Spastic Paraplegia and OXPHOS Impairment Caused by Mutations in Paraplegin, a Nuclear-Encoded Mitochondrial Metalloprotease

Total Page:16

File Type:pdf, Size:1020Kb

Spastic Paraplegia and OXPHOS Impairment Caused by Mutations in Paraplegin, a Nuclear-Encoded Mitochondrial Metalloprotease Cell, Vol. 93, 973±983, June 12, 1998, Copyright 1998 by Cell Press Spastic Paraplegia and OXPHOS Impairment CausedbyMutationsinParaplegin, a Nuclear-Encoded Mitochondrial Metalloprotease Giorgio Casari,1 Maurizio De Fusco,1 Sonia Ciarmatori,1 is a genetically heterogeneous group of neurodegenera- Massimo Zeviani,2 Marina Mora,2 Patricio Fernandez,2,8 tive disorders affecting approximately 1 in 10,000 indi- Giuseppe De Michele,3 Alessandro Filla,3 viduals (Filla et al., 1992; Polo et al., 1993). Patients with Sergio Cocozza,4 Roberto Marconi,5 Alexandre DuÈ rr,6 HSP typically show leg stiffness and gait disturbance, Bertrand Fontaine,6 and Andrea Ballabio1,7,9 decreased perception of sharp stimulation, and dimin- 1 Telethon Institute of Genetics and Medicine (TIGEM) ished vibratory sense in the distal lower limbs. Both the 2 National Neurologic Institute ªC. Bestaº age of onset and severity of the symptoms are highly 20132 Milan variable even among individuals from the same family Italy (Harding, 1981; DuÈ rr et al., 1994). 3 Department of Neurology In addition to the above-described clinical spectrum, 4 Department of Molecular and Cellular Biology which is typical of the ªpureº form of HSP, several pa- Pathology and CEOS-CNR tients have been shown to have ªcomplicatedº forms of Federico II University HSP characterized by the presence of additional neuro- 80136 Naples logical and nonneurological symptoms such as mental Italy retardation, peripheral neuropathy, amyotrophy, ataxia, 5 Department of Neurology retinitis pigmentosa, optic atrophy, deafness, and ich- Misericordia Hospital thyosis (Bonneau et al., 1993; Gigli et al., 1993; Lizcano- 58100 Grosseto Gil et al., 1997; Webb et al., 1997). Albeit some of these Italy forms have been found to segregate in families, it is still 6 Federation de Neurologie and INSERM unclear whether complicated forms of HSP represent Hopital de la Salpetriere distinct genetic entities or variant presentations of pure 75013 Paris HSP. However, even in pure forms of HSP (i.e., with clin- France ical features limited to the lower segments), a broader 7 Universita' Vita Salute subclinical involvement of the nervous system has been San Raffaele Biomedical Science Park demonstrated (Tedeschi et al., 1991; DuÈ rr et al., 1994). 20132 Milan Currently, no specific treatment is available to prevent, Italy cure, or delay progression of symptoms of HSP. 8 Children's Hospital ªBambino GesuÁ º Little is known about the pathogenesis of HSP. Elec- 00165 Rome trophysiologic (Pelosi et al., 1991; Schady et al., 1991) Italy and pathologic (Rhein, 1914; Sutherland, 1975) findings point to the corticospinal tracts, dorsal columns, and, to a lesser extent, the spinocerebellar fibers as the struc- Summary tures primarily affected by HSP. These represent the longest axons of the central nervous system. Interest- Hereditary spastic paraplegia (HSP) is characterized ingly, degeneration occurs only in the distal portion of by progressive weakness and spasticity of the lower these structures, while sparing the neuronal cell bodies limbs due to degeneration of corticospinal axons. We (i.e., pyramidal neurons and sensory neurons of the found that patients from a chromosome 16q24.3± dorsal root ganglia) of degenerating fibers. Peripheral linked HSP family are homozygous for a 9.5 kb dele- nerves are also normal and there are no signs of demye- tion involving a gene encoding a novel protein, named Paraplegin. Two additional Paraplegin mutations, both linization (Fink, 1997; Harding, 1981; Reid, 1997). resulting in a frameshift, were found in a complicated Autosomal dominant, autosomal recessive, and X-linked and in a pure form of HSP. Paraplegin is highly homolo- forms of HSP have been described, indicating genetic gous to the yeast mitochondrial ATPases, AFG3, heterogeneity (Harding, 1981; Fink, 1997; Reid, 1997). RCA1, and YME1, which have both proteolytic and Linkage studies identified three loci for autosomal domi- chaperon-like activities at the inner mitochondrial nant forms, SPG3 (Hazan et al., 1993), SPG4 (Hazan et membrane. Immunofluorescence analysis and import al., 1994), and SPG6 (Fink et al., 1995), on chromosomes experiments showed that Paraplegin localizes to mito- 14q, 2p, and 15q, respectively. One locus, SPG5 (Hentati chondria. Analysis of muscle biopsies from two pa- et al., 1994), involved in autosomal recessive HSP has tients carrying Paraplegin mutations showed typical been mapped to chromosome 8q. The study of families signs of mitochondrial OXPHOS defects, thus sug- in which mapping to any of these loci has been excluded gesting a mechanism for neurodegeneration in HSP- indicates the presence of additional loci for autosomal type disorders. recessive HSP (Hentati et al., 1994). Two distinct forms of HSP, SPG1 and SPG2, have been assigned to the X Introduction chromosome and found to be due to mutations in the L1CAM and PLP genes located on Xq28 (Jouet et al., Progressive weakness and spasticity of the lower limbs 1994) and Xq22 (Saugier-Veber et al., 1994), respec- are the clinical hallmarks of hereditary spastic paraple- tively. With the exception of these two forms, in which gia (HSP) (Harding, 1981; Fink, 1997; Reid, 1997). This spastic paraplegia is part of the clinical spectrum of complex neurological syndromes such as Pelizaeus- 9 To whom correspondence should be addressed. Merzbacher and MASA syndromes, no genes involved Cell 974 Figure 1. Homozygous Deletion Identified in Patients from a Consanguineous Italian Fam- ily with Autosomal Recessive HSP (A) PCR analysis using primers c1-c2 on HSP family 1; DNA from affected individuals failed to amplify. One affected and two healthy members were not available for the analysis and were withdrawn from the pedigree struc- ture. M,100 bp DNA molecular weight marker. (B) Southern blot analysis of a control (C) and patient 10 (pt10) DNA probed with the 1.1 kb insert of EST clone 154386. in HSP have yet been identified. The cloning of HSP genes. One of these genes, CMAR (cell adhesion mole- genes is a critical step in understanding the pathoge- cule regulator; GenBank accession number S54769), netic mechanisms underlying this group of disorders. was originally reported as a 459 bp partially character- Recently, we mapped the locus of a new form of pure ized transcript colinear with genomic DNA and found to autosomal recessive HSP to 16q24.3 (SPG7) (De Michele be involved in the suppression of tumor invasion (Pullman et al., 1998). A 9.5 kb deletion involving a previously and Bodmer, 1992). A set of PCR primers, c1 and c2, identified partial transcript from 16qter was discovered were designed from the original open reading frame in all affected individuals from a 16q24.3-linked family. sequence (Pullman and Bodmer, 1992) and tested on In addition, two frameshift mutations, both generating all individuals from our HSP family. As shown in Figure truncated forms of the protein, were found in a French 1A, the five affected individuals failed to amplify, while family with a complicated form of HSP and in another healthy sibs and parents yielded the expected PCR Italian family with pure HSP. BLAST analysis revealed product. This result was replicated with a different set that this gene encodes a novel protein, which we named of primers, c3 and c4, from the same transcript (data Paraplegin, highly homologous to a subclass of yeast not shown). Consequently, a homozygous deletion mitochondrial metalloproteases. Immunofluorescence spanning this gene was hypothesized, consistent with analysis in transfected COS-7 cells and mitochondrial the finding of a homozygous haplotype for 16qter mark- import in vitro experiments showed a specific mitochon- ers displayed by the affected individuals (De Michele et drial sublocalization. Analysis of muscle biopsy speci- al., 1998). mens from two HSP patients carrying Paraplegin muta- Several ESTs identical to the reported CMAR se- tions showed the presence of typical signs of OXPHOS quence were found in dbEST, allowing us to build a impairment. 1.1 kb cDNA contig and extending the original 459 bp These data demonstrate an abnormality in a nuclear- sequence toward the 59 end. We selected a few clones, encoded mitochondrial protein and the presence of mi- namely, 154385, 154386 and 31543, which were rese- tochondrial OXPHOS defects in HSP, revealing the pres- quenced either partially or completely (clone 154386), confirming the sequence data reported in dbEST. The ence of an impairment of mitochondrial function in this entire 1.1 kb insert fragment of EST clone 154386 was class of progressive neurodegenerative disorders. used as a probe on an EcoRI-restricted Southern blot containing DNA from one patient and a control. Figure Results 1B shows the absence of a 5.6 kb EcoRI band in the patient DNA, thus confirming the presence of a homozy- A 9.5 kb Deletion of Chromosome 16q24.3 in HSP gous deletion. Recently, we described a large consanguineous Italian To determine the extent of the 16q24.3 deletion in family affected by autosomal recessive HSP (family 1). HSP patients, an arrayed human genomic PAC library Patients from this family showed typical features of the (Ioannou and de Jong, 1996) was probed with PCR frag- pure form of HSP, with age of onset ranging from 25 to ments c1-c2 and c3-c4, spanning from nucleotide 2881 42 and a slow progression of symptoms. A genome- to 3016 and from 2524 to 2856 of the cDNA sequence, wide search using a panel of 358 highly polymorphic respectively. One positive clone, 1194G18, was identi- microsatellite markers showed linkage of the disease fied by hybridization screening and confirmed by c1-c2 locus in this family to markers on chromosome 16q24.3 and c3-c4 PCR amplification. Alu-vector-specific PCR in a region spanning approximately 6 cM from D16S3048 primers (see Experimental Procedures) allowed us to to the telomere (De Michele et al., 1998). This region sequence the ends of the human genomic PAC insert included several human ESTs as well as some known and design two sets of primers at each end of the PAC Mitochondrial Metalloprotease Mutations in HSP 975 Figure 2.
Recommended publications
  • Identification of the Drosophila Melanogaster Homolog of the Human Spastin Gene
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Dev Genes Evol (2003) 213:412–415 DOI 10.1007/s00427-003-0340-x EXPRESSION NOTE Lars Kammermeier · Jrg Spring · Michael Stierwald · Jean-Marc Burgunder · Heinrich Reichert Identification of the Drosophila melanogaster homolog of the human spastin gene Received: 14 April 2003 / Accepted: 5 May 2003 / Published online: 5 June 2003 Springer-Verlag 2003 Abstract The human SPG4 locus encodes the spastin gene encoding spastin. This gene is expressed ubiqui- gene, which is responsible for the most prevalent form tously in fetal and adult human tissues (Hazan et al. of autosomal dominant hereditary spastic paraplegia 1999). The highest expression levels are found in the (AD-HSP), a neurodegenerative disorder. Here we iden- brain, with selective expression in the cortex and striatum. tify the predicted gene product CG5977 as the Drosophila In the spinal cord, spastin is expressed exclusively in homolog of the human spastin gene, with much higher nuclei of motor neurons, suggesting that the strong sequence similarities than any other related AAA domain neurodegenerative defects observed in patients are caused protein in the fly. Furthermore we report a new potential by a primary defect of spastin in neurons (Charvin et al. transmembrane domain in the N-terminus of the two 2003). The human spastin gene encodes a predicted 616- homologous proteins. During embryogenesis, the expres- amino-acid long protein and is a member of the large sion pattern of Drosophila spastin becomes restricted family of proteins with an AAA domain (ATPases primarily to the central nervous system, in contrast to the Associated with diverse cellular Activities).
    [Show full text]
  • Pathogenic Variants in the AFG3L2 Proteolytic Domain Cause SCA28
    Neurogenetics J Med Genet: first published as 10.1136/jmedgenet-2018-105766 on 25 March 2019. Downloaded from ORIGINAL ARTICLE Pathogenic variants in the AFG3L2 proteolytic domain cause SCA28 through haploinsufficiency and proteostatic stress-driven OMA1 activation Susanna, Tulli 1 Andrea Del Bondio,1 Valentina Baderna,1 Davide Mazza,2 Franca Codazzi,3,4 Tyler Mark Pierson,5 Alessandro Ambrosi,3 Dagmar Nolte,6 Cyril Goizet,7,8 ,Camilo Toro 9 Jonathan Baets,10,11 Tine Deconinck,10,11 Peter DeJonghe,10,11 Paola Mandich,12 Giorgio Casari,3,13 Francesca Maltecca 1,3 ► Additional material is ABSTRact wustl. edu/ ataxia/domatax. html), SCA type 28 published online only. To view Background Spinocerebellar ataxia type 28 (SCA28) (SCA28; MIM #610246) is the only one caused please visit the journal online is a dominantly inherited neurodegenerative disease by pathogenic variants in a resident mitochondrial (http:// dx. doi. org/ 10. 1136/ 1 jmedgenet- 2018- 105766). caused by pathogenic variants in AFG3L2. The AFG3L2 protein, AFG3L2. The clinical spectrum of SCA28 protein is a subunit of mitochondrial m-AAA complexes comprises slowly progressive gait and limb ataxia, For numbered affiliations see involved in protein quality control. Objective of this study and oculomotor abnormalities (eg, ophthalmopa- end of article. was to determine the molecular mechanisms of SCA28, resis and ptosis) as typical signs.2 which has eluded characterisation to date. AFG3L2 belongs to the AAA-protease subfamily Correspondence to Dr Francesca Maltecca, Division Methods
    [Show full text]
  • Life Without Paraplegin
    Synapses and Sisyphus: life without paraplegin Harris A. Gelbard J Clin Invest. 2004;113(2):185-187. https://doi.org/10.1172/JCI20783. Commentary The family of neurodegenerative diseases known as hereditary spastic parapareses have diverse genetic loci, yet there is a remarkable convergence in the neuropathologic and neurologic phenotype. A report describing the construction of a transgenic mouse with a deletion of a nuclear-encoded mitochondrial protein involved in the regulation of oxidative phosphorylation suggests that this family of diseases may reflect activation of a final common pathway involving synaptic dysfunction that progresses to destruction of the presynaptic nerve terminal and axon . Find the latest version: https://jci.me/20783/pdf Synapses and Sisyphus: defective, with a resultant decrease in mitochondrial complex I activity and life without paraplegin increased sensitivity to oxidant stress. Exogenous expression of wild-type Harris A. Gelbard paraplegin ameliorated both of these deficits. Finally, these investigators Departments of Neurology, Pediatrics, and Microbiology and Immunology; used yeast-complementation studies and the Center for Aging and Developmental Biology; to demonstrate that the paraplegin- University of Rochester Medical Center, Rochester, New York, USA AFG3L2 complex is functionally con- served with the yeast matrix-ATPase– The family of neurodegenerative diseases known as hereditary spastic associated activities protease, suggest- parapareses have diverse genetic loci, yet there is a remarkable conver- ing that this complex possesses prote- gence in the neuropathologic and neurologic phenotype. A report olytic activity. describing the construction of a transgenic mouse with a deletion of a nuclear-encoded mitochondrial protein involved in the regulation of The neuropathology of Spg7–/– mice oxidative phosphorylation suggests that this family of diseases may The Spg7–/– mice created by Ferreirin- reflect activation of a final common pathway involving synaptic dys- ha et al.
    [Show full text]
  • Hereditary Spastic Paraparesis: a Review of New Developments
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.69.2.150 on 1 August 2000. Downloaded from 150 J Neurol Neurosurg Psychiatry 2000;69:150–160 REVIEW Hereditary spastic paraparesis: a review of new developments CJ McDermott, K White, K Bushby, PJ Shaw Hereditary spastic paraparesis (HSP) or the reditary spastic paraparesis will no doubt Strümpell-Lorrain syndrome is the name given provide a more useful and relevant classifi- to a heterogeneous group of inherited disorders cation. in which the main clinical feature is progressive lower limb spasticity. Before the advent of Epidemiology molecular genetic studies into these disorders, The prevalence of HSP varies in diVerent several classifications had been proposed, studies. Such variation is probably due to a based on the mode of inheritance, the age of combination of diVering diagnostic criteria, onset of symptoms, and the presence or other- variable epidemiological methodology, and wise of additional clinical features. Families geographical factors. Some studies in which with autosomal dominant, autosomal recessive, similar criteria and methods were employed and X-linked inheritance have been described. found the prevalance of HSP/100 000 to be 2.7 in Molise Italy, 4.3 in Valle d’Aosta Italy, and 10–12 Historical aspects 2.0 in Portugal. These studies employed the In 1880 Strümpell published what is consid- diagnostic criteria suggested by Harding and ered to be the first clear description of HSP.He utilised all health institutions and various reported a family in which two brothers were health care professionals in ascertaining cases aVected by spastic paraplegia. The father was from the specific region.
    [Show full text]
  • Emerging Roles of Mitochondrial Proteases in Neurodegeneration
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1797 (2010) 1–10 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Review Emerging roles of mitochondrial proteases in neurodegeneration Paola Martinelli a, Elena I. Rugarli a,b,⁎ a Laboratory of Genetic and Molecular Pathology, Istituto Neurologico “C. Besta”, Milan, Italy b Department of Neuroscience and Medical Biotechnologies, University of Milano-Bicocca, Milan, Italy article info abstract Article history: Fine tuning of integrated mitochondrial functions is essential in neurons and rationalizes why mitochondrial Received 9 June 2009 dysfunction plays an important pathogenic role in neurodegeneration. Mitochondria can contribute to Received in revised form 28 July 2009 neuronal cell death and axonal dysfunction through a plethora of mechanisms, including low ATP levels, Accepted 28 July 2009 increased reactive oxygen species, defective calcium regulation, and impairment of dynamics and transport. Available online 5 August 2009 Recently, mitochondrial proteases in the inner mitochondrial membrane have emerged as culprits in several human neurodegenerative diseases. Mitochondrial proteases degrade misfolded and non-assembled Keywords: Mitochondrial proteases polypeptides, thus performing quality control surveillance in the organelle. Moreover, they regulate the Paraplegin activity of specific substrates by mediating essential processing steps. Mitochondrial proteases may be AFG3L2 directly involved in neurodegenerative diseases, as recently shown for the m-AAA protease, or may regulate Neuronal and axonal degeneration crucial mitochondrial molecules, such as OPA1, which in turn is implicated in human disease. The Hereditary spastic paraplegia mitochondrial proteases HTRA2 and PARL increase the susceptibility of neurons to apoptotic cell death.
    [Show full text]
  • Spastic Paraplegia Type 7
    Spastic paraplegia type 7 Description Spastic paraplegia type 7 (also called SPG7) is one of more than 80 genetic disorders known as hereditary spastic paraplegias. These disorders primarily affect the brain and spinal cord (central nervous system),specifically nerve cells (neurons) that extend down the spinal cord. These neurons are used for muscle movement and sensation.Signs and symptoms of hereditary spastic paraplegias are characterized by progressive muscle stiffness (spasticity) in the legs and difficulty walking. Hereditary spastic paraplegias are divided into two types: pure and complex. The pure types generally involve only spasticity of the lower limbs and walking difficulties. The complex types involve more widespread problems with the nervous system; the structure or functioning of the brain; and the nerves connecting the brain and spinal cord to muscles and sensory cells that detect sensations such as touch, pain, heat, and sound (the peripheral nervous system). In complex forms, there can also be features outside of the nervous system. Spastic paraplegia type 7 can occur in either the pure or complex form. Like all hereditary spastic paraplegias, spastic paraplegia type 7 involves spasticity of the leg muscles and some muscle weakness. People with this form of spastic paraplegia can also have ataxia; a pattern of movement abnormalities known as parkinsonism; exaggerated reflexes (hyperreflexia) in the arms; speech difficulties ( dysarthria); difficulty swallowing (dysphagia); involuntary movements of the eyes ( nystagmus); mild hearing loss; abnormal curvature of the spine (scoliosis); high-arched feet (pes cavus); numbness, tingling, or pain in the arms and legs (sensory neuropathy); disturbance in the nerves used for muscle movement (motor neuropathy); and muscle wasting (amyotrophy).
    [Show full text]
  • Hereditary Spastic Paraplegias
    Hereditary Spastic Paraplegias Authors: Doctors Enza Maria Valente1 and Marco Seri2 Creation date: January 2003 Update: April 2004 Scientific Editor: Doctor Franco Taroni 1Neurogenetics Istituto CSS Mendel, Viale Regina Margherita 261, 00198 Roma, Italy. e.valente@css- mendel.it 2Dipartimento di Medicina Interna, Cardioangiologia ed Epatologia, Università degli studi di Bologna, Laboratorio di Genetica Medica, Policlinico S.Orsola-Malpighi, Via Massarenti 9, 40138 Bologna, Italy.mailto:[email protected] Abstract Keywords Disease name and synonyms Definition Classification Differential diagnosis Prevalence Clinical description Management including treatment Diagnostic methods Etiology Genetic counseling Antenatal diagnosis References Abstract Hereditary spastic paraplegias (HSP) comprise a genetically and clinically heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and hyperreflexia of the lower limbs. Clinically, HSPs can be divided into two main groups: pure and complex forms. Pure HSPs are characterized by slowly progressive lower extremity spasticity and weakness, often associated with hypertonic urinary disturbances, mild reduction of lower extremity vibration sense, and, occasionally, of joint position sensation. Complex HSP forms are characterized by the presence of additional neurological or non-neurological features. Pure HSP is estimated to affect 9.6 individuals in 100.000. HSP may be inherited as an autosomal dominant, autosomal recessive or X-linked recessive trait, and multiple recessive and dominant forms exist. The majority of reported families (70-80%) displays autosomal dominant inheritance, while the remaining cases follow a recessive mode of transmission. To date, 24 different loci responsible for pure and complex HSP have been mapped. Despite the large and increasing number of HSP loci mapped, only 9 autosomal and 2 X-linked genes have been so far identified, and a clear genetic basis for most forms of HSP remains to be elucidated.
    [Show full text]
  • Hereditary Spastic Paraplegia: from Genes, Cells and Networks to Novel Pathways for Drug Discovery
    brain sciences Review Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery Alan Mackay-Sim Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; a.mackay-sim@griffith.edu.au Abstract: Hereditary spastic paraplegia (HSP) is a diverse group of Mendelian genetic disorders affect- ing the upper motor neurons, specifically degeneration of their distal axons in the corticospinal tract. Currently, there are 80 genes or genomic loci (genomic regions for which the causative gene has not been identified) associated with HSP diagnosis. HSP is therefore genetically very heterogeneous. Finding treatments for the HSPs is a daunting task: a rare disease made rarer by so many causative genes and many potential mutations in those genes in individual patients. Personalized medicine through genetic correction may be possible, but impractical as a generalized treatment strategy. The ideal treatments would be small molecules that are effective for people with different causative mutations. This requires identification of disease-associated cell dysfunctions shared across geno- types despite the large number of HSP genes that suggest a wide diversity of molecular and cellular mechanisms. This review highlights the shared dysfunctional phenotypes in patient-derived cells from patients with different causative mutations and uses bioinformatic analyses of the HSP genes to identify novel cell functions as potential targets for future drug treatments for multiple genotypes. Keywords: neurodegeneration; motor neuron disease; spastic paraplegia; endoplasmic reticulum; Citation: Mackay-Sim, A. Hereditary protein-protein interaction network Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sci. 2021, 11, 403.
    [Show full text]
  • Phd PROGRAM in TRANSLATIONAL and MOLECULAR MEDICINE DIMET Functional Analysis of M-AAA Homo- and Heterocomplexes: the Role of Mi
    PhD PROGRAM IN TRANSLATIONAL AND MOLECULAR MEDICINE DIMET Functional analysis of m-AAA homo- and heterocomplexes: the role of mitochondrial protein quality control system in spinocerebellar neurodegeneration Coordinator: Prof. Andrea Biondi Tutor: Dr. Valeria Tiranti Cotutor: Dr. Franco Taroni Dr. Stefania Magri Matr. No. 725279 XXIV CYCLE ACADEMIC YEAR 2010-2011 1 2 3 4 Table of Contents Chapter 1 ........................................................... 13 General introduction ......................................................... 13 Mitochondrial dysfunction and neurodegenerative diseases ................................................................................ 13 Mitochondrial proteases and protein processing .............. 16 Mitochondrial proteases and quality control .................... 18 Matrix .............................................................. 20 Inner membrane ............................................... 20 Intermembrane space ........................................ 21 Outer membrane............................................... 21 Mitochondrial proteases and dynamics ........................... 22 OPA1 ............................................................... 23 PINK ................................................................ 25 AAA proteases ........................................................... 26 AAA+ superfamily .............................................. 26 AAA metalloprotease ......................................... 26 AAA metalloprotease domains ............................
    [Show full text]
  • Axonal Degeneration in Paraplegin-Deficient Mice Is Associated with Abnormal Mitochondria and Impairment of Axonal Transport
    Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport Fatima Ferreirinha, … , Andrea Ballabio, Elena I. Rugarli J Clin Invest. 2004;113(2):231-242. https://doi.org/10.1172/JCI20138. Article Neuroscience In several neurodegenerative diseases, axonal degeneration occurs before neuronal death and contributes significantly to patients’ disability. Hereditary spastic paraplegia (HSP) is a genetically heterogeneous condition characterized by selective degeneration of axons of the corticospinal tracts and fasciculus gracilis. HSP may therefore be considered an exemplary disease to study the local programs mediating axonal degeneration. We have developed a mouse model for autosomal recessive HSP due to mutations in the SPG7 gene encoding the mitochondrial ATPase paraplegin. Paraplegin-deficient mice are affected by a distal axonopathy of spinal and peripheral axons, characterized by axonal swelling and degeneration. We found that mitochondrial morphological abnormalities occurred in synaptic terminals and in distal regions of axons long before the first signs of swelling and degeneration and correlated with onset of motor impairment during a rotarod test. Axonal swellings occur through massive accumulation of organelles and neurofilaments, suggesting impairment of anterograde axonal transport. Retrograde axonal transport is delayed in symptomatic mice. We speculate that local failure of mitochondrial function may affect axonal transport and cause axonal degeneration. Our data
    [Show full text]
  • Hereditary Spastic Paraplegias: Clinical Spectrum in Sudan, Further Deciphering of the Molecular Bases of Autosomal Recessive Forms and New Genes Emerging
    Hereditary spastic paraplegias : clinical spectrum in Sudan, further deciphering of the molecular bases of autosomal recessive forms and new genes emerging Liena Elbaghir Omer Elsayed To cite this version: Liena Elbaghir Omer Elsayed. Hereditary spastic paraplegias : clinical spectrum in Sudan, further deciphering of the molecular bases of autosomal recessive forms and new genes emerging. Neurons and Cognition [q-bio.NC]. Université Pierre et Marie Curie - Paris VI; University of Khartoum, 2016. English. NNT : 2016PA066056. tel-01438739 HAL Id: tel-01438739 https://tel.archives-ouvertes.fr/tel-01438739 Submitted on 18 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie University of Khartoum Cerveau-Cognition-Comportement (ED3C) Institut du Cerveau et de la Moelle Epinière / Equipe Bases Moléculaires, Physiopathologie Et Traitement Des Maladies Neurodégénératives Hereditary spastic paraplegias: clinical spectrum in Sudan, further deciphering of the molecular bases of autosomal recessive forms and new genes emerging
    [Show full text]
  • Defects in Mitochondrial Axonal Transport and Membrane Potential Without Increased Reactive Oxygen Species Production in Adrosop
    The Journal of Neuroscience, August 25, 2010 • 30(34):11369–11378 • 11369 Neurobiology of Disease Defects in Mitochondrial Axonal Transport and Membrane Potential without Increased Reactive Oxygen Species Production in a Drosophila Model of Friedreich Ataxia Yujiro Shidara† and Peter J. Hollenbeck Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 Friedreichataxia,aneurodegenerativedisorderresultingfromfrataxindeficiency,isthoughttoinvolveprogressivecellulardamagefrom oxidative stress. In Drosophila larvae with reduced frataxin expression (DfhIR), we evaluated possible mechanisms of cellular neuropa- thology by quantifying mitochondrial axonal transport, membrane potential (MMP), and reactive oxygen species (ROS) production in the DfhIR versus wild-type nervous system throughout development. Although dying-back neuropathy in DfhIR larvae did not occur until late third instar, reduced MMP was already apparent at second instar in the cell bodies, axons and neuromuscular junctions (NMJs) of segmental nerves. Defects in axonal transport of mitochondria appeared late in development in distal nerve of DfhIR larvae, with retrograde movement preferentially affected. As a result, by late third instar the neuromuscular junctions (NMJs) of DfhIR larvae accumulated a higher density of mitochondria, many of which were depolarized. Notably, increased ROS production was not detected in any neuronal region or developmental stage in DfhIR larvae. However, when challenged with antimycin A, neurons did respond with a larger increase in ROS. We propose that pathology in the frataxin-deficient nervous system involves decreased MMP and ATP production followed by failures of mitochondrial transport and NMJ function. Introduction mechanisms by which mitochondrial disorders cause neuronal The health of neurons depends critically on the movement, dis- dysfunction and death, it will be necessary to evaluate many ele- tribution and function of their mitochondria (Hollenbeck and ments of mitochondrial biology.
    [Show full text]