca de alimento mais generalista. Por ser um animal dependente da água, a capivara teve sua área de exploração de recursos reduzida pelo gado (Quintana, 2002). Animais domésticos introduzidos podem ainda ter a sua dieta sobreposta à dieta de herbívoros nativos e modificar o consumo de recursos destes animais. Para o íbex-walia (Capra walie), animal nativo da Etiópia, a introdução da cabra doméstica (Capra hircus) é atualmente uma ameaça. Uma vez que a cabra consome plantas similares, se não forem tomadas medidas de conservação, a composição da dieta do íbex-walia poderá incluir apenas plantas de menor valor nutricional (Gebremedhin, 2016).

14

A utilização de recursos por herbívoros pode ainda ser modificada por variáveis climáticas como, por exemplo, o regime de chuvas, devido à influência desta sobre a produção primária (Bonnet, Fritz, Gignoux & Meuret, 2010). Em consequência disso, nas estações chuvosas, os herbívoros podem ter a atividade de pastejo aumentada e ter preferência por plantas frescas (Bonnet et al., 2010). Na África, por exemplo, o compartilhamento de habitat entre ungulados nativos e o gado resultou em competição por alimento nas estações secas. Por outro lado, nas estações chuvosas a busca de alimento pelo gado foi facilitada pelos animais nativos, uma vez que herbívoros como a zebra podem consumir e processar partes mortas/secas (Odadi, Karachi, Abdulrazak & Young, 2011). Neste caso, com a remoção das partes mortas das plantas, o gado pode utilizar mais recursos e consequentemente teve um maior ganho de peso nas estações chuvosas quando associado a herbívoros nativos (Odadi et al., 2011).

Nicho trófico e métodos utilizados na descrição da dieta de herbívoros O uso e compartilhamento de recursos, assim como a ocorrência de sobreposição ou partição trófica entre diferentes espécies, podem ser inferidos pelo nicho dos organismos (Colwell & Futuyma, 1971). Segundo Hutchinson (1957), o nicho é constituído por um hipervolume n-dimensional, onde n representa as dimensões relacionadas aos recursos e condições que interferem no modo de vida dos organismos. As condições e recursos que um organismo necessita isoladamente são denominados de nicho fundamental (Begon, Townsend, & Harper, 2007). Já o nicho realizado refere-se às condições e recursos essenciais para a sobrevivência de uma espécie, na presença de outros organismos (Begon et al., 2007). Em um mesmo ambiente, espécies com hábito similar podem usar estratégias distintas para o uso de um mesmo recurso de modo a partilharem (Schoener, 1974). Entretanto, quando duas ou mais espécies compartilham um ou mais recursos podem apresentar nichos sobrepostos (Colwell & Futuyma, 1971). Uma das dimensões do nicho é o nicho trófico, que pode ser estudada pela análise da dieta dos organismos e auxilia na determinação do papel ecológico das espécies. Em estudos de dieta podem ser utilizados métodos convencionais como a análise do conteúdo estomacal e/ou de fezes, além da observação de forrageio. Por ser uma técnica não invasiva e de fácil aplicação em animais selvagens, a análise microhistológica das fezes tem sido uma das técnicas mais utilizada na determinação da dieta de herbívoros (Johnson, Wofford & Pearson, 1983; Yang, Zhan, Cao, Meng & Xu, 2006). A identicação dos fragmentos vegetais na microhistologia é realizada através de comparação com banco de referências das plantas, no 15 qual características na epiderme são comparadas e permitem a distinção entre famílias e/ou espécies (Johnson, Wofford & Pearson, 1983). Em monocotiledôneas, por exemplo, a epiderme pode ser composta por cristais de sílica, de diferentes formatos, bem como por papilas ou micropêlos (Santos, Desbiez, Alvarez, Garcia & Bueno Sobrinho, 2010). Por outro lado, a posição e/ ou tipo de tricomas e estômatos são os caracteres diagnósticos na identificação das euditotiledôneas (Alvarez, Desbiez, Santos, Garcia & Machado, 2010). A coleta de várias amostras e a possibilidade de comparação da dieta em diferentes estações do ano são algumas das vantagens da análise microhistológica (Holechek, Vavra & Pieper, 1982). Por outro lado, a identificação do material vegetal de forma precisa é prejudicada devido à degradação do material pelos processos químicos e físicos da digestão, o que frequentemente dificulta a aplicação da técnica (Holechek et al., 1982). Além disso, a necessidade de uma coleção epidérmica de referência das plantas de uma região, a dificuldade na identificação dos fragmentos, e o longo tempo gasto com a técnica são algumas das desvantagens da análise microhistológica (Holechek et al., 1982; Wegge, Shrestha & Stein, 2006). Métodos alternativos e complementares têm sido cada vez mais utilizados de modo a solucionar as deficiências de técnicas convencionais (Pompanon, Deagle, Symondson, Brown, Jarman & Taberlet, 2012). Em nível molecular, Hebert et al. (2003) propuseram um sistema de identificação de espécies baseado em genes e regiões específicas que poderiam fornecer sequências nucleotídicas únicas para cada espécie. Para animais, o marcador de escolha é o gene mitocondrial citocromo oxidase c subunidade I (COI) (Waugh, 2007). Para vegetais, maiores níveis de resolução vêm sendo obtidos com o uso de sequências de genes cloroplastidiais, embora não haja, até o momento, um marcador único pré-estabelecido (Chase et al., 2007). Em cada um destes casos, o DNA barcoding ou “código de barras” vem sendo utilizado como uma ferramenta auxiliar na identificação individual das espécies. A partir disso, o uso de ferramentas moleculares também possibilitou solucionar questões em áreas como a da ecologia trófica (Valentini, Pompanon & Taberlet, 2009). Tradicionalmente, as sequências de DNA das espécies são obtidas pelo sequenciamento de primeira geração de Sanger ou técnica de terminação de cadeia. Essa técnica baseia-se na terminação prematura da síntese de fragmentos por meio de didesoxirribonucleotídeos, e na posterior separação dos fragmentos através de eletroforese (Sanger, Nicklen & Coulson, 1977). Neste caso, as sequências geradas podem ter até 1000 pares de bases com precisão de 99,99% (Shendure & Ji, 2008). Na identificação dos fragmentos em amostras de dieta a técnica mais utilizada é o chamado metabarcoding, que

16 possibilita analisar uma mistura com várias espécies de presas/alimentos (Yu et al., 2012). Esta aplicação é realizada por meio de um sequenciamento de última geração, ou Next Generation Sequencing - NGS, que é realizado após a adição de adaptadores nas extremidades de cada fragmento, de modo a identificar as amostras individuais (Shokralla, Spall, Gibson & Hajibabaei, 2012). A identificação de fragmentos pelo metabarcoding é realizada a partir de um banco de referências moleculares (Yang et al., 2016) das espécies potencialmente consumidas (Fig. 1). Dentre as vantagens da técnica estão a análise de amostras simultâneas em tempo reduzido em comparação às técnicas convencionais (Xu et al., 2015; Yang et al., 2016) e a identificação até um menor nível taxonômico (Yang et al., 2016). Em um estudo com o frango-da-pradaria, Tympanuchus pallidicinctus (), ave encontrada na América do Norte, o uso do metabarcoding revelou diversos itens alimentares até então não relatados para a espécie (Sullins et al., 2018). Nesse estudo foram encontradas presas como os lepidópteros, que pela rápida digestão dificultam sua identificação por métodos convencionais. Além disso, alguns lepidópteros descritos na dieta do frango-da-pradaria são considerados praga para a agricultura, revelando um dos papéis ecológicos da ave na região. Assim, o metabarcoding também pode ser utilizado no desenvolvimento de estratégias de conservação (Gebremedhin et al., 2016).

Figura 1. Sequência simplificada dos procedimentos envolvidos na aplicação da técnica de metabarcoding para estudos de dieta

17

No entanto, esta técnica também apresenta desvantagens, relacionadas principalmente ao alto custo, à possibilidade de amplificação preferencial de algumas sequências e, em herbívoros, à necessidade de seleção de genes que recuperem o menor nível taxonômico das plantas (Pompanon et al., 2012). Neste último caso, o gene escolhido para a identificação das plantas deve ser o que melhor represente as espécies encontradas na dieta do animal estudado (Yang et al., 2016). Muitas vezes, também, é necessário construir o banco de referências moleculares, o que pode ser especialmente trabalhoso em espécies migratórias ou que ainda não tiveram sua dieta parcialmente caracterizada por outros métodos. Portanto, a utilização concomitante de técnicas de visualização da dieta, como a análise microhistológica de fezes e a de métodos moleculares, como o metabarcoding, apresentam o potencial de suprir as eventuais dificuldades e limitações de cada técnica. Métodos de inferência indireta, como a análise de isótopos estáveis (AIE), também são utilizados para auxiliar na compreensão da preferência alimentar dos animais. Os isótopos são átomos de um mesmo elemento químico que possuem o mesmo número de prótons e diferente número de nêutrons (Fry, 2006). O carbono e o nitrogênio são os isótopos estáveis mais utilizados em estudos de ecologia trófica. O carbono pode demarcar a fonte alimentar ou origem, devido à diferença dos valores isotópicos entre os ciclos fotossintéticos das plantas C3 e C4 e à pequena mudança nos valores isotópicos de carbono ao longo da cadeia trófica (Peterson & Fry, 1987). Os tecidos das plantas do ciclo C3 possuem valores isotópicos de carbono mais baixos (em torno de -28‰), enquanto que nas plantas C4 os valores são mais elevados (aproximadamente -13‰), devido ao fracionamento diferenciado de carbono de cada ciclo fotossintético (Peterson & Fry, 1987). Por sua vez o nitrogênio demarca o nível trófico ocupado pelos organismos, devido à perda de átomos 14N, e ao aumento de 3 a 5‰ nos valores de δ15N conforme aumenta o nível trófico, se comparado ao recurso alimentar/fonte utilizado (Minagawa e Wada, 1984; Perez et al., 2008). Os valores de carbono e nitrogênio são determinados por comparação com valores de referência, como o mineral Vienna Peedee Belemnite e o nitrogênio atmosférico, respectivamente. A razão isotópica (R), ou seja, a relação entre os isótopos leves e pesados é determinada por um espectrômetro de massa de razão isotópica acoplado a um analisador elementar. Neste equipamento a amostra é exposta a altas temperaturas até ser transformada em gás e ionizada. A partir disso as amostras são analisadas por meio de um analisador elementar (Ben-David & Flaherty, 2012). Os valores de isótopos são expressos em notação delta (δ), representados em partes por mil (‰) e calculados pela equação de Bond e Hobson (2012):

18

13 15 δ C ou δ N (‰) = [(Ramostra/Rpadrão) – 1] (eq. 1)

Dentre as aplicações da AIE, o uso em tecidos dos consumidores possibilita a obtenção de informações do que foi efetivamente assimilado pelo tecido dos animais. Em ecologia trófica essa técnica pode ser aplicada para determinar a assimilação de fontes alimentares em escalas temporais distintas devido ao metabolismo distinto de cada tecido animal (Bearhop, Waldron, Votier & Furness, 2002). O uso dessa ferramenta para estudo da dieta da rena, Rangifer tarandus, herbívoro nativo na América do Norte, elucidou a mudança na assimilação de plantas em escala temporal em decorrência de mudanças climáticas (Zhao et al., 2019). Em herbívoros africanos, a aplicação de AIE em fezes é utilizada para determinar o uso diferencial de plantas nas estações de seca e de chuva (Codron, Codron, Lee- Thorp, Sponheimer & Ruiter, 2005). Nesses ambientes há um predomínio de gramíneas do ciclo fotossintético C4, o que possibilita o agrupamento dos herbívoros em hábitos distintos (Vogel, Fuls & Ellis, 1978). O nicho dos animais também pode ser avaliado por meio do uso de isótopos estáveis. No nicho isotópico a área ocupada pelos organismos (δ espaço) é formada por eixos de dois elementos químicos, geralmente δ13C e δ15N, onde o δ-espaço é comparável ao n-dimensional (Newsome, Del-Rio, Bearhop & Phillips, 2007). Desse modo, a utilização da AIE é uma ferramenta importante na reconstrução da dieta em escala temporal, enquanto que dados provenientes da dieta convencional informam dados sobre a alimentação recente. Entretanto, a AIE também possui limitações, como, por exemplo, a incapacidade de identificar as fontes em nível taxonômico detalhado, e de discernir com precisão a fonte utilizada na assimilação dos tecidos quando as fontes possuem valores isotópicos similares (Phillips et al., 2014). Portanto, o uso de AIE permite inferir sobre a assimilação nos tecidos dos consumidores e complementa técnicas de identificação específica da dieta.

A vegetação da Planície Costeira e os animais do estudo A Planície Costeira do Rio Grande do Sul (PCRS) onde está situada a Estação Ecológica do TAIM (ESEC-TAIM), local adjacente às áreas onde o presente estudo foi realizado (Fig. 2), é um importante local para a fauna e flora da região sul do estado. A ESEC Taim é uma unidade de conservação de proteção integral localizada no extremo sul do RS. Em 2017, a estação foi considerada um sítio Ramsar pelas suas áreas úmidas, locais importantes para manutenção da biodiversidade (Ramsar, 2013). A PCRS é constituída pela flora típica de campos sulinos (ou bioma Pampa), que é marcada por uma grande diversidade 19 de plantas, principalmente forrageiras, sendo assim um local propício para a pecuária (Lobato, 2009). Dentre as forrageiras encontradas na região sul as gramíneas são as dominantes, com destaque para Poaceae, gênero Paspalum, e Asteraceae (Boldrini, 2009). As condições climáticas da região favorecem a coexistência de plantas do ciclo C4 no verão e C3 no inverno, quando formam campos naturais com plantas de alta qualidade nutricional (Nabinger, Moraes & Maraschin, 2000; Barbehenn, Chen, Karowe & Spickard, 2004). Nos campos sulinos, 37% das gramíneas são do ciclo C3 e 63% do ciclo C4, e espécies de ambos os grupos apresentam grande importância para o uso como pastagem animal (Andrade et al., 2019). Devido a estas características a pecuária é uma das principais atividades econômicas na região, onde animais domésticos (bovinos, ovinos e equinos) pastejam de forma contínua e extensiva (Nabinger et al., 2000). As pastagens naturais do Pampa e o manejo da forragem pelo melhoramento por adubação e introdução de forrageiras de estação fria provêm o potencial para a produção animal. Para ovelhas, por exemplo, o cultivo de plantas como o azevém (Lolium perenne ) e o trevo-branco (Trifolium repens), associado à pastagem nativa, melhorou o desenvolvimento e a produção, refletindo em um ganho de peso diário maior (Selaive-Villaroel, Silveira & Oliveira, 1997). Em relação à dieta, as ovelhas são seletivas, porém alterações na composição e altura do pasto podem modificar o forrageio (Arnold, 1962). No Pampa argentino, gramíneas são as plantas mais consumidas pelas ovelhas, seguidas de ciperáceas e juncáceas em menor proporção, nas diferentes estações do ano (Posse, Anchorena & Collantes, 1996). Por outro lado, os bovinos no Pampa têm a dieta composta principalmente por gramíneas, com uma pequena parte composta por eudicotiledôneas (Bontti et al., 1999).

20

Figura 2. Mapada área de estudo, com destaque para a Estação Ecológica do Taim (ESEC- Taim). As coletas do presente estudo foram realizadas em áreas adjacentes à ESEC-Taim

Áreas ocupadas pela pecuária no RS também são habitats de aves como a tachã, Chauna torquata (Anseriformes) (Fig. 3), espécie que utiliza ambientes aquáticos e campos inundáveis. A tachã é uma ave de grande porte, com aproximadamente 80 cm de comprimento e massa corporal dos adultos entre 3780 e 5535 g (Garcia, 2015). Dentre as características da espécie destacam-se a região esbranquiçada ao redor do pescoço em forma de anel (Cramp, 1992) e a presença de esporões (maiores que 3 cm) evidentes entre os ossos rádio e metacarpo (Rand, 1954). Além disso, é uma ave pernalta, o que facilita o deslocamento destes animais em meio à vegetação (Cramp, 1992). A distribuição da espécie é restrita à América do Sul, na Argentina, Bolívia, Brasil, Uruguai e Paraguai (Cramp, 1992). No Brasil, é uma ave abundante no RS e ocupa regiões alagadas principalmente para pernoitar, com registros de grupos variáveis de 20 até 800 indivíduos nas diferentes estações do ano na ESEC Taim (Fontana, Cademartori, Ramos, Drehmer & Tavares, 1994). As primeiras informações da dieta de tachã mencionam o consumo de vegetais com sementes e coleópteros (Zotta, 1932). Entretanto, como a maioria dos Anseriformes, C. torquata é uma ave com hábitos alimentares herbívoros, com preferência alimentar por gramíneas (Aravena, 1928; Garcia, 2015). Além disso, no único estudo detalhado existente sobre a dieta da espécie, realizado no RS, foi observado o uso de plantas com maior valor nutricional pela espécie e a preferência por plantas do ciclo fotossintético C3, tanto aquáticas quanto terrestres (Garcia,

21

2015). A tachã pode ser facilmente encontrada forrageando junto a animais domésticos, como ovelhas e gado bovino (Cramp, 1992). Em alguns locais do Brasil, como no RS, a espécie é considerada uma competidora potencial pelo alimento com ovelhas (Sick, 2001).

Figura 3. Ave nativa Chauna torquata, tachã, em uma das fazendas amostradas no presente estudo.

Nesse contexto, o conhecimento sobre as relações entre a ave nativa tachã e os animais introduzidos (bovinos e ovinos) são importantes para solucionar possíveis conflitos aparentes entre os herbívoros nativos e a pecuária na planície costeira do RS. Além disso, a associação de metodologias convencionais, moleculares e isotópicas na descrição da dieta de herbívoros tem potencial de determinar o consumo e assimilação de recursos de forma complementar. Dessa forma, o presente estudo pretende elucidar o papel ecológico de C. torquata na ESEC Taim e a relação desta com outros herbívoros.

22

OBJETIVO GERAL Determinar a dieta e avaliar a sobreposição trófica e isotópica entre Chauna torquata e bovinos e ovinos que ocorrem em simpatria em uma área da PCRS.

OBJETIVOS ESPECÍFICOS (1) Identificar os itens alimentares encontrados nas fezes das aves e do gado bovino e ovino até o menor nível taxonômico possível; (2) Determinar os valores de isótopos de carbono (δ13C) e nitrogênio (δ15N) no sangue das aves, gado ovino e bovino para inferir quais fontes alimentares cada grupo assimila; (3) Verificar se ocorre sobreposição de nicho trófico e isotópico entre as aves e o gado bovino e ovino; (4) Construir um banco de dados moleculares de plantas utilizadas pelos animais estudados e testar a viabilidade da técnica de metabarcoding para estudos de dieta, a fim de viabilizar a identificação de plantas nas fezes de modo rápido e preciso; (5) Comparar a efetividade de técnicas convencionais, de metabarcoding e de AIE na caracterização da dieta pelo uso de amostras fecais.

HIPÓTESES (1) Há limitada sobreposição da dieta entre C. torquata e o gado bovino e ovino; (2) Ovinos e bovinos utilizam predominantemente gramíneas terrestres para sua alimentação, enquanto C. torquata inclui em sua alimentação grande proporção de plantas aquáticas; (3) Tachã utiliza principalmente plantas do ciclo fotossintético C3 no inverno e uma mistura de plantas dos ciclos C3 e C4 no verão, de modo a suprir o déficit na abundância das plantas do ciclo fotossintético C3 nesta estação; (4) Há sobreposição da dieta entre o gado bovino e o ovino, pois ambos consomem predominantemente forrageiras terrestres; (5) A técnica de metabarcoding suprirá as deficiências da análise microhistológica, enquanto que a AIE complementará as técnicas com informações da contribuição isotópica dos recursos alimentares nos distintos grupos.

23

REFERÊNCIAS DA INTRODUÇÃO GERAL Alvarez, J. M., Desbiez, A. L. J., Santos, S. A., Garcia, J. B., & Machado, S. R. (2010).

Descritores epidérmicos de eudicotiledôneas forrageiras: guia para identificação da

dieta de herbívoros usando o programa Delta. Boletim de Pesquisa e Desenvolvimento

Embrapa Pantanal, Corumbá.

Andrade, B. O., Bonilha, C. L., Overbeck, G. E., Vélez-Martin, E., Rolim, R. G., Bordignon, S. A. L., ..., Boldrini, I. I. (2019). Classification of South Brazilian grasslands: implications for conservation. Applied Vegetation Science, 22, 168–184. doi: 10.1111/avsc.12413 Aravena, R. O. (1928). Notas sobre la alimentación de las aves. Hornero, 4, 53–166. Arnold, G. W. (1962). Effects of pasture maturity on the diet of sheep. Australian Journal of Agricultural Research, 13,701–706. Barbehenn, R. V., Chen, Z., Karowe, D. N., & Spickard, A. (2004). C3 grasses have higher

nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Global Change Biology, 10, 1565–1575. doi: 10.1111/j.1365-2486.2004.00833.x Begon, M., Townsend, C. R., & Harper, J. L. (2007). Ecologia – de indivíduos a ecossistemas. Porto Alegre: Artmed. Bearhop, S., Waldron, S., Votier, S. C. & Furness, R. W. (2002). Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiological and Biochemical Zoology, 75, 451–458. doi: 10.1086/342800 Ben-David, M. & Fleherty, E. A. (2012). Stable isotopes in mammalian research: a beginner's guide. Journal of Mammalogy, 93, 312–328. doi: 10.1644/11-MAMM-S-166.1 Boldrini, I. L. (2009). A flora dos campos do Rio Grande do Sul. In Pillar, V.P., Muller, S. C., Castilhos, Z. M. S., & Jacques, A. V. A. (Eds.), Campos sulinos: conservação e uso sustentável da biodiversidade (pp. 63–77). Brasília: Ministério do Meio Ambiente. Bonnet, O., Fritz, H., Gignoux, J., & Meuret, M. (2010). Challenges of foraging on a high quality but unpredictable food source: the dynamics of grass production and consumption in savanna grazing lawns. Journal of Ecology, 98 , 908–916. doi: 10.1111/j.1365-2745.2010.01663.x

24

Chase, M. K., Cowan, R. S., Hollingsworth, P. M., Berg, C. V. D., Madriñán, S., Petersen, G., …, Wilkinson, M. (2007). A proposal for a stardardised protocol to barcode all land plants. Taxon, 56, 295–299. doi: 10.1002/tax.562004 Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., & Ruiter, D. (2005). Animal diets in the Waterberg based on stable isotopic composition of faeces. South African Journal of Wildlife Research, 35, 43–52. doi: 10.5167/uzh-25362 Colwell, R. K., & Futuyma, D. J. (1971). On the measurement of niche breadth and overlap. Ecology, 52, 567–576. doi: 10.2307/1934144 Cramp, S. (1992). Family Anhimidae. In del Hoyo, J., Elliot, A., & Carbot, J. (Eds.), Handbook of the of the word, 1, ostrich to ducks. Barcelona: Lynx Editions de Mazancourt, C., Loreau, M., & Abbadie, L. (1998). Grazing optimization and nutrient cycling: When do herbivores enhance plant production? Ecology, 79, 2242–2252. Develey, P. F., Setubal, R. B., Dias, R. A., & Bencke, G. A. (2008). Conservação das aves e da biodiversidade no Bioma Pampa aliada a sistemas de produção animal. Revista Brasileira de Ornitologia, 16, 308–315. Fontana, C. S., Cademartori, C. V., Ramos, R. A., Drehmer, C. J., & Tavares, A. E. (1994). Abundância relativa de Chauna torquata (Oken, 1816) (Aves, Anhimidae) em terras úmidas do Rio Grande do Sul, Brasil. Biociências, 2, 125–133. Fry, B. (2006). Stable isotope ecology. New York: Springer. Garcia, X. (2015). Ecologia alimentar da ave herbívora Chauna torquata no Taim, sul do Brasil. Dissertação de Mestrado, FURG, Rio Grande. Gauthier, G., Rochefort, L., & Reed, A. (1996). The exploitation of wetland ecosystems by herbivores on Bylot Island. Geoscience Canada, 23, 253–259. Gebremedhin, B., Flagstad, O., Bekele, A., Chala, D., Bakkestuen, V., Boessenkool, S., ..., Epp, L. S. (2015). DNA metabarcoding reveals diet overlap between the endangered walia ibex and domestic goats – implications for conservation. PLoS ONE, 11, e0159133. doi: 10.1371/journal.pone.0159133 Gorosábel, A., Pedrana, J., Bernad, L., Caballero, V. J., Muñoz, S. D., & Maceira, N. O. (2019). Evaluating the impacts and benefits of sheldgeese on crop yields in the Pampas region of Argentina: A contribution for mitigating the conflicts with agriculture. Agriculture, Ecosystems and Environment, 279, 33–42. doi: 10.1016/j.agee.2019.04.002 Hofmann, R. R. (1989). Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia, 78, 443–457. doi: 10.1007/BF00378733

25

Holechek, J. L., Vavra, M., & Pieper, R. D. (1982). Botanical composition determination of range herbivore diets: A review. Journal of Range Management, 35, 309–315. doi: 10.2307/3898308 Horn, H. S. (1966). Measurement of “overlap” in comparative ecological studies. American Naturalist, 100, 419–424. Huntly, N. (1991). Herbivores and the dynamics of communities and ecosystems. Annual Review of Ecology and Systematics, 22, 477–503. doi: 10.1146/annurev.es.22.110191.002401 Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415–427. Johnson, M. K., Wofford, H., & Pearson, H. A. (1983). Microhistological techniques for food habits analyses. New Orleans: Department of Agriculture, Forest Service, Southern Forest Experiment Station. Karmiris, I., Platis, P. D., Kazantzidis, S., & Papachristou, T. G. (2011). Diet selection by domestic and wild herbivore species in coastal Mediterranean wetland. Annales Zoologici Fennici, 48, 233–242. doi: 10.5735/086.048.0404 Kerr, J. A., & McAdam, J. H. (2008). Characteristics of patches of short grasses and herbs in the Falkland Islands and their management for sheep grazing. Anales del Instituto de la Patagonia, 36, 5–24. doi: 10.4067/S0718-686X2008000100001 Knapp, A. K., Blair, J. M., Briggs, J. M., Collins, S. T., Hartnett, D. C., Johnson, L. C., & Towne, E. G. (1999). The keystone role of bison in North American tallgrass prairie- bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem process. BioScience, 49, 39–50. doi: 10.2307/1313492 Lobato, J. F. P. (2009). Uma retrospectiva da pecuária de corte em campos nativos e campos melhorados no bioma Pampa. In Pillar, V. P., Muller, S. C., Castilhos, Z. M. S., & Jacques, A. V. A. (Eds.), Campos sulinos: conservação e uso sustentável da biodiversidade (pp. 274–281). Brasília: Ministério do Meio Ambiente Minagawa, M., & Wada, E. (1984). Stepwise enrichment of δ15N along food chain: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48, 1135–1140. doi: 10.1016/0016-7037(84)90204-7 Nabinger, C., Moraes, A., Maraschin, & G. E. (2000). Campos in southern Brazil. In: Lemaire, G, Hodgson, J., Moraes, A., Nabinger, C., Carvalho, P. C. F. (Eds.), Grassland ecophysiology and grazing ecology (pp. 355–377). CABI Publishing.

26

Naylor, R., Steinfeld, H., Falcon, W., Galloway, J., Smil, V., Bradford, E., Alder, J., & Mooney, H. (2005). Losing the links between livestock and land. Science, 310, 1621– 1622. doi: 10.1126/science.1117856 Nicholson, C. F., Blake, R. W., Reid, R. S., & Schelhas, J. (2001). Environmental impacts of livestock in the developing world. Environment: Science and Policy for Sustainable Development, 43, 7–17. doi: 10.1080/00139150109605120 Newsome, S. D., Del-Rio, C. M., Bearhop, S., & Phillips, D. L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5, 429–436. doi: 10.1890/060150.1 Odadi, W. O., Karachi, M. K., Abdulrazak, A. S., & Young, T. P. (2011). African wild ungulates compete with or facilitate cattle depending on season. Science, 333, 1753– 1755. doi: 10.1126/science.1208468 Olff, H., Ritchie, M. E., & Prins, H. H. T. (2002). Global environmental controls of diversity in large herbivores. Nature, 415, 901–904. doi: 10.1038/415901a Ramsar (2013). The Ramsar conventional manual: a guide to the convention on wetlands. Switzerland: Ramsar Convention Secretariat Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., ..., Valkenburgh, B. V. (2015). Collapse of the world’s largest herbivores. Science Advances, 4, e1400103. doi: 10.1126/sciadv.1400103 Paolucci, L. N., Pereira, R. L., Rattis, L., Silvério, D. V., Marques, C. S. N., Macedo, M. N., & Brando, P. M. (2019). Lowland tapirs facilitate seed dispersal in degraded Amazonian forests. Biotropica, 55, 245–252. doi: 10.1111/btp.12627 Pedrana, J., Bustamante, J., Rodriguez, A., & Travaini, A. (2011). Primary productivity and anthropogenic disturbance as determinants of upland goose Chloephaga picta distribution in southern Patagonia. Ibis,3 15 , 517–530. doi: 10.1111/j.1474- 919X.2011.01127.x Pedrana, J., Bernad, L., Maceira, N. O., & Isacch, J. P. (2014). Human-sheldgeese conflict in agricultural landscapes: effects of environmental and anthropogenic predictors on Sheldgeese distribution in the southern Pampa, Argentina. Agriculture, Ecosystems and Environment, 183, 31–39. doi: 10.1016/j.agee.2013.09.029 Perez, G. E., Schondube, J. E., & del Rio, C. M. (2008). Isótopos estables en ornitología: una introducción breve. Ornitología Neotropical, 19, 95–112. Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293–320. doi:10.1146/annurev.es.18.110187.001453

27

Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., ..., Ward, E. J. (2014). Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology, 92, 823–835. doi: 10.1139/cjz-2014-0127 Pompanon, F., Deagle, B. E., Symondson, W. O. C., Brown, D. S., Jarman, S. N., & Taberlet, P. (2012). Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 21, 1931–1950. doi: 10.1111/j.1365-294X.2011.05403.x Santos, A. S., Desbiez, A. L. J., Alvarez, J. M., Garcia, J. B., & Bueno Sobrinho, A. A. B. (2010). Descritores epidérmicos de gramíneas: guia para identificação da dieta de herbívoros usando o programa Delta. Boletim de Pesquisa Embrapa Pantanal, Corumbá. Schoener, T. (1974). Resource partitioning ecological communities, Science, 185, 27–39.

Posse, G., Anchorena, J., & Collantes, M. B. (1996). Seasonal diets of sheep in the steppe region of Tierra del Fuego, Argentina. Journal of Range Management, 49, 24–30. doi: 10.2307/4002720 Quintana, R. D. (2002). Influence of livestock grazing on the capybara's trophic niche and forage preferences. Acta Theriologica, 47, 175–183. doi: 10.1007/BF03192457 Sanger, F., Nicklen, S., Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitos. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467. doi: 10.1073/pnas.74.12.5463 Selaive-Villaroel, A. B., Silveira, V. C. P., & Oliveira, N. M. (1997). Desenvolvimento e produção de carne de ovinos corriedale abatidos com diferentes idades sobre pastagem natural ou artificial. Revista Brasileira de Agrociência, 3, 111–118. Shendure J, & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26, 1135–1145. doi: 10.1038/nbt1486 Sick, H. (2001). Ornitologia brasileira. Nova Fronteira: Rio de Janeiro. Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21, 1794–1805. doi: 10.1111/j.1365-294X.2012.05538.x Sullins, D. S., Haukos, D. A., Craine, J. M., Lautenbach, J. M., Robinson, S. G., Lautenbach, J. D., ..., Fierer, N. (2018). Identifying the diet of a declining prairie using DNA metabarcoding. Auk, 135, 583–608. doi: 10.1642/AUK-17-199.1

28

Summers, R. W. (1985). The size and composition of sheld-geese populations and their food consumption on different vegetation types in the Falkland Islands. Journal of Applied Ecology, 22, 1–17. 460. doi: 10.2307/2403321 Summers, R. W., & Grive, A. (1982). Diet, feeding behaviour and food intake of the upland goose (Chloephaga picta) and ruddy-headed goose (C. rubidiceps) in the Falkland Islands. Journal of Applied Ecology, 19, 783–804. doi: 10.2307/2403282 Taylor, I. R., & Taylor, S. G. (2015). Foraging habitat selection of glossy ibis (Plegadis falcinellus) on an Australian temporary wetland. Waterbirds, 38, 364–372. doi:10.1675/063.038.0413 Valentini, A., Pompanon, F., & Taberlet, P. (2009). DNA barcoding for ecologists. Trends in Ecology & Evolution, 24, 110–117. doi: 10.1016/j.tree.2008.09.011 van Wieren, S. E. (1995). The potential role of large herbivores in nature conservation and extensive land use in Europe. Biological Journal of the Linnean Society, 56, 11–23. doi: 10.1111/j.1095-8312.1995.tb01114.x Vogel, J. C., Fuls, A., & Ellis, R. P. (1978). The geographical distribution of Kranz grasses in South Africa. South African Journal of Science, 75, 209–215. WallisDeVries, M. F. (1998). Grazing for conservation management in historical perspective. In WallisDeVries, M. F., Bakker, J. P., & Wieren, S. E. V. (Eds.), Grazing and conservation management (pp 1–20). London: Springer. Waugh, J. (2007). DNA barcoding in animal species: progress, potential and pitfalls. BioEssays, 29, 188–197. doi: 10.1002/bies.20529 Wegge, P., Shrestha, A. K., & Stein, R. M. (2006). Dry season diets of sympatric ungulates in lowland Nepal: Competition and facilitation in alluvial tall grasslands. Ecological Research, 21, 698–706. doi: 10.1007/s11284-006-0177-7 Xu, C., Dong, W., Shi, S., Cheng, T., Li, C., Liu, ..., Zhou, S. (2015). Accelerating plant DNA barcode reference library construction using herbarium specimens: Improved experimental techniques. Molecular Ecology Resources, 15, 1366–1374. doi: 10.1111/1755-0998.12413 Yang, Y., Zhan, A., Cao, L., Meng, F., & Xu, W. (2016). Selection of marker gene to construct a reference library for wetland plants, and the application of metabarcoding to analyze the diet of wintering herbivorous waterbirds. PeerJ, 4, e2345. doi: 10.7717/peerj.2345

29

Yu, D., Ji, Y., Emerson, B. C., Wang, X., Ye, C., & Ding, Z. (2012). Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution, 3, 613–623. doi: 10.1111/j.2041-210X.2012.00198.x Zhao, Z. L., Colman, A. S., Irvine, R. J., Karlsen, S. R., Olack, G., & Hobbie, E. A. (2019). Isotope ecology detects fine-scale variation in Svalbard reindeer diet: implications for monitoring herbivory in the changing Arctic. Polar Biology, 42, 793–805. doi: 10.1007/s00300-019-02474-8 Zotta, A. (1932). Notas sobre el contenido estomacal de algunas aves. Hornero, 5, 77–81.

30

CAPÍTULO 1

Diet and trophic niche overlap among a native and two exotic herbivores vertebrates accessed by microhistology, stable isotopes and metabarcoding techniques

Manuscrito formatado de acordo com as normas da revista Methods in Ecology and Evolution

31

Diet and trophic niche overlap among a native and two exotic herbivores vertebrates accessed by microhistology, stable isotopes and metabarcoding techniques

32

ABSTRACT 1. Areas used in simpatry by native and non-native herbivores have frequently led to conflicts between farmers and native animals. Dietary studies, for which there is a range of methodologies, provide a better and quantified understanding on resources used by herbivores and diet overlap. 2. The niche overlap between a native herbivore bird, the southern screamer (Chauna torquata), and domestic sheep (Ovis aries) and cattle (Bos taurus) was analyzed in southern Brazil. Three methods were applied and compared in faecal samples: microhistology, metabarcoding and stable isotopes analysis (SIA). In addition, SIA was used in blood samples to infer the assimilation of food resources and eventual isotopic niche overlap. 3. No isotopic niche overlap was found between the native bird and domestic herbivores by SIA in blood, while the three methods used with faecal samples showed a limited overlap between non-native herbivores, i.e. sheep and cattle. Microhistological and metabarcoding analysis were complementary with some limitations in each technique. SIA in faecal samples revealed greater similarity in the feeding habits and niche of domestic herbivores. 4. The complementary use of three different techniques allowed the evaluation of the herbivores diet from different perspectives: while metabarcoding indicated the use of a larger number of plant species, in different proportions compared to that found by microhistological analysis, Cyperaceae species were only found by microhistology. Conversely, metabarcoding performed better than microhistology in the detection of species of Onagraceae and Poaceae. Blood SIA elucidated different proportions of assimilated resources by herbivores on a temporal scale, while faecal SIA showed plants with similar photosynthetic cycle in the diet of non-native herbivores. 5. Thus, the three techniques combined were key for a detailed investigation of the vast range of plant species used, and resources effectively assimilated in the diet, complementing each other. We recommend the integrated use of techniques for more strong inferences on diet partitioning among vertebrates.

KEYWORDS: Anseriformes, Chauna torquata, livestock, microhistology, metabarcoding, stable isotopes.

33

1 INTRODUCTION

Detailed information on diet partitioning among herbivorous is an important issue in ecology

(Kartizinel et al., 2015), as distinct food preferences or niche displacement could allow coexistence in the environment (Hofmann, 1989). In a classic definition, niche is defined as an n-dimensional hypervolume, where n encompasses dimensions of the range of conditions and resources where the species may occur (Hutchinson, 1957). When niche overlap in a given dimension occurs between animals, ecological pressures (i.e. limited availabity of resources) can lead to competition, which may result in competitive exclusion or niche partitioning across evolutionary time (Gause, 1934). Otherwise, in an environment with abundant resources, high niche overlap may occur without competition (Schoener, 1974).

Diet selection by native herbivores can be modified by changes in environmental pressures (Schmidt, Mosbacher, Vesterinen, Roslin & Michelsen, 2018), such as the introduction of non-native animals (Gebremedhin et al., 2016). Areas shared with livestock potentially decrease foraging availability for native herbivores (Nicholson, Blake, Reid &

Schelhas, 2001), which can result in overlap and eventually competition (Pedrana et al.,

2018). Although sometimes resource competition between native animals and livestock is only apparent, this can result in a conflict between farmers and the native animals. In

Argentine grassland Pampas, for example, such an apparent conflict resulted in a decline of geese numbers, although they do not interfere with livestock feeding (Summers, 1985) and can even provide many ecological benefits (Gorosábel et al., 2019).

Areas with predominance of grasslands are frequently used by sympatric native and non-native herbivores. An example of such situation occurs in southern Rio Grande do Sul state (RS), the southernmost in Brazil, where cattle and sheep are raised together in native sub-tropical grasslands (Carvalho & Batello, 2009). Although this causes an apparent forage competition, the feeding of these animals is frequently more affected by pasture height

34

(Arnold, 1962; Pallarés, Berretta & Maraschin, 2005). The sheep diet in Argentinean Pampa grasslands is mostly composed by grass, sedges and rushes (Posse et al., 1996), and these animals show preference for lower pastures (Pallarés et al., 2005). On the other hand, the cattle diet in this area is mainly composed by grass (Bontti et al., 1999). In southern Brazil, sheep and cattle frequently coexist with native birds, among which the southern screamer

(Chauna torquata) is particularly frequent. This is a large, year-round resident herbivore bird, with 80 cm height and body mass between 3780 g and 5535 g (authors’s unpublished data), which can form flocks of up to 800 birds (Fontana, Cademantori, Ramos, Drehmer &

Tavares, 1994). The southern screamer has been described as herbivore, with plants and some insects found in the stomach contents (Zotta, 1932). In a recent diet study, a preference for grasses and plants with C3 photosynthetic cycles was described (Garcia, 2015). Because southern screamer shares grasslands environments with livestock (Cramp, 1992), some farmers consider it a potential foraging competitor for sheep and cattle (Sick, 2001).

Studies on trophic ecology are essential for a better understanding of resources sharing and niche overlap among animals (Colwell & Futuyma, 1971). Several methods can be used to determine the diet of herbivores, but each technique has its advantages and disadvantages.

Diet description based on conventional methods can be performed by direct observations in the field, or analysis of remains in stomach or faeces. Among diet estimation techniques, microhistological analysis in remains is widely used for quantifying diet based on caracteristics present in epidermal leaf of plants (Steward, 1967). Faecal analysis allows diet comparison of animals in the same period and based on numerous samples, with negligible disturbance on animals in the field and minimal costs (Holechek, Vavra & Pieper, 1982).

However, microhistogical analysis requires a reference collection of epidermal structures of plant species, and is quite time-consuming (Holechek et al., 1982; Wegge, Shrestha & Stein,

35

2006). Moreover, there is also the flaw of differential digestion among consumed plants, which can bias results (Vavra & Holechek, 1980).

Alternative methods have been used in order to provide different or complementary views of food resources used by animals (Schmidt et al., 2018). Faster and more accurate molecular techniques such as metabarcoding can solve some difficulties, improving identification of digested fragments in faeces (Shokralla, Spall, Gibson & Hajibabaei, 2012).

In fact, the discriminant power of different gene fragments makes next generation sequencing

(NGS) useful for determining diet composition of animals (Valentini, Propanon & Taberlet,

2009), and several samples may be simultaneously analysed through the use of Molecular

Identifiers (Mids) (Carreon-Martinez & Heath, 2010). However, metabarcoding needs a molecular reference database for the potentially consumed plants and demands the choice of specific markers to determinate diet of herbivores (Chase et al., 2007), which are not homogenously informative for different plant taxa. Moreover, there is also potential bias related to diferential amplification, which may provide an incomplete view of resources consumed (Lamb et al., 2018). Even so, dietary studies using metabarcoding have recently resulted in insights on niche partitioning in African herbivores (Kartizinel et al., 2015) and revealed unidentified resources in comparison with conventional diet analysis (Sullins et al.,

2018).

On their turn, stable isotopes analysis (SIA) provides evidences on diet partitioning for effectively assimilated sources (Phillips, 2012) by coexisting herbivores. Stable isotopes are atoms of the same chemical element, where differences in the number of neutrons result in differences in mass (Fry, 2006). In diet studies, carbon (δ13C) and nitrogen (δ15N) are mainly used to determine sources and trophic level, respectively (Peterson & Fry, 1987). The determination of sources is based on differences in the photossynthetic plant cycles, where C3 plants have δ13C values about -28‰, while C4 plants have values around -13‰ (Peterson &

36

Fry, 1987). Othervise, Nitrogen (δ15N) values increase about 3 to 5‰ at each trophic level in relation to a food source (Minagawa & Wada 1984; Perez, Schondube, del Rio, 2008). In diet studies, mathematical mixing models based on isotopic values have been used as a tool to determine assimilated resources in animal tissues (Phillips, 2012). In herbivores, the use of faecal samples for SIA provides an option to determine diet preferences, enabling inferences on resource partitioning (Codron, Codron, Lee-Thorp, Sponheimer & Ruiter, 2005). For instance, ungulates in African savanna, may be separated in browsers and grazers through

SIA in faecal samples (Codron & Codron, 2007).

The ecological niche can also be determined by SIA, where the occupied niche area of animals (δ-space) is formed by the axis of two chemical elements, generally δ13C and δ15N.

The δ-space is comparable to the n-dimensional niche (Newsome et al., 2007), and to metrics of dietary niche based on faecal diet analysis. Thus, SIA has been an important technique to trace diet of herbivores and niche overlap patterns, elucidating diet assimilation in animal tissues and complementing analyzes from conventional diet. For example, in sympatric Arctic herbivores muskox (Ovibos moschatus), Arctic hare (Lepus arcticus) and rock ptarmigan

(Lagopus mutus), SIA was used to determine the niche breadth and diet overlap and allowed inferences on niche in different seasons (Schmidt et al., 2018).

In this study, the diets of a large native herbivore bird, the southern screamer, and two non-native herbivores (cattle, Bos taurus and sheep, Ovis aries) were analyzed through microhistological, metabarcoding and stable isotope analyses in faecal samples. Stable isotopes values in blood were also used to evaluate food resources effectively assimilated and isotopic niche overlap. The main objetives were to evaluate the overlap among animal diets, while comparing the effectiveness of three complementary methods. We hypothesize that there is an overlap between cattle and sheep, while the southern screamer uses different resources.

37

2 MATERIALS AND METHODS

2.1 Study area

This study was carried out in two farmland areas (c. 32°52'’S; 052°54'W) near the Taim

Ecological Reserve in Rio Grande do Sul (RS) state, southern Brazil, which encompasses a

RAMSAR site (Ramsar, 2013). The reserve is located in the coastal plains, and is characterized by the presence of a mosaic of environments, such as wetlands, dunes, marshes, and lagoons (Asmus, 1998). The hydrological system with large lakes and plain terrain favors irrigated rice cultivation, which is the main economic activity in areas near the Taim Reserve

(Motta-Marques et al., 2013). The climate is subtropical-humid, with annual average temperature between 17°C and 19°C, and 1200–1500 of annual precipitation (Klein, 1998).

Moreover, the precipitation is higher in colder seasons than in warmer seasons (Tagliani,

2011), with frequent hydric deficit in summer due to much higher evaporation (Mota,

Goedert, Lopes, Garcez & Gomes, 1970).

The vegetation in the area is composed by grasslands as part of the Brazilian Campos and species of coastal plains, with predominance of grasses (Poaceae) (Andrade et al., 2019).

In these regions, wetland plants are also found, such as Luziola peruviana and over 150 species of aquatic macrophytes (Rolon & Maltchik, 2006). Poaceae, Asteraceae, Fabaceae and

Cyperaceae families, with both C3 and C4 photosynthetic pathways, are found in these areas

(Boldrini, 2009; Menezes, Muller & Overbeck, 2015). C3 grasses provide biomass with high- quality in colder periods, while C4 grasses are more productive during warmer seasons

(Andrade et al., 2019). The predominance of grasses makes the region important for livestock, which encompasses one of the main economic activities in this region (Blanco, Sosinski,

Santos, Silva & Pillar, 2007). The interest in livestock also led to the cultivation of plants like

38 ryegrass (Lolium perenne) and the white clover (Trifolium repens), that increased daily weight gain in sheep (Selaive-Villaroel, Silveira & Oliveira, 1997).

2.2 Sampling

Southern were captured in fourteen expeditions between 2013–2014 and 2017–

2018. Samples were collected preferentially in the summer and winter seasons, to cover the periods with variations in the predominance of plants with distinct photosynthetic cycles.

Captures occurred in dark nights, i.e. new and third quarter moon phases, by walking with a flashlight of led with 15w (900 lumens) of potency. When a bird was spotted far from the group, a silent approach was initiated, focusing the flashlight towards the animal in order to disorient it. Another researcher immobilized it using a hand net or a hoop net with 1.6 m of diameter covered with a 25 mm nylon mesh. A dark hood was then placed on the animal head to reduce stress. Approximately 2 ml of blood was collected from each bird from the brachial vein using sterile syringe and needle. All birds were banded with individually coded metal rings before release at the place of capture.

Cattle were sampled in two periods, November 2017 and May 2018. Animals were trapped for routine management by farm personnel. After immobilization, approximately 2 ml of blood was sampled from the coccygeal (undertail) vein. Sheep was sampled in two periods,

June and December 2018. Animals were immobilized as above and 2 ml of blood was sampled from the jugular vein. All blood samples were placed in plastic vials and frozen for transport to the laboratory.

Diet composition of southern screamer, cattle and sheep was evaluated by analyzing fresh faeces randomly sampled on the ground, in the same expeditions described above.

Samples were separated in individual dry bags for each animal. In the laboratory, each sample

39 was homogenized and separated in three similar parts and frozen for posterior microhistological, metabarcoding and SI analysis.

Plants with C3 and C4 photosynthetic cycles were manually collected in the study area, in different periods of the year, for comparison with the diet of animals by SIA. Plants were also used to generate a reference database for molecular analyses and to prepare reference slides for microhistological analyses.

2.3 Ethics procedures

This study was approved by the Committee on Ethics in the Use of Animals (P012/2019) of the Universidade Federal do Rio Grande (FURG) and by the Instituto Chico Mendes de

Conservação da Biodiversidade (ICMBio) (License No. 59242-1). Bird capture and banding was approved and metal bands were provided by Centro Nacional de Pesquisa e Conservação das Aves Silvestres (CEMAVE/ICMBio).

2.4 Microhistological analysis

Faeces subsamples were washed in water flow with 0.25- and 1.00-mm mesh size sieves. The content of 0.25 mm mesh was placed in 30 ml vials and fixed with FAA (10% formaldehyde,

85% ethyl alcohol and 5% acetic acid) until analysis. All samples were bleached with 10% sodium hypochlorite in order to facilitate identification of fragments. Six replicates of each faecal sample of southern screamer (n = 32), sheep ( n = 16) and cattle (n = 16) were visualized under optical microscope (10×) through Sedgewick-Rafter millimetric slides (1000 squares of 1 mm2). The area of each fragment was estimated in each slide by the approximate measure of length and width and then multiplied to obtain the approximate area, in mm2.

Furthermore, each fragment (e.g. trichomes, plant tissue with stomata) found in the diet was counted. Fragment identification was performed by diagnostics characteristics (e.g. trichomes,

40 stomata) of each plant family or species, using guides for herbivores diet (e.g. Alvarez,

Desbiez, Santos, Garcia & Machado, 2010a; Alvarez, Desbiez, Santos, Garcia & Bueno

Sobrinho, 2010b; Santos, Desbiez, Alvarez, Garcia & Bueno Sobrinho, 2010), reference images, and checking with local botanists at FURG.

2.5 Construction of molecular reference database

Plants were collected in the field as previously described and identified by specialists. In the lab, plants were washed in water flow and dried on silica-gel (Chase, 1991). DNA was extracted from leaves macerated on liquid nitrogen with the use of Nucleospin Plant II kit

(Macherey-Nagel, Nucleospin Plant®, Germany).

Because best suited molecular markers for plant identification could be species- specific (Chase et al. 2007), three chloroplast genes were first selected (matK, rbcL and psbA- trnH) to perform pilot amplification tests. Among these, psbA-trnH amplified for the largest number of the species collected at the sampling sites, and was thus selected for further use.

PCR amplifications were performed with primers psbA3_f (5'-

GTTATGCATGAACGTAATGCTC-3') and trnHf_05 (5'-

CGCGCATGGTGGATTCACAATCC-3') (Sang, Crawford & Stuessy, 1997; Tate &

Simpson, 2003), in a final volume of 20 μl containing 1 μl of DNA, 1 U Taq DNA- polymerase (Ludwig), buffer 1×, 2 mM MgCl2, 0.1 μM of each primer, 0.2 mM of dNTPs,

DMSO 3% and BSA 0.1 mg/ml. Samples were amplified by an initial denaturation step, at

95°C for 45 s, followed by 35 cycles of 30 s at 95°C, 30 s at 61°C and 40 s at 72°C, and by a final extension step, at 72°C for 10 min. PCR products were stained with GelRed (Biotium) and visualized in a transilluminator after electrophoresis on 0.8% agarose gel. Amplified products were purified with 7.5 M ammonium acetate (C2H7NO2) and directly sequenced.

41

Sanger sequencing was performed in a Perkin-Elmer ABI Prism 377 automated sequencer

(Macrogen, Seoul, Korea), with the same primers described above.

Electropherograms were assembled in Gap4 software of Staden package (Staden,

1996). Additional sequences available on Genbank for plant species of different genera found on the sampling sites were also added to the matrix in order to complete the reference database.

2.6 DNA extraction, sequencing and metabarcoding analysis

DNA extraction of faeces from southern screamer (n = 19), cattle (n = 8) and sheep (n = 12) was carried out using Nucleospin DNA Stool kit (Macherey-Nagel, Nucleospin®, Germany), according to instructions provided by the herbivores diet protocol. DNA quantification was carried out in Qubit fluorometer using dsDNA HS Assay kit (Thermo Fisher). After diluing samples to 10 ng.μL−1, they were sent to Neoprospecta (Florianópolis, Brazil), where amplification was performed under the same PCR conditions used in plant amplification and further NGS was performed in Illumina MiSeq platform through a single-end strategy.

After sequencing, raw data (fastq's) were trimmed in order to remove nonspecific sequences (primers, adapters, low quality sequences) using Cutadapt v.1.18 (Martin, 2011),

Trimmomatic v.0.38 (Bolger, Lohse & Bjoern, 2014) and Prinseq v.0.20.4 (Schmieder &

Edwards, 2011). In this step, reads with Phred values <25 and length <200 bp were removed.

The quality profile of raw and trimmed data was further checked in FastQC v.0.11.8

(Andrews, 2010). For definition of OTU's (Operational Taxonomic Units), identical sequences were clustered in Vsearch v.2.9.0 (Rognes, Flouri, Nichols, Quince & Mahé,

2016), where chimeric sequences were withdrawn. BlastN (Altschul, Gish, Miller, Myers &

Lipman, 1990) searches of each OTU were then performed against the NCBI (National Center for Biotechnology Information) nucleotide database (nt/nr) and against our personal

42 molecular reference database. In each case, potential noises were withdrawn filtering OTU's with less than five hits and identity lower than 97% with the subject sequences of each database. Identification was then performed to the lowest taxonomic level, considering the lower e-value obtained for both databases. After this, a final filter was also applied in order to remove hits with e-values < 1e-50 and all samples with < 10 reads were excluded from analysis.

2.7 Stable isotopes analysis (SIA)

SIA of carbon (δ13C) and nitrogen (δ15N) from blood samples of southern screamer (n = 49), cattle (n = 43) and sheep (n = 19) were performed. Blood samples were chosen to provide an indication of the assimilated diet of herbivores. The half-life of δ13C and δ15N in whole blood is on average 30 days for mammals (Bahar, Harrison, Moloney, Monahan & Schmidt, 2014) while for birds is about 13 days (Vander Zanden, Clayton, Moody, Solomon & Weidel,

2015). All samples were freeze-dried or oven-dried at 60°C for three days, as there are no significant differences between these methods (Denadai et al., 2019). After, samples were homogenized, weighed (0.7 mg) and stored in sterile tin capsules.

Plants for SIA were washed with flow water and over-dried for 48 h at 60°C. After, all samples were macerated with mortar and pestle, weighed (3.0 mg) and stored in tin capsules.

Faeces from southern screamer (n = 42), cattle (n = 15) and sheep (n = 28) were over-dried for 48 h at 60°C.

Samples were analyzed in Isotope Ratio Mass Spectrometer (IRMS) coupled to an elemental mass analyzer on the Center for Stable Isotopes at the University of New Mexico

(UNM-CSI). Internal laboratory standards were blue grama, buckeye, casein, cocoa power, graphite, whey protein, soy, serine and tuna. Standards were added to every 12 unknown samples with 0.08‰ and 0.04‰ accuracy for δ13C and δ15N, respectively. Stable isotope

43 composition in samples were expressed by delta notation (δ) represented by parts per thousand (‰). This indicates the differences of stable isotopes values of the sample in comparison to the standard of carbon (Vienna Pee Dee Belemnite - PDB) and nitrogen

(atmospheric air) given by the eq. 1, from Bond & Hobson (2012):

13 15 δ C or δ N (‰) = (Rsample/Rstandard) - 1 eq. 1

2.8 Data analysis

Whenever possible, variations in stable isotopes blood values of δ13C and δ15N from animals in different seasons were compared for each animal group through t-test. Normality and homoscedasticity were tested through Shapiro-Wilk and Bartlet's tests, respectively, in R environment (R Core Team, 2018). When premises were not fulfilled, a nonparametric Mann-

Whitney U-test was used.

Diet quantification of each herbivore was evaluated by food items fragments present in faecal samples. Numeric counting (N) and area (A) were estimated through microhistologic analysis as described above. The frequency of occurrence (FO) of each food item was calculated by the presence of the food item in relation to the total number of samples, and its relative frequency of occurrence (%FO). The numeric prey-specific proportion (%PN) was calculated by the numeric relation of each food item counted in relation to the total number of fragments counted. Prey-specific proportion in the area of each fragment (%PA) in relation to the total area of all fragments was calculated in substitution to weight percentage (%PW), in the original equation in Brown, Bizzarro, Cailliet & Ebert (2012). Samples in which the food item was not present were not included in calculations of %PN and %PA, as demonstrated by

Brown et al. (2012) for the Prey-Specific Index of Relative Importance (%PSIRI), given by eq. 2:

44

[(%PN+%PA)×%FO] %����� = eq. 2 2

Bayesian isotope mixing models were used for blood samples to estimate the contribution of food items assimilated by native and non-native herbivores through the

'simmr' package (Parnell & Inger, 2016) in the R environment (R Core Team, 2018). Trophic discrimination factors (TDF) used in the blood mixing models for cattle and sheep were

2.5 ± 0.3‰ and 3.70 ± 0.2‰, for δ15N and δ13C, respectively. TDF values were obtained in an experimental study with domestic reindeer (Rangifer tarandus) an ungulate herbivore (Halley,

Minagawa, Nieminen & Gaare, 2010). Food-tissue TDF values for southern screamer were

3.6 ± 0.52‰ and -0.5 ± 0.62‰, for δ15N and δ13C, respectively, as obtained for Anseriformes herbivores (Hahn, Hoyet, Korthanls & Klaassen, 2012). Potential food items were grouped in plant functional groups (e.g. legume, grass) in order to estimate the contribution of different sources assimilated for each animal group in the mixing models.

Isotopic values in blood of consumers (cattle, sheep and southern screamer) were compared with SIBER package (Stable Isotope Bayesian Ellipses in R – SIBER; Jackson,

Richard, Parnell & Bearhop, 2011) through the establishment of ellipses of 95%, which allows to estimate the dietary overlap and provides insights about the trophic niche of consumers. Niche overlap was calculated for each pair of animals through the standard ellipse area for small sample size (SEAc), and when overlap was found, the overlap area and percentage for each animal was calculated (Jackson et al., 2011). This procedure resulted in values of niche overlap between the native and non-native animals based on stable isotopes.

Isotopic values in faeces of consumers were also compared, with SIBER package, providing the isotopic niche in the same samples. However, due to variations that may occur in the passage of food through the digestive tract of herbivores (Sponheimer et al., 2003) the

45 isotopic values have been corrected. For B. taurus, TDF values used were based on values from this species (δ13C = -1.0‰ and δ15N =2.0‰; Sponheimer et al., 2003; Steele & Daniel,

1978) and for O. aries were also used values obtained in sheep experiments (δ13C = -0.45‰ and δ15N =3.0‰; Sutoh, Obara & Yoneyama, 1993). For southern screamer, values used were estimated for faecal samples of birds in general (δ13C = 1.15‰ and δ15N = 2.91‰) as revised by Caut, Angulo & Courchamp (2009).

For metabarcoding, the Relative Read Abundance (RRA) was employed in order to estimate the representation of reads in the diet of herbivores. Recently, dietary studies using

RRA and other procedures were reviewed, and RRA demonstrated to be more accurate for metabarcoding diet analysis (Deagle et al., 2019). RRA was calculated as given to estimate reads representation of herbivores' diet, according the eq. 3:

� 1 ��, � ��� = ∑ × 100 eq. 3 � � ∑� ��, � �=1 �=1

Where: S = number of samples; i = function; k = sample; ni, k = number of sequences

(reads) in the sample k; t = numbers of the food items (taxa).

To evaluate the trophic niche overlap of herbivores based on plant composition in diet,

Morisita-Horn index was calculated for each pair of consumers. For this, quantitative data from microhistological and RRA from metabarcoding were determined, and then calculated through the index, as proposed by Horn (1966):

CH = 2 ∑ni pij pik / ∑nip²ij +∑nip²pik eq. 4

Where: CH = Morisita-Horn index; pij = source proportion i on the total amount of resources used by the species j; Pik = source proportion i on the total amount of resources used

46 by the species k; n = quantity of all resources used. In this index, values range between 0 and

1, where values near 1 indicate higher overlap.

Additionally, stable isotopes values from faecal samples of herbivores were analyzed in order to compare with the descriptions of diet based on microhistological and metabarcoding techniques. Differences in δ15N and δ13C values among groups were tested through ANOVA one-way and the post-hoc Tukey HSD, in R environment. These data indicate the use of resources in the same time scale as the others techniques applied in faecal samples.

3 RESULTS

3.1 Diet based on microhistology

A total of 34,967 plant fragments were identified in the faecal samples, belonging to both

Monocotyledoneae and Eudicotyledoneae (Table 1). Grasses were the most common category in the diet of southern screamer, sheep and cattle (FO% = 36.28, 67.92 and 68.46, respectively), followed by sedges (FO% = 25.66, 25.47 and 23.42) (Fig. 1a). For the southern screamer, 17 plant species from different aquatic and terrestrial families were identified, mainly Trifolium sp. (Fabaceae) (PN% = 30.46), Eichornia sp. (Pontederiaceae) (PN% =

24.31) and Poaceae (PN% = 10.27). For cattle, 16 plant species were identified, with major contribution of grasses and sedges, such as Luziola peruviana (PN% = 33.05) and Eleocharis sp. (PN% = 32.90). For sheep, the main contribution was provided by Eleocharis sp. (PN% =

35.67) and Poaceae (PN% = 31.29), found in all samples analyzed.

The contribution of food items for each consumer in relation to %PSIRI indicated unidentified Eudycotyledoneae (%PSIRI = 52.5) as the main food resources for southern screamer, with T. repens as the main species consumed (%PSIRI = 22.09), and Poaceae also presenting a significant contribution (%PSIRI = 11.7). In cattle and sheep diets, the sedge 47

Eleocharis sp. (%PSIRI = 31.06 and 35.53, respectively) and Poaceae (%PSIRI = 21.5 and

31.55, respectively) predomminated (Table 1, Fig. 2a).

3.2 Molecular reference database

For the reference database, a total of 18 plant species, of eight families, were amplified for the psbA-trnH gene, out of 30 species plants collected in the study area (Table 2).

3.3 Diet infered by metabarcoding

A total of 1,192,584 sequences were obtained in all faecal samples, belonging to 43 families.

Metabarcoding analysis revealed differences among herbivores in relation to the main plant families consumed (Table 3, Fig. 2b). Southern screamer had the diet composed mainly by

Poaceae (RRA = 33.27) and Fabaceae (RRA = 13.10). Aquatic plants were also present in the faecal samples, e.g. Hydrocotyle bonariensis (RRA = 9.10). Conversely, the Onagraceae, in particular Ludwigia grandiflora, was consumed by all herbivores with high predominance in the sheep diet (RRA = 54.97). In cattle diet, Asteraceae and Poaceae were the plant families consumed with higher RRA (32.37 and 17.35, respectively). In relation to plant functional groups, forbs were mostly found in the diet of all herbivores (Fig. 1b) with a higher contribution to sheep (RRA = 85.30). Legumes were mostly consumed by southern screamer and cattle (RRA = 33.12 and 16.46, respectively). On the other hand, sedges and rushes had low contribution for all animals (Fig. 1b).

3.4 Diet inferred by SIA

Mean carbon isotopic values from blood ranged from δ13C = -28.33 to -23.44‰ (n = 49) for southern screamer, δ13C = -24.30 to -17.66‰ for sheep and δ13C = -20.37 to -17.11‰ for cattle. For nitrogen in blood, values ranged from δ15N = 3.19 to 10.22‰ (n = 49) for southern

48 screamer, δ15N = 8.20 to 10.55‰ (n = 19) for sheep and δ15N = 6.29 to 9.20‰ for cattle

(Table 4; Fig. 3). Carbon isotopic values in blood of each herbivore did not differ significantly between sampling periods, i.e. winter vs. summer. Nitrogen isotopic values in blood were not significantly different for southern screamer and sheep sampled in cold vs. warm seasons, while for cattle values varied between sampling seasons (t = 6.9; df = 41; p <

0.05) (Fig. 3e).

The Bayesian mixing models indicated the importance of different food sources for southern screamer, with legume composing the bulk of the assimilated food (Fig. 3a, b); a combination of sedges and C3 Poaceae was the main sources utilized for sheep (Fig. 3c, d) while cattle, C4 Poaceae predomminated between sampling seasons (Fig. 3e, f).

Isotopic carbon values from faeces ranged from δ13C = -30.86 to -24.65‰ for southern screamer (n = 41), δ13C = -25.73 to -17.34‰ for sheep (n =19) and δ13C = -25.33 to -16.55‰ for cattle (n =15). Nitrogen values ranged from δ15N = 2.65 to 10.31‰ for southern screamer

(n = 41), δ15N = 4.40 to 7.79‰ for sheep (n = 19) and δ15N = 4.13 to 8.36‰ for cattle (n =

15) (Table 4, Fig. 4). Carbon stable isotope values in faecal samples indicated the predominant use of C3 plants by southern screamer, while for non-native herbivores carbon values between C3 and C4 were found. Nitrogen values for faecal samples did not differ, while Tukey's HSD indicated a significant pairwise difference between southern screamer and non-native herbivores for δ13C values (ANOVA: F = 102.7; p < 0.05) (Fig. 4).

3.5 Comparison among techniques used in diet analysis

In general, the techniques for determining and quantifying the diet complemented each other, with families and functional groups of plants consumed by herbivores detected exclusively in one technique but not in another, e.g. Cyperaceae and Onagraceae found exclusively in microhistological and metabarcoding analysis, respectively. On the other hand, isotopic

49 analysis of diet showed the use of food sources in accordance with the feeding habit of the animals.

3.6 Trophic niches between herbivores

The Morisita-Horn index indicated high diet overlap among non-native mammals (CH = 0.93) and minor overlap between the southern screamer vs. non-native animals, when based on microhistological quantification data (CH = 0.04 and 0.02, comparing southern screamer vs. cattle and sheep, respectively). In contrast, Morisita-Horn index for metabarcoding data indicated low overlap between animals, with cattle and sheep having the highest, but still limited overlap values (CH = 0.25) (Table 5).

Southern screamer and non-native herbivores had separated isotopic niches, i.e. ‘zero’ overlap, whi le sheep and cattle had more similar values and limited isotopic overlap in the assimilated diet. The highest isotopic niche breadth was found for southern screamer (SEAc =

5.05), followed by sheep (SEAc = 2.85) and cattle (SEAc = 1.93) with niche areas overlapped

44.18% between sheep and cattle (Table 6, Fig. 5A). For isotopic niche based on faecal samples, southern screamer had a limited overlap with non-native herbivores, with overlap values around 13% in both sheep and cattle comparison (Table 6). Notwithstanding, a high overlap was found between sheep and cattle, with 85.27% overlapped area (Fig. 5B).

4 DISCUSSION

Resource partitioning analysis between a native bird and two non-native herbivores showed a clear division of resources, with minimum niche overlap between them. The association of techniques enabled to evaluate the diet from different perspectives, overcoming limitations of each technique. Microhistological analysis allowed plant groups to be determined precisely, leading to distinction of species/groups consumed, as well as its contribution for each herbivore species, even if resolution at species level was not possible for some plant families.

50

On the other hand, metabarcoding analysis indicated the distribution of resources comparable to microhistology for all herbivores, but widened the list of groups consumed allowing resolution at the genus/species level. SIA in faecal samples, on their turn, showed a similarity of diet between sheep and cattle and the predominant use of plants with values near C3 plants in the southern screamer's diet. In addition, the isotopic niche based on SIA in faecal samples revealed high overlap between cattle and sheep, and limited overlap between non-native herbivores and southern screamer. However, when food effectively assimilated had been analysed, i.e. SIA in blood, with mixing models developed and isotopic niche calculated, sheep and cattled had limited overlapping niches. Furthermore, southern screamer seems to have a similar feeding and resource assimilation during time, lacking variation between years and seasons, while isotopic values in cattle blood varied between sampling seasons.

4.1 Comparing techniques in the diet of southern screamer and livestock

The combination of methodologies in this study revealed differences in the use of resources between native and non-native herbivores, indicating greater similarity between non-native grazers. The diet of southern screamer was composed mainly by forbs, legumes and Poaceae, whereas in cattle and sheep diets other plant groups predominated. In the southern screamer diet, forbs were the most important resource assimilated, with legumes as T. repens presenting a major contribution in both microhistological and metabarcoding analyses. This forage is one of the most commonly cultivated species for domestic herbivores feeding in Pampas region, due to its resistance to cold wheather (Paim & Riboldi, 1994). Furthermore, forbs such as

Onagraceae, and legumes such as Fabaceae provide a high nutritional quality in the diet

(Babehenn, Chen, Karowe & Spickards, 2004). This preference for forbs was previosly reported in some large birds, such as the pink-footed (Anser brachyrhynchus) and barnacle

(Branta leucopsis) geese, in an experimental preference test with other seven different plants

51

(Owen, 1979). In fact, the potential nutrition (Prop & Vulink, 1992) as well as plant growth shape provide some reasons for plant selection by Anseriformes (Owen, 1979) and others herbivores. Similarly, it was previously reported that farms with pastures improved by T. repens usually atract geese, which share these environmental areas with livestock due to the availability of high quality grasslands (Mason, Keane, Redpath & Bunnefeld, 2018).

Grasses were also frequent in microhistological and metabarcoding analysis for southern screamer diet. The high abundance of Poaceae (30%) (mainly the Peruvian watergrass Luziola peruviana) in southern screamer diet, as revealed through metabarcoding analysis, suggests one important role of this bird in the study area: this watergrass is a native aquatic macrophyte which easily colonize shallow ponds, where it reduces water quality due to the input of nutrients and eutrophication of such environments (Sponchiado, 2008). The irrigated rice cultivation increases the areas with this macrophyte, with alternative biological control already tested using the introduced Grass carp (Cyprinus carpio) (Sponchiado &

Schwarzbold, 2009). Data from metabarcoding analysis complemented information based on microhistological analysis, both revealing the potential for biological control of aquatic weeds by the southern screamer. Some Anseriformes in Argentina also consume weeds, which helps environmental management and improve plant quality for other herbivores, including livestock (Gorosábel et al., 2019).

Sheep and cattle had diet composed mainly by Poaceae, Cyperaceae, Onagraceae and

Asteraceae, in different proportions. For sheep, the sward shape seems to be a factor for plant selection (Pallarés et al., 2005) and this pattern also seems to be followed by sheep in the present study. The sheep diet was composed mainly by Eleocharis sp. (Cyperaceae) and

Ludwigia grandiflora (Onagraceae), both with low height. The presence of these families was detected only by the simultaneous use of complementary methods, since the Onagraceae was not found in microhistological analysis, while Cyperaceae was not found in metabarcoding

52 analysis. However, the overall pattern was similar in both methods and showed selective feeding by sheep. The SIA showed a high contribution of sedges and C3 grasses while the

%PSIRI confirmed that sedges presented one of the main contribution in diet. In fact, sedges are one of the most common plant groups in southern Brazilian Campos (Boldrini, 2009).

Native herbivores such as capybara (Hydrochoerus hydrochaeris) and coypu (Myocastor coypus) also include these plants in their diet in Taim Reserve (Espinelli, Corrêa, Colares &

Colares, 2017).

On the other hand, cattle diet seems more generalist, with some differences in abundance of families in comparison with sheep, including Poaceae and Asteraceae. Grasses are one of the most consumed food resources by cattle elsewhere (Desbiez, Santos, Alvarez &

Tomas, 2011; Kartzinel et al., 2015). Some non-grasses such as forbs complement cattle diet, providing protein-richer diet (Odadi, Karachi, Abdulrazak & Young, 2013). This strategy may have been used by cattle analyzed in the present study, as SIA showed high contribution of

C4 plants assimilated in blood, while some forbs were detected by other methods applied.

Besides that, the significant difference in nitrogen stable isotope values may indicate the differential use of the abundant resources available in colder vs. warmer seasons. However, factors such as differences in root depth, which in turn may result in differences in δ15N values (Ambroise, 1991) as well as changes in soil nitrogen values derived by commercial fertilizers (Shearer, Kohl & Chien, 1978) may be involved in changing the δ15N values between periods studied.

Carbon stable isotope values from faecal samples indicated that southern screamer used predominantly plants with C3 photosynthetic pathways, while livestock used plants with values between C3 and C4 plant cycles. According to earlier faecal analysis studies (Codron et al., 2005; Codron & Codron, 2007), values obtained in southern screamer faeces would characterize the species as a 'browser', and livestock as 'mixed-feeders'. In addition, the diet

53 infered by other methods for southern screamer indicated a high contribution of Poaceae, suggesting the use of C3 grasses, also supported by the high contribution in mixing models based on blood samples. In contrast, sheep and cattle seem to base their diets by both C3 and

C4 plants, i.e. grasses, sedges and forbs.

Therefore, the complementary use of techniques in this study allowed us to indicate the feeding habits and the use of resources from different perspectives in three herbivores.

The main difference among techniques was the high representativeness of Cyperaceae in microhistological analysis, while few reads were found for this family in metabarcoding for all herbivores. This family has low resolution even for more established markers, such as internal transcribed spacer (ITS) (Kartzenel et al., 2015, in Supplementary material) and this makes diet description of herbivores, which include Cyperaceae in their diet, incomplete by the use of metabarcoding. However, in addition to more accuracy, this technique was important to identify families with difficult histological identification, such as some dicots, due the similarity among epidermal structures. The high presence of Onagraceae in the diet of non-native animals in the current study was only detected through metabarcoding and was previously reported for some herbivores such as the Pampas deer (Ozotoceros bezoarticus), in

Brazilian Pantanal (Desbiez et al., 2011). However, other forbs are reported in diet of cattle

(Bontti et al., 1999) and sheep (Posse et al., 1996) using conventional methods in Pampas grasslands.

4.2 Niche partitioning between southern screamer and livestock

The overlap was very limited between southern screamer and non-native herbivores in this study. Microhistological analysis and SIA suggested high overlap between cattle and sheep, while metabarcoding analysis also indicated low overlap between both non-native herbivorous. The use of similar resources could be an artifact, due to the low taxonomical

54 resolution of the microhistological analysis. Thus, similar taxonomic/functional groups or isotopos values in faecal samples of non-native herbivores contributed to the high overlap found by these techniques. In fact, the hypothesis of diet overlap between livestock had been confirmed because, apparently, cattle and sheep in southern Brazil share food resources. The diversity and high quality forrage on grasslands Campos provides opportunities for niche segregation, with some partition of resources between sheep and cattle. In addition, morphological factors as body and mouth size, and subtle changes in digestive systems in ungulates (Hanley, 1982) could also help to explain this pattern. Resources exploited by cattle were more variable than those used by sheep. While southern screamer niche seems to be close to C3 plant cycle pathway, the species is generalist and individuals use high quality plants. The low digestibility of fibers lead some geese and swans to adopt the food throughput time strategy' (Mayhew & Houston, 1993), in which animals select plants with high quality.

This reduces transit food time in digestive tract but these animals need to forage intensively and select food patches. As a member of the Anseriformes, and deductively holding an inefficient digestive system, such strategy seems to be used by southern screamer in our study site.

Pasture areas shared between native herbivores and livestock had caused conflicts with farmers elsewhere. Researches in Argentinian farmlands had shown that birds do not harm grazing by domestic animals and may even contribute to the maintenance of environmental conditions and grassland quality (Gorosábel et al., 2019). The present study showed that diet analysis may reveal important ecological aspects and that apparent conflict between domestic animals and the herbivore southern screamer is negligible.

55

AUTHORS' CONTRIBUTIONS

C.N.F, L.J.R. and L.B. designed the study. C.N.F. conducted the analyses. C.N.F. wrote a first draft of the manuscript and all authors revised and approved the manuscript.

ACKNOWLEDGEMENTS

We thank all colleagues involved in field collection and laboratory analysis. We thank botanists, especially William Matzenauer, Fábio P. Espinelli, and Ioni G. Collares, for all support in plant identifications, technicians at FURG, farmers and all the personnel involved in sampling cattle and sheep blood and access to farms. We also thank Estação Ecológica do

Taim/ICMBio for all logistic support in fieldwork. C.N.F. received a Research Grant from

CAPES Foundation. L.B. received a Fellowship from CNPq – PQ # 311409/2018-0. This work was supported by in part by CAPES – Finance Code 001.

REFERENCES

Ambroise, S. H. (1990). Effects of diet, climate and physiology on nitrogen isotope

abundances in terrestrial foodwebs. Journal of Archaeological Science, 18, 293–317.

doi: 10.1016/0305-4403(91)90067-Y

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. (1990). Basic local

alignment search tool. Journal of Molecular Biology, 215, 403–410. doi:

10.1016/S0022-2836(05)80360-2

Alvarez, J. M., Desbiez, A. L. J., Santos, S. A., Garcia, J.B., & Machado, S.R. (2010a).

Descritores epidérmicos de eudicotiledôneas forrageiras: guia para identificação da

56

dieta de herbívoros usando o programa Delta. Boletim de Pesquisa e Desenvolvimento

Embrapa Pantanal, Corumbá

Alvarez, J. M., Desbiez, A. L. J., Santos, S. A., Garcia, J.B., Bueno Sobrinho, A. A. B., &

Machado, S. R. (2010b). Descritores epidérmicos de Cyperaceae forrageiras: guia para

identificação da dieta de herbívoros usando o programa Delta. Boletim de Pesquisa e

Desenvolvimento Embrapa Pantanal, Corumbá

Andrade, B. O., Bonilha, C. L., Overbeck, G. E., Vélez-Martin, E., Rolim, R. G., Bordignon,

S. A. L., ... Boldrini, I. I. (2019). Classification of South Brazilian grasslands:

implications for conservation. Applied Vegetation Science, 22, 168–184. doi:

10.1111/avsc.12413

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.

Available:

Arnold, G. W. (1962). Effects of pasture maturity on the diet of sheep. Australian Journal of

Agricultural Research, 13, 701–706

Asmus, M. L. (1998). A planície costeira e a Lagoa dos Patos. In: Seeliger, U., Odebrecht, C.,

Castello, J. P. (Eds.), Os ecossistemas costeiro e marinho do extremo sul do Brasil (pp.

7–12). Rio Grande: Ecoscientia.

Bahar, B., Harrison, S.M., Moloney, A. P., Monahan, F. J. & Schmidt, O. (2014). Isotopic

turnover of carbon and nitrogen in bovine blood fraction and inner organs. Rapid

Communications in Mass Spectrometry, 28, 1011–1018. doi: 10.1002/rcm.6872

Barbehenn, R. V., Chen, Z., Karowe, D. N., & Spickard, A. (2004). C3 grasses have higher

nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Global

Change Biology, 10, 1565–1575. doi: 10.1111/j.1365-2486.2004.00833.x

57

Boldrini, I. L. (2009). A flora dos campos do Rio Grande do Sul. In: Pillar, V.P., Muller, S.

C., Castilhos, Z. M. S., Jacques, A. V. A. (Eds.) Campos sulinos: conservação e uso

sustentável da biodiversidade (pp. 63–77). Brasília: Ministério do Meio Ambiente

Bolger, A. M., Lohse, M. Bjoern, U. (2014). Trimmomatic: a flexible trimmer for Illumina

sequence data. Bioinformatics, 30, 863–864. doi: 10.1093/bioinformatics/btu170

Bond, A. L., & Hobson, K. A. (2012). Reporting stable-isotope rations in ecology:

Recommended terminology, guidelines and best practices. Waterbirds, 35, 324–331.

doi: 10.1675/063.035.0213

Bontti, E. E., Boo, R. M., Lindstrom, L. I., Elia, O. R. (1999). Botanical composition of cattle

and vizcacha diets in Central Argentina. Journal of Range Management, 52, 370–377.

doi: 10.2307/4003548

Brown, S. C., Bizzarro, J. J., Cailliet, G. M., & Ebert, D. A. (2012). Breaking with tradition:

redefining measures for diet description with a case study of the Aleutian skate

Bathyraja aleutica (Gilbert 1896). Environmental Biology of Fishes, 95, 3–20. doi:

10.1007/s10641-011-9959-z

Carreon-Martinez, L., & Heath, D. D. (2010). Revolution in food web analysis and trophic

ecology: diet analysis by DNA and stable isotope analysis. Molecular Ecology, 19, 25–

27. doi: 10.1111/j.1365-294X.2009.04412.x

Carvalho, P. C. F., & Batello, C. (2009). Access to land, livestock production and ecosystem

conservation in the Brazilian Campos biome: the natural grasslands dilemma. Livestock

Science, 120, 158–162. doi: 10.1016/j.livsci.2008.04.012

Caut, S., Angulo, E., & Courchamp, F. (2009). Variation in discrimination factores (Δ15N and

Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal

of Applied Ecology, 46, 443–453. doi: 10.1111/j.1365-2664.2009.01620.x

58

Chase, M.K., Cowan, R. S., Hollingsworth, P. M., Berg, C. V. D., Madriñán, S., Petersen, G.,

… Wilkinson, M. (2007). A proposal for a standardized protocol to barcode all land

plants. Taxon, 56, 295–299. doi: 10.1186/1472-6785-12–25

Chase, M. K., & Hills, H. H. (1991). Silica gel: an ideal material for field preservation of leaf

samples for DNA studies. Taxon, 40, 215–220. doi: 10.2307/1222975

Codron, D., Codron, J. (2007). Reliability of δ13C and δ15N in faeces for reconstructing

savanna herbivore diet. Mammalian Biology, 74, 36–48. doi:

10.1016/j.mambio.2007.12.005

Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., & Ruiter D. (2005). Animal diets

in the Waterberg based on stable isotopic composition of faeces. South African Journal

of Wildlife Research, 35, 43–52. doi: 10.5167/uzh-25362

Colwell, R. K., & Futuyma, D. J. (1971). On the measurement of niche breadth and overlap.

Ecology, 52, 567–576. doi: 10.2307/1934144

Cramp, S. (1992). Family Anhimidae. In: Del Hoyo, J., Elliot, A., Carbot, J. (Eds.) Handbook

of the birds of the word, 1, ostrich to ducks. Barcelona: Lynx Editions

Denadai, J. C. Sartori, J. B., Pezzato, A. C., Costa, V. E., Sartono, M. M. P., Petinati, B. E. S.

Gennari, R. S., ... Carvalho, M. A. G. (2019). Standardization of a sample-processing

methodology for stable isotope studies in poultry. Brazilian Journal of Poultry Science,

21, 1–8. doi: 10.1590/1806-9061-2017-0687

Deagle, E. B., Thomas, A. C., Mclnnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L.,

Kartzinel, T. R., Eveson, J. P. (2019). Counting with DNA in metabarcoding studies:

How should we convert sequence reads to dietary data?. Molecular Ecology, 28, 391–

406. doi: 10.1111/mec.14734

Desbiez, A. L. J., Santos, S. A., Alvarez, J. M., Tomas, W. M. (2011). Forage use in domestic

cattle (Bos indicus), capybara (Hydrochoerus hydrochaeris) and Pampas deer

59

(Ozotoceros bezoarticus) in a seasonal Neotropical wetland. Mammalian Biology, 76,

351–357. doi: 10.1016/j.mambio.2010.10.008

Espinelli, F. P., Corrêa, F., Colares, E. P., Colares, I. G. (2017). The partitioning of food

resources between two rodents in the subtropical region of southern Brazil. Anais da

Academia Brasileira de Ciências, 89, 191–202. doi: 10.1590/0001-3765201720160445

Fontana, C. S., Cademartori, C. V., Ramos, R. A., Drehmer, C. J., Tavares, A. E. (1994).

Abundância relativa de Chauna torquata (Oken, 1816) (Aves, Anhimidae) em terras

úmidas do Rio Grande do Sul, Brasil. Biociências, 2, 125–133.

Fry, B. (2006). Stable isotope ecology. New york: Springer

Garcia, X. (2015). Ecologia alimentar da ave herbívora Chauna torquata no Taim, sul do

Brasil. MSc. Dissertation, FURG, Rio Grande

Gause, G. F. (1934). The struggle for existence. Baltimore, MD: Williams & Wilkins

Gebremedhin, B., Flagstad, O., Bekele, A., Chala, D., Bakkestuen, V., Boessenkool, S., ...

Epp L. S. (2016). DNA metabarcoding reveals diet overlap between the endangered

walia ibex and domestic goats – implications for conservation. PLoS ONE, 11, e015913.

doi: 10.1371/journal.pone.0159133

Gorosábel, A., Pedrana, J., Bernad, L., Caballero, V. J., Muñoz, S. D., & Maceira, N. O.

(2019). Evaluating the impacts and benefits of sheldgeese on crop yields in the Pampas

region of Argentina: a contribution for mitigating the conflicts with agriculture.

Agriculture, Ecosystems and Environment, 279, 33–42. doi: 10.1016/j.agee.2019.04.002

Hahn, S., Hoye, B. J., Korthals, H., & Klaassen, M. (2012). From food to offspring down:

tissue-specific discrimination and turn-over of stable isotopes in herbivorous waterbirds

and other avian foraging guilds. PloS ONE, 7, e30242. doi:

10.1371/journal.pone.0030242

60

Halley, D. J., Minagawa, M., Nieminen, M., & Gaare, E. (2010). Diet: tissue stable isotope

fractionation of carbon and nitrogen in blood plasma and whole blood of male reindeer

Rangifer tarandus. Polar Biology, 33, 1303–1309. doi: 10.1007/s00300-010-0817-9

Hanley, T. A. (1982). The nutritional basis for food selection by ungulates. Journal of Range

Management, 35, 146–151. doi: 10.2307/3898379

Hofmann, R. R. (1989). Evolutionary steps of ecophysiological adaptation and diversification

of ruminants: a comparative view of their digestive system. Oecologia, 78, 443–457.

doi: https://doi.org/10.1007/BF00378733

Holechek, J. L., & Vavra, M. (1980). Factors influencing microhistological analysis of

herbivore diets. Journal of Range Management, 33, 371–374. doi: 10.2307/3897886

Holechek, J. L., Vavra, M., & Pieper, R. D. (1982). Botanical composition determination of

range herbivore diets: a review. Journal of Range Management, 35, 309–315.

doi: 10.2307/3898308

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on

Quantitative Biology, 22, 415–427. doi: 10.1101/SQB.1957.022.01.039

Jackson, A. L., Richard, I., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche

widths among and within communities: SIBER– Stable Isotope Bayesian Ellipses in R.

Journal of Animal Ecology, 80, 595–602. doi: 10.1111/j.1365-2656.2011.01806.x

Kartzinel, T. R., Chen, P. A., Coverdale, T. C., Erickson, D. L., Kress, W. J., Kuzmina, M.

L.,... Pringle, R. M. (2015). DNA metabarcoding illuminates dietary niche partitioning

by African large herbivores. Proceedings of the National Academy of Sciences of the

United States of America, 112, 8019–8024. doi: 10.5061/dryad.2fg10

Klein, A. H. F. (1998). Clima regional. In Seeliger, U., Odebrecht, C., Castello, J. P. (Eds.),

Os ecossistemas costeiro e marinho do extremo sul do Brasil. (pp. 5–7). Rio Grande:

Ecoscientia.

61

Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G. & Taylor, M. I. (2018). How

quantitative is metabarcoding: A meta-analytical approach. Molecular Ecology, 28,

420–430. doi: 10.1111/mec.14920

Mason, T. H. E., Keane, A., Redpath, S. M., & Bunnefeld, N. (2018). The changing

environment of conservation conflict: geese and farming in Scotland. Journal of

Applied Ecology, 55, 651–662. doi: 10.1111/1365-2664.12969

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing

reads. EMBnet.journal, 17, 10–12. doi: 10.14806/ej.17.1.200

Mayer, C. P., & Paulay, G. (2005). DNA Barcoding: error rates based on comprehensive

sampling. PLoS Biology, 3, 2229–2238. doi: 10.1371/journal.pbio.0030422

Mayhew, P. W. & Houston, D. C. (1993). Food throughput time in European wigeon Anas

penelope and other grazing waterfowl. Wildfowl, 44, 174–177

Menezes, L. S., Muller, S. C. & Overbeck, G. E. (2015). Floristic and structural patterns in

South Brazilian coastal grasslands. Anais da Academia Brasileira de Ciências, 87,

2081–2090. doi: 10.1590/0001-376520150140555

Minagawa, M., & Wada, E. (1984). Stepwise enrichment of δ15N along food chain: further

evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica

Acta, 48, 1135–1140. doi: 10.1016/0016-7037(84)90204-7

Mota, F. S., Goedert, C. O., Lopes, N. F., Garcez, J. R. B., & Gomes, A. S. (1970). Balanço

hídrico do Rio Grande do Sul. Pesquisa Agropecuária Brasileira, 5, 1–27.

Motta-Marques, D. (2013). O Sistema Hidrológico do Taim. In: Tabarelli, M., Rocha, C. F.

D. R., Piccoli, H., Lacerda, O. R. (Eds.) Dez anos do Programa de Pesquisas

Ecológicas de Longa Duração no Brasil: achados, lições e perspectivas (pp 197 – 224).

Recife, PE: Editora Universitária da UFPE.

62

Newsome, S. D., Del-Rio, C. M., Bearhop, S., & Phillips, D. L. (2007). A niche for isotopic

ecology. Frontiers in Ecology and the Environment, 5, 429–436. doi: 10.1890/060150.1

Nicholson, C. F., Blake, R. W., Reid, R. S., & Schelhas, J. (2001). Environmental impacts of

livestock in the developing world. Environment: Science and Policy for Sustainable

Development, 43, 7–17. doi: 10.1080/00139150109605120

Odadi, W. O., Karachi, M. K., Abdulrazak, S. A., & Young, T. P. (2013). Protein

supplementation reduces non-grass foraging by a primary grazer. Ecological

Applications, 23, 455–463. doi: 10.1890/12-0878.1

Owen, M. (1979). Food selection in greese. Ornithologische Gesellschaft in Bayern, 23, 169–

176.

Paim, N., & Riboldi, J. (1994). Duas novas cultivares de trevo-branco comparadas com outras

disponíveis no Rio Grande do Sul, em associação com gramíneas. Pesquisa

Agropecuária Brasileira, 29, 1–91.

Pallarés, O. R., Berretta, E. J., & Maraschin, G. E. (2005). The South American campos

ecosystem. In: Suttie, J., Reynolds, S. G., Batello, C. (Eds.) Grasslands of the world

(pp. 171–219). Rome: FAO

Parnell, A., & Inger, R. (2016). Stable isotope mixing models in R with Simmr.

https://cran.rproject.org/web/packages/simmr/simmr.pdf.

Pedrana, J., Bernad, L., Bernardos, J. N., Seco, J. P., Isach, J. P., Muñóz, S. D., & Maceira, N.

O. (2018). Winter population size estimations of three migratory sheldgeese in the

Southern Pampas, Argentina. Waterbirds, 41 , 16–21. doi: 10.1675/063.041.0103

Perez, G. E., Schondube, J. E., & Del-Rio, C. M. (2008). Isótopos estables en ornitología: una

introducción breve. Ornitología Neotropical, 19, 95–112.

Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of

Ecology and Systematics, 18, 293–320. doi: 10.1146/annurev.es.18.110187.001453

63

Phillips, D. L. (2012). Converting isotope values to diet composition: the use o mixing

models. Journal of Mammalogy, 93, 342–352. doi: 10.1644/11-MAMM-S-158.1

Posse, G., Anchorena, J., & Collantes, M. B. (1996). Seasonal diets of sheep in the steppe

region of Tierra del Fuego, Argentina. Journal of Range Management, 49, 24–30. doi:

10.2307/4002720

Prop, J., & Vulink, T. (1992). Digestion by barnacle geese in the annual cycle – the interplay

between retention time and food quality. Functional Ecology, 6, 180–189. doi:

10.2307/2389753

Ramsar (2013). The Ramsar conventional manual: a guide to the convention on wetlands. Switzerland: Ramsar Convention Secretariat R Core Team (2018). R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. www.r-project.org

Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahe, F. (2016). VSEARCH:a versatile

open source tool for metagenomics. PeerJ, 4, e2584. doi: 10.7717/peerj.2584

Rolon, A. S. & Maltchik, L. (2006). Environmental factors as predictors of aquatic

macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia,

556, 221–231. doi:10.1007/s10750-005-1364-1

Sang, T., Crawford, D. J., & Stuessy, T.F. (1997). Chloroplast DNA phylogeny, reticulate

evolution and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 84,

1120–1136. doi: 10.2307/2446155

Santos, A. S., Desbiez, A. L. J., Alvarez, J. M., Garcia, J. B., & Bueno Sobrinho, A. A. B.

(2010). Descritores epidérmicos de gramíneas: guia para identificação da dieta de

herbívoros usando o programa Delta. Boletim de Pesquisa Embrapa Pantanal, Corumbá.

Schmidt, N. M., Mosbacher, J. B., Vesterinen, E. J., Roslin, T., & Michelsen, A. (2018).

Limited dietary overlap amongst resident Artic herbivores in winter: complementary

64

insights from complementary methods. Oecologia, 187, 689–699. doi: 10.1007/s00442-

018-4147-x

Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic

datasets. Bioinformatics, 27, 863–864. doi: 10.1093/bioinformatics/btr026

Schoener, T. (1974). Resource partitioning ecological communities, Science, 185, 27–39.

Selaive-Villaroel, A. B., Silveira, V. C. P., & Oliveira, N. M. (1997). Desenvolvimento e

produção de carne de ovinos corriedale abatidos com diferentes idades sobre pastagem

natural ou artificial. Revista Brasileira de Agrociência, 3, 111–118.

Shearer, G., Kohl, D. H., Chien, S. H. (1978). The nitrogen-15 abundance in a wide variety of

soils. Science Society of America Journal, 42, 899–902. doi:

10.2136/sssaj1978.03615995004200060013x

Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing

technologies for environmental DNA research. Molecular Ecology, 21, 1794–1805. doi:

10.1111/j.1365-294X.2012.05538.x

Sick, H. (2001). Ornitologia brasileira. Nova Fronteira, Rio de Janeiro

Sponchiado, M. (2008). Efeito da macrófita aquática Luziola peruviana Juss. Ex Gmel em

açude e seu controle pela carpa capim (Ctenopharyngodon idella). Thesis, UFRGS,

Porto Alegre

Sponchiado, M., & Schwarzbold, A. (2009). Control of the aquatic macrophyte Luziola

peruviana Juss. ex Gmel by grass carp (Ctenopharyngodon idella Valenciennes, 1844)

grazing. Acta Limnologica Brasileira, 21, 193–197.

Sponheimer, M., Robinson, T., Ayliffe, L. Passey, B., Roeder, B., Shipley, L., Lopes, E.,... &

Ehleringer, J. (2003). An experimental study of carbon-isotope fractionation between

diet, hair, and feces of mammalian herbivores. Canadian Journal of Zoology, 81, 871–

876. doi: 10.1139/Z03-066

65

Staden., R. (1996). The staden sequence analysis package. Molecular Biotechnology, 5, 233–

241.

Steele, K.W., & Daniel, R.M. (1978). Fractionation of nitrogen isotopes by animals – a

further complication to use of variations in natural abundance of N-15 for tracer studies.

Journal of Agricultural Science, 90, 7–9. doi: 10.1017/S002185960004853X

Steward, D. R. M. (1967). Analysis of plant epidermis in faeces: a technique for studying the

food preferences of grazing herbivores. Journal of Applied Ecology, 4, 83–111.

doi: 10.2307/2401411

Sullins, D. S., Haukos, D. A., Craine, J. M., Lautenback, J. M., Robinson, S. G., Lautenback,

... Fierer, N. (2018). Identifying the diet of a declining prairie grouse using DNA

metabarcosing. Auk, 135, 583–608. doi: 10.1642/AUK-17-199.1

Summers, R. W. (1985). The size and composition of shield-greese populations and their food

consumption on different vegetation types in the Falkland Islands. Journal of Applied

Ecology, 22, 1–17. doi: 10.2307/2403321

Sutoh, M., Obara, Y., & Yonetama, T. (1993). The effects of feeding regimen and dietary

sucrose supplementation on natural abundance of N-15 in some components of ruminal

fluid and plasma of sheep. Journal of Animal Science, 71, 226–231. doi:

10.2527/1993.711226x

Tate, J. A., & Simpson, B. B. (2003). Paraphyly of Tarasa (Malvaceae) and diverse origins of

the polyploid species. Systematic Botany, 28, 723–737. doi: 10.1043/02-64.1

Tagliani, P. R. A. (2011). Ecologia da paisagem da Restinga da Lagoa dos Patos: uma

contribuição para o manejo e conservação da Reserva da Biosfera. In Tagliani P. R. A.

(Ed.), Rio Grande, RS: FURG.

66

Vander Zander, J. M., Clayton, M. K., Moody, E. K., Solomon, C. T., Weidel, B. C. (2015).

Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS ONE,

10, e0116182. doi: 10.1371/journal.pone.0116182

Venter, J. A., & Kalule-Sabiti, M. J. (2016). Diet composition of the large herbivores in

Mkambati Nature Reserve, Eastern Cape, South Africa. African Journal of Wildlife

Research, 46, 49–56. doi: 10.3957/0.56.046.0049

Valentini, A., Pompanon, F., & Taberlet, P. (2009). DNA barcoding for ecologists. Trends in

Ecology & Evolution, 24, 110–117. doi: 10.1016/j.tree.2008.09.011

Wegge, P., Shrestha, A. K., & Stein, R. M. (2006). Dry season diets of sympatric ungulates in

lowland Nepal: competition and facilitation in aluvial tall grasslands. Ecological

Research, 21, 698–706. doi: 10.1007/s11284-006-0177-7

Zotta, A. (1932). Notas sobre el contenido estomacal de algunas aves. Hornero, 5, 77–81.

67

Tables and figures

Table 1. Contribution of plants in the diet of southern screamer, cattle and sheep in the coastal plain of southern Brazil, as determined from microhistological analysis

Southern Screamer (faeces n = 32) Cattle (faeces n = 16) Sheep (faeces n = 16)

Food itens FO% PN% PA% %PSIRI FO% PN% PA% %PSIRI FO% PN% PA% %PSIRI Monocotyledoneae Agrostis montevidensis Spreng. 12.5 2.26 4.64 0.43 18.8 1.33 1.21 0.23 Calamagrostis sp. 2.94 0.27 0.57 6.25 0.24 0.27 0.02 6.25 0.4 0.52 0.02 Cynodon dactylon (L.) Pers. 37.5 6.38 7.02 2.51 31.3 1.05 1.34 0.37 Echinocloa polystachia (Kunt) Hitchc. 8.82 1.61 7.36 0.39 50.0 1.29 1.65 0.73 25 5.13 5.14 1.28 Eleocharis sp. 58.82 3.26 7.13 3.05 93.75 32.90 33.35 31.06 100 35.67 35.40 35.53 Eragrostis sp. 2.94 0.6 0.35 Leersia hexandra Sw. 5.88 4.34 10.1 0.42 56.25 15.69 10.36 7.33 56.3 12.85 11.25 6.77 Lolium perenne 2.94 0.18 0.05 6.25 2.47 2.47 0.15 Luziola peruviana Juss. Ex J.F.Gmel. 43.75 33.05 30.73 13.95 43.8 16.06 13.43 6.45 Oryza sp. 18.75 51.47 51.23 9.62 Panicum sp. 11.76 1.12 7.03 0.48 18.75 0.78 1.09 0.17 12.5 1.06 1.15 0.13 Paspalidium paludivagum (Hitchc. & 2.94 1.21 1.06 0.03 12.5 3.27 1.65 0.30 25 1.17 1.55 0.34 Chase) Parodi

68

Paspalum distichum L. 12.5 3.35 3.60 0.43 12.5 11.86 12.45 1.51 Paspalum vaginatum Sw. 18.75 2.05 1.81 0.36 25 5.87 6.42 2.30 Paspalum sp. 75 6.11 7.34 5.04 43.8 5.91 6.26 2.66 Polypogon chilensis (Kunth) Pilg. 2.94 1.21 7.27 0.12 12.5 0.45 0.84 0.08 18.8 3.54 4.06 0.71 Setaria geniculata (Lam.) P.Beanv. 2.94 0.55 1.10 0.02 12.5 2.27 1.92 0.26 Cyperaceae 26.47 2.06 4.51 0.87 68.75 1.16 1.31 0.85 62.5 7.42 7.71 4.73 Poaceae 85.29 10.27 17.17 11.7 100 21.38 21.61 21.50 100 31.29 31.80 31.55 Unidentified Monocotyledoneae 26.47 1.30 1.84 0.41 18.75 2.92 2.84 0.5 31.3 4.29 3.51 1.22 Eudicotyledoneae Ambrosia tenuifolia Spreng. 11.76 1.1 9.79 0.6 12.5 2.26 4.64 0.43 Ecripta prostata (L.) L 2.94 Eichornia sp. 14.7 24.31 53.61 5.73 6.25 0.31 0.21 0.01 Phyla nodiflora (L.) Greene. 23.53 2.44 11.94 1.69 6.25 0.11 0.08 18.75 3.36 2.23 0.52 Salpichroa sp. 5.88 0.90 4.32 0.15 Solanum sp. 6.25 9.0 5.0 0.4 12.5 8.35 8.22 1.03 Trifolium repens L. 52.94 30.46 53.0 22.09 6.25 0.31 0.25 0.01 6.25 5.15 4.53 0.30 Solanaceae 2.94 0.15 0.84 6.25 0.57 0.36 0.08 Unidentified Eudicotyledoneae 97.06 67.99 40.20 52.5 62.5 5.41 4.62 3.1 75 1.40 1.34 1.03

69

Table 2. Plant species that composed the reference database used in Blast searches performed in the metabarcoding analysis. All these species are encountered in areas where the herbivores (southern screamer, sheep and cattle) were sampled in coastal plains of southern Brazil Family Plant species Araliaceae Hydrocotyle bonariensis Araliaceae Lilaeopsis sp. Asteraceae Bacharis trimera Campanulaceae Lobelia hederaceae Cyperaceae Eleocharis sp. Fabaceae Desmodium sp. Fabaceae Trifolium repens Fabaceae Trifolium polymorphum Plantaginaceae Plantago sp. Poaceae Calamagrostis sp. Poaceae Cynodon dactylon Poaceae Luziola peruviana Poaceae Leersia hexandra Poaceae Lolium perene Poaceae Paspalum sp. Poaceae Polygonum sp. Pontederiaceae Eichornia sp.

70

Table 3. Main families identified in faecal samples of southern screamer, cattle and sheep in the coastal plain of southern Brazil, and their respective Relative Read Abundance (RRA), as determined through metabarcoding analysis

Read identification Relative Read Abundance per family

Family Main species identified Southern screamer Sheep Cattle (n = 19) (n = 12) (n = 8) Araliaceae Hydrocotyle bonariensis 9.10 Asteraceae Conyza sp. 8.52 1.96 32.37 Enydra sp. Azollaceae Azolla sp. 3.19 Boraginaceae Heliotropium sp. 1.87 2.38 Caryophylaceae Stellaria media 3.07 1.94 Fabaceae Trifolium repens 13.10 5.86 12.47 Trifolium polymorphum Onagraceae Ludwigia grandiflora 10.67 54.97 14.48 Plantaginaceae Plantago sp. 5.01 Poaceae Lolium perenne 33.27 4.41 17.35 Luziola peruviana Polygonaceae Polygonum sp. 4.49 1.55 Verbenaceae Phyla nodiflora 23.82 11.80 Others 7.71 4.66 9.98

71

Table 4. Isotopic values of blood and faeces from southern screamer, cattle and sheep, and their potential food items as detected through SIA for samples collected in the coastal plain of southern Brazil Consumers Sample δ13C δ15N Cattle Blood (n = 43) -18.36 ± 0.87 7.76 ± 0.7 Faeces (n = 15) -21.87 ± 2.41 5.66 ± 1.43 Southern Screamer Blood (n = 49) -26.87 ± 0.96 6.97 ± 1.61 Faeces (n = 41) -28.09 ± 1.56 5.11 ± 1.86 Sheep Blood (n = 19) -20.48 ± 1.51 9.02 ± 0.56 Faeces (n = 19) -22.31 ± 2.26 5.36 ± 0.83 Food itens Aquatic plants Leaf (n = 2) -28.55 ± 0.08 7.81 ± 2.33 Eichornia crassipes Hydrocotyle bonariensis C3 Grass Leaf (n = 4) -29.17 ± 0.51 5.37 ± 2.09 Luziola peruviana Lobelia hederacea Calamagrostis sp. Leersia sp. C4 Grass Leaf (n = 2) -13.55 ± 0.45 7.97 ± 3.32 Paspalum sp. Cynodon dactylon Legume Leaf (n = 2) -30.03 ± 0.46 -0.81 ± 0.80 Trifolium repens Trifolium polymorphum Sedges Leaf (n = 3) -29.74 ± 0.41 7.81 ± 1.81 Eleocharis sp. 1 Eleocharis sp. 2 Eleocharis sp. 3

72

Table 5. Values of Morisita-Horn index (CH) in the diet of southern screamer, sheep and cattle in southern Brazil infered for each pair of herbivores based on microhistological quantification (lower diagonal) and metabarcoding reads (upper diagonal)

Southern screamer Sheep Cattle Southern screamer 0.21 0.10 Sheep 0.02 0.25 Cattle 0.04 0.93

73

Table 6. Standard Ellipse Area for small sample sizes (SEAc), overlap area (‰2) and the proportion (%) of overlap between southern screamer, sheep and cattle, as mensured from stable isotopes values of blood and faecal samples in southern Brazil Species Tissue SEAc Herbivore 1 (Herb1) Herbivore 2 (Herb2) Overlap area (‰2) % Herb1 area % Herb2 area Southern screamer (Ctor) Blood 5.05 Ctor Oari 0 0 0 Sheep (Oari) Blood 1.93 Ctor Btau 0 0 0 Cattle (Btau) Blood 2.85 Oari Btau 5.13 44.18 29.98 Southern screamer (Ctor) Faeces 10.45 Ctor Oari 14.50 23.15 32.05 Sheep (Oari) Faeces 7.55 Ctor Btau 8.66 13.85 13.65 Cattle (Btau) Faeces 10.59 Oari Btau 38.58 85.27 60.81

74

Fig. 1 Contribution of resources by functional plant group in the diet of southern screamer, sheep and cattle in southern Brazil. (A) Frequency of ocurrence (%) inferred from microhistological analysis. (B) Relative Read Abundance (%) based on metabarcoding data

75

Fig. 2 Contribution of families of plants in the diet of southern screamer, sheep and cattle in southern Brazil. (A) Prey-specific Index of Relative Importance (%PSIRI) infered from microhistological analysis. (B) Relative Read Abundance (RRA) based on metabarcoding data

76

Fig. 3 Values of δ15N and δ13C (‰) in blood of southern screamer, sheep and cattle (empty symbols) and potential plant items (full symbols) (a, c, e), and the respective contribution estimated in diet (b, d, f) for each herbivore in southern Brazil. The intervals of credibility of 95% (lines) and 50% (colored symbols) were used for stable isotope mixing models in simmr package

77

Fig. 4 Differences in values of carbon (δ13C, ‰ ) infered in the same faecal samples analyzed for microhistological and metabarcoding inferences for southern screamer, sheep and cattle in southern Brazil

78

Fig. 5 Isotopic niche of non-native herbivores (cattle and sheep), and the native southern screamer bird, based on samples, represented in delta (δ) space, based on 95% Standard Ellipse Area for small sample sizes (SEAc) elipses values modeled using Stable Isotope Bayesian Ellipses in R (SIBER). (A) Isotopic niche based in blood values from herbivores. (B) Isotopic niche based in faecal values from herbivores

79

CONSIDERAÇÕES FINAIS E PERSPECTIVAS

No presente estudo, a dieta e o uso de recursos pela ave herbívora nativa e os animais domesticadas foram avaliados por técnicas complementares, de modo a inferir sobre possíveis conflitos gerados pelo compartilhamento de ambientes entre esses herbívoros nativos e não- nativos. A identificação dos recursos alimentares utilizados foi realizada pela análise microhistológica e pela técnica de análise molecular metabarcoding. Além disso, as fezes foram analisadas isotopicamente de modo a inferir sobre o hábito utilizado pelos animais na mesma escala temporal das outras técnicas. A inferência isotópica também foi aplicada em amostras de sangue coletadas, de modo a determinar o uso de recursos ao longo do período deste estudo e inferir sobre diferenças no uso de recursos entre estações. A sobreposição isotópica entre a ave nativa e os gado bovino e ovino não foi encontrada, enquanto que o gado bovino e ovino teve uma sobreposição limitada conforme sugerido pela hipótese inicial. Este resultado ocorreu porque a ave nativa utilizou predominantemente plantas do ciclo C3 na síntese do sangue, enquanto para o gado bovino e ovino tiveram valores próximos aos de plantas C4. Além disso, os métodos de identificação e quantificação da dieta, ou seja, microhistologia e metabarcoding, indicaram alg um grau de sobreposição trófica, ou seja, diversos itens em comum entre o gado bovino e ovino, como gramíneas e ciperáceas. A associação de metodologias permitiu ainda compreender melhor as limitações de cada técnica. Na microhistologia, alguns fragmentos encontrados não permitiram a identificação refinada dos itens encontrados na dieta. Neste âmbito, o uso do metabarcoding foi o responsável pela identificação da maioria das Poaceae de grande ingestão pela ave nativa. Por outro lado, o marcador molecular que melhor amplificou nos testes para o banco de dados moleculares das plantas teve baixa capacidade de amplificação de plantas como Cyperaceae, resultando em identificação e quantificação precárias deste grupo através de métodos moleculares. Apesar do alto custo da aplicação da técnica molecular e de algumas falhas expostas aqui, a técnica foi importante na determinação dos itens e tem potencial para revelar o uso de recursos na dieta não encontrados por métodos convencionais. Como perspectivas, a análise da dieta entre as distintas estações do ano, aplicada em anos consecutivos, pode auxiliar na compreensão do uso de recursos e sobreposição entre os herbívoros. Além disso, estudos que avaliem a biomassa utilizada por cada herbívoro podem complementar a avaliação da dieta pelos métodos utilizados no presente estudo e ampliar o entendimento sobre a relação entre herbívoros nativos e não nativos.

80

Anexos

81