Formulation of a Rational Option Pricing Model Using Artificial Neural

Total Page:16

File Type:pdf, Size:1020Kb

Formulation of a Rational Option Pricing Model Using Artificial Neural Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202012.0426.v1 Formulation Of A Rational Option Pricing Model using Artificial Neural Networks Kaustubh Yadav School Of Computer Science and Engineering (Vellore Institute Of Technology) Vellore, Tamil Nadu, India [email protected] Abstract—This paper inquires on the options pricing modeling Subsequent approaches in improving on the Black-Scholes using Artificial Neural Networks to price Apple(AAPL) European Model, included modelling volatility as a stochastic process Call Options. Our model is based on the premise that Artificial [2], [4], [5], [6], [3]. Though these modes are an improvement Neural Networks can be used as functional approximators and can be used as an alternative to the numerical methods to some on the Black-Scholes Model in the sense that they use stochas- extent, for a faster and an efficient solution. This paper provides tic volatility to recreate practical conditions, these models a neural network solution for two financial models, the Black- still fail to capture deep out-of-money options. Also with the Scholes-Merton model, and the calibrated-Heston Stochastic introduction of stochastic volatility, there are two stochastic Volatility Model, we evaluate our predictions using the existing processes which increases the computational costs, and these numerical solutions for the same, the analytic solution for the Black-Scholes equation, COS-Model for Heston’s Stochastic models don’t perform exceptionally better than Black-Scholes Volatility Model and Standard Heston-Quasi analytic formula. hence Black-Scholes is still widely used. The research for The aim of this study is to find a viable time-efficient alternative finding a better solution brought non-parametric and semi- to existing quantitative models for option pricing. parametric models to light. These models are essentially Index Terms—Black Scholes Equation, Heston Model Cali- “model-free” and take a tangent from the theory of finance bration, Option Pricing, Stochastic Processes, Artificial Neural and rely explicitly on data. Hence an ANN approach can be Networks. considered as a non-parametric solution. As non-parametric models rely on historical data and statistical approaches they I. INTRODUCTION suffer from poor-generality and as they discard the theory of finance to some extent they cannot be considered as Pricing financial derivatives has always been a very centric an empirical. This paper aims to provide a semi-parametric problem in the field of quantitative finance. Option contracts solution that doesn’t solely rely on historical data but stays have seen tremendous growth after the crisis of 2008 mainly true to the theory of finance and option pricing. because options are considered as leverage and the party II. RELATED WORK possessing can avoid risks of financial volatility by exercising these options. Options contract can also be considered as a A. Quantitative Methods “zero-sum game”, where if the holder of an option is benefited, With the introduction of the Black-Scholes equation, the that directly correlates to the loss of the other party and vice academic research sought to find out new models that relax the versa, this can be considered as an incentive for investing in restrictive assumptions made by the Black-Scholes Model. The an options contract. Pricing of Options took its first leap with first was making the volatility in the model to be a stochastic the works of Black Scholes and Metron in 1973 [1], where process rather than a constant, this implied the replication both studies gave a model that could roughly estimate the of the volatility smile curve as seen in the practical market price of a European Option, yet the Black-Scholes formula conditions, which were introduced through the contributions still remains one of the most used tools for pricing options. of the Heston Model[6]. Other models, also known as Levy Even with the success of the Black-Scholes and Merton Models, used Levy Process to model the volatility instead of model, there were substantial flaws, flaws that make the model a Weiner Process, through which the volatility curve could more theoretical rather than practical. The volatility for the capture the rare jumps in the underlying, these are also called Black-Scholes model was assumed to be constant, which in jump-diffusion models [7], [8], [9]. practicality is impossible, the volatility can itself be considered As mentioned earlier with the increasing complexity of the as a stochastic process, the Black-Scholes model also assumed model, it becomes harder to model the underlying PDE. To that the returns on an asset are normally distributed, which model such PDE, a catalog of numerical methods have been implies that the stock prices follow a Geometrical Brownian used, eg. Spectral Method, Finite Differences, Monte Carlo Motion(GBM) ignoring the large changes in prices [2] which Simulations, Lapace-Carson transform[10], etc. Some models can also be attributed to the models’ inability to price deep including Heston Models have parameters that need to be out-of-money options [3]. tuned with the market data, these calibrations can be done © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202012.0426.v1 either by historical data and or on options that are heavily European Option can only be exercised on the date of expiry. traded. Hence calibration of parameters can be considered Options further are of two types, Call and Put. A call option as a multidimensional optimization process, so as to reduce is a contract that allows the holder to buy the underlying the distance between the market price and the model output. asset at a fixed price point on(European) or before(American) But calibrating over a huge amount of data increases the the expiry. Whereas a put option is a contract that allows complexity and is computationally inefficient, hence many of the holder to sell the underlying asset at a fixed price point the stochastic volatility models are not as mainstream. on(European) or before(American) the expiry. The underlying in an option contract can be stock, bond, commodity, etc but B. Option Pricing And Neural Networks in a generic portfolio, it is usually a stock. Hence options are Artificial Neural Networks are the building blocks of Deep also called Financial Derivatives as their own value depends Learning, introduced in 1943 by McCullouch as a single on an underlying asset. A stock option can be compared to a neuron [11], since then ANN’s have been used in many stock warrant as well, but the key difference is, an option areas such as image classification, recommender systems, etc. is a contract between two investors whereas a warrant is One of the utilities of an ANN is functional approximation a contract between the company that issues stock and the for non-linear equations and PDEs [12], [13]. The premise investor. Another key difference is that the warrants are put behind a functional approximator is that if the model needs to out by the company hence the aggregate amount of warrants approximate a function y = F (x), the feed-forward requires in a market is positive, whereas options exist on an exchange the model inputs to be multiplied with the weights of the hence the aggregate amount of options remains zero [16]. neurons, then the weighted inputs pass through a transfer As the subject of this study is European Call Options, function and finally pass through an activation function, which we shall look into the mathematical formalization of the in turn yields the first approximate, the result is then compared aforementioned statements. Let the price of an underlying(S) with the ground truth, and simultaneously the weights of the be $100 we represent the present day as t = 0 and the expiry model are modified till the difference between the ground of the option be in 10 days(T = 10), hence time to maturity is truth and models’ prediction is minimal. Hence, a functional (τ = T − t = 10). Let the exercise price for the option or the approximation is itself an optimization problem, if the model Strike Price(K) be $120 if the price of the underlying becomes output is represented by y = FANN (x; w), that is as a function $150, the holder has the incentive to exercise the option as he fo weights and the input the optimization can be stated as, can buy the stock for $120 and has an opportunity to sell it at P argminw( i jjF (x) − FANN (xi)jj). a cost of $150, hence making a profit of $40. But if the price This can be applied to Option Pricing as well, by providing of the underlying drops to $80, the holder won’t exercise the appropriate model parameters. Although these methods are call option. Hence the payoff for a call option can be given an example of data-driven approaches in finding a solution, by: they do suffer from loss of generality if the training size isn’t diverse, also being completely data-driven they don’t conform max(0;ST − K) (1) to the empiricals of Option Pricing Theory itself. Even with these flaws, neural networks have on occasion outperformed To quantify the worth of an option, the goal is to find long-standing financial models [14], [15]. the price of the option at t = 0. This can be computed by The aim of this study is to provide an accurate yet time- discounting if we know the price of the underlying at T , Z 1 efficient solution for pricing a European Call Option under 0 −rτ both constant volatility (Black-Scholes) and stochastic volatil- E[C (S; K; τ)] = e max(0;ST − K)f(ST jSt;T )dST 0 ity(Heston’s Method) using ANN’s but enforcing the rational- (2) ity conditions laid out in [16] and [17] for a “rational” option Here C’(.) is the price of an option at t = 0, r is the risk-free pricing model which makes this study novel compared to rate or risk associated with a 3-month government treasury existing models.
Recommended publications
  • Rational Multi-Curve Models with Counterparty-Risk Valuation Adjustments
    Post-Crisis Interest Rate Markets and Models Rational Multi-Curve Models Rational Bilateral Counterparty Risk Model Conclusion Rational Multi-Curve Models with Counterparty-Risk Valuation Adjustments Stéphane Crépey Université d'Evry Val-d'Essonne, Laboratoire de Mathématiques et Modélisation d'Evry (LaMME) Joint work with A. Macrina, T. M. Nguyen and D. Skovmand 7th General AMaMeF and Swissquote Conference EPFL, 7-10 September 2015 The research presented in these slides beneted from the support of the Chair Markets in Transition under the aegis of Louis Bachelier laboratory, a joint initiative of École polytechnique, Université d'Évry Val d'Essonne and Fédération Bancaire Française 1 / 49 Post-Crisis Interest Rate Markets and Models Rational Multi-Curve Models Rational Bilateral Counterparty Risk Model Conclusion Outline 1 Post-Crisis Interest Rate Markets and Models 2 Rational Multi-Curve Models 3 Rational Bilateral Counterparty Risk Model 4 Conclusion 2 / 49 Post-Crisis Interest Rate Markets and Models Rational Multi-Curve Models Rational Bilateral Counterparty Risk Model Conclusion Libor Most interest-rate derivatives have Libor-indexed cash-ows (Libor xings) What is Libor? Libor stands for London InterBank Oered Rate. It is produced for 10 currencies with 15 maturities quoted for each, ranging from overnight to 12 Months producing 150 rates each business day. Libor is computed as a trimmed average of the interbank borrowing rates assembled from the Libor contributing banks. More precisely, every contributing bank has to submit an
    [Show full text]
  • The Fama and French Three-Factor Model and Leverage: Compatibility with the Modigliani and Miller Propositions”
    “The Fama and French three-factor model and leverage: compatibility with the Modigliani and Miller propositions” AUTHORS Michael Dempsey https://orcid.org/0000-0002-9059-0416 Michael Dempsey (2009). The Fama and French three-factor model and ARTICLE INFO leverage: compatibility with the Modigliani and Miller propositions. Investment Management and Financial Innovations, 6(1) RELEASED ON Monday, 16 March 2009 JOURNAL "Investment Management and Financial Innovations" FOUNDER LLC “Consulting Publishing Company “Business Perspectives” NUMBER OF REFERENCES NUMBER OF FIGURES NUMBER OF TABLES 0 0 0 © The author(s) 2021. This publication is an open access article. businessperspectives.org Investment Management and Financial Innovations, Volume 6, Issue 1, 2009 Michael Dempsey (Australia) The Fama and French three-factor model and leverage: compatibility with the Modigliani and Miller propositions Abstract The issue of whether the Fama and French (FF) three-factor model is consistent with the propositions of Modigliani and Miller (MM) (1958, 1963) has received surprisingly little attention. Yet, unless it is so, the model is at variance with the foundations of finance. Fama and French (FF) (1993, 1995, 1996, 1997) argue that their three-factor asset pricing model is representative of equilibrium pricing models in the spirit of Merton’s (1973) inter-temporal capital asset pricing model (ICAPM) or Ross’s (1976) arbitrage pricing theory (APT) (FF, 1993, 1994, 1995, 1996). Such claims, however, are compromised by the observations of Lally (2004) that the FF (1997) loadings on the risk factors lead to outcomes that are contradictory with rational asset pricing. In response, we outline an approach to adjustment for leverage that leads by construction to compatibility of the FF three-factor model with the Modigliani and Miller propositions of rational pricing.
    [Show full text]
  • On Valuing American Call Options with the Black-Scholes European Formula Author(S): Robert Geske and Richard Roll Source: the Journal of Finance, Vol
    American Finance Association On Valuing American Call Options with the Black-Scholes European Formula Author(s): Robert Geske and Richard Roll Source: The Journal of Finance, Vol. 39, No. 2 (Jun., 1984), pp. 443-455 Published by: Wiley for the American Finance Association Stable URL: http://www.jstor.org/stable/2327870 Accessed: 06-03-2018 17:33 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms American Finance Association, Wiley are collaborating with JSTOR to digitize, preserve and extend access to The Journal of Finance This content downloaded from 131.179.13.248 on Tue, 06 Mar 2018 17:33:47 UTC All use subject to http://about.jstor.org/terms THE JOURNAL OF FINANCE * VOL. XXXIX, NO. 2 * JUNE 1984 On Valuing American Call Options with the Black-Scholes European Formula ROBERT GESKE and RICHARD ROLL* ABSTRACT Empirical papers on option pricing have uncovered systematic differences between market prices and values produced by the Black-Scholes European formula. Such "biases" have been found related to the exercise price, the time to maturity, and the variance. We argue here that the American option variant of the Black-Scholes formula has the potential to explain the first two biases and may partly explain the third.
    [Show full text]
  • Risk, Uncertainty and Asset Prices
    Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C. Risk, Uncertainty and Asset Prices Geert Bekaert, Eric Engstrom, and Yuhang Xing 2005-40 NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors. References in publications to the Finance and Economics Discussion Series (other than acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers. Risk, Uncertainty and Asset Prices Geert Bekaert∗ Columbia University and NBER Eric Engstrom Federal Reserve Board of Governors Yuhang Xing Rice University This Draft: 25 July 2005 JEL Classifications G12, G15, E44 Keyphrases Equity Premium, Uncertainty, Stochastic Risk Aversion, Time Variation in Risk and Return, Excess Volatility, External Habit, Term Structure Abstract: We identify the relative importance of changes in the conditional variance of fundamentals (which we call “uncertainty”) and changes in risk aversion (“risk” for short) in the determination of the term structure, equity prices and risk premiums. Theoretically, we introduce persistent time-varying uncertainty about the fundamentals in an external habit model. The model matches the dynamics of dividend and consumption growth, including their volatility dynamics and many salient asset market phenomena. While the variation in dividend yields and the equity risk premium is primarily driven by risk, uncertainty plays a large role in the term structure and is the driver of counter-cyclical volatility of asset returns.
    [Show full text]
  • On the Unconditional and Conditional Cross Section of Expected Futures Returns
    On the Unconditional and Conditional Cross Section of Expected Futures Returns A thesis submitted for the degree of Doctor of Philosophy by JoeIle Miffre Department of Economics and Finance, Brunel University 1998 A mes Parents Acknowledgements I would like to thank my parents for their love, encouragement, and generous support over the last twenty seven years. A special thanks to Main for his help during a trip through the south of France. To Professor Tony Antoniou, my supervisor, thanks for his helpful and insightful comments, his encouragement, and his financial support without which this thesis would never have been written. I am looking forward to some fruitful collaboration in the future. I also would like to thank Doctor Richard Priestley for his insightful suggestions and corrections on earlier drafts of the thesis and for his excellent supervision. Thanks to Doctor Andrew Clare for his early contribution to this thesis and to Professor Len Skerratt for his excellent co-ordination of the Ph.D. course in Brunel University. I am also very grateful to the friends and roommates that I have known throughout the years in Brunel. A very special thanks to Aysun, almost my sister, for being such a wonderful person. Thanks to my family and to my French and Greek friends who came to England and visited me over the years. In particular, Sylvie deserves special thanks for her countless trips to Uxbridge, for our endless discussions over the phone, and for being such a wonderful friend over the past seven years. 11 Abstract While most of the literature on asset pricing examines the cross section of stock and bond returns, little attention has been devoted to the analyse of the trade-off between risk and return in futures markets.
    [Show full text]
  • Equity Correlation Swaps: a New Approach for Modelling & Pricing Columbia University — Financial Engineering Practitioners Seminar
    26 February 2007 Equity Correlation Swaps: A New Approach For Modelling & Pricing Columbia University — Financial Engineering Practitioners Seminar Sebastien Bossu Equity Derivatives Structuring — Product Development Equity Correlation Swaps: A New Approach For Modelling & Pricing Disclaimer This document only reflects the views of the author and not necessarily those of Dresdner Kleinwort research, sales or trading departments. This document is for research or educational purposes only and is not intended to promote any financial investment or security. 2 Equity Correlation Swaps: A New Approach For Modelling & Pricing Introduction X The daily life of an Equity Exotic Structurer (1): X Q: ‘Can you price this payoff: ⎡ ⎤ ⎛ ST − S0 ⎞ min⎢20%,max⎜5%, ⎟⎥ ⎣ ⎝ S0 ⎠⎦ ?’ X A: Hedge is a fixed cash flow and a static call spread: 1 1 5% + max[]0, ST −105%× S0 − max[]0, ST −125%× S0 S0 S0 Price: PV(5%) + 1/S0 x (Call Spread 105-125) 3 Equity Correlation Swaps: A New Approach For Modelling & Pricing Introduction X The daily life of an Equity Exotic Structurer (2): X Q: ‘Can you price this payoff: 2 252 ⎛ St ⎞ ∑⎜ln ⎟ t=1 ⎝ St−1 ⎠ ?’ X A: 1-year variance. Hedge is a static portfolio of puts and calls approximating ln(ST/S0), delta-hedged daily. ⎡ 1 1 +∞ 1 ⎤ Price: 2 Put(k)dk + Call(k)dk ⎢ 2 2 ⎥ ⎣∫0 k ∫1 k ⎦ 4 Equity Correlation Swaps: A New Approach For Modelling & Pricing Introduction X The daily life of an Equity Exotic Structurer (3): X Q: ‘Can you price this payoff: 2 ∑ ρi, j N(N −1) i< j where ρi,j is the coefficient of correlation between stocks i and j observed between t = 0 and t = T?’ X A0: ‘Go home’ X A1: ‘Let me program this into our Monte-Carlo engine’ X A2: ‘Let me ask my broker’ 5 Equity Correlation Swaps: A New Approach For Modelling & Pricing Introduction X Pros and cons X A1: Monte-Carlo gives you a price but not a hedge.
    [Show full text]
  • Stephan Sturm February 2019
    Curriculum Vitae | Stephan Sturm February 2019 Contact Information Stephan Sturm Stratton Hall 202C Worcester Polytechnic Institute phone: (+ 1 ) 508 { 831 { 5921 Department of Mathematical Sciences fax: (+ 1 ) 508 { 831 { 5824 100 Institute Road email: [email protected] MA 01609, Worcester website: users.wpi.edu/~ssturm/ USA Research Interests: Mathematical Finance & Stochastic Analysis Employment Since 07/18 Associate Professor (tenured), Department of Mathematical Sciences, Worcester Polytechnic Institute 07/12 - 06/18 Assistant Professor (tenure track), Department of Mathematical Sciences, Worcester Polytechnic Institute 07/13 - 12/13 Lecturer, Department of Finance, School of Management, Boston University 02/10 - 08/12 RTG Postdoctoral Research Associate & Lecturer, ORFE Department, Princeton University 11/09 - 01/10 Research Fellow, DFG Research Center MATHEON, Berlin 04/04 - 08/09 Teaching Assistant, TU Berlin 07/01 - 08/01 Vienna University Computer Center, University of Vienna 07/00 - 08/00 AVL India Pvt. Ltd., Gurgaon (Haryana), India 08/98 - 09/99 Compulsory Civilian Service, Auschwitz Foundation, Brussels Education 04/04 { 01/10 PhD in Mathematics, TU Berlin Thesis: Small-time large deviations for sample paths of infinite dimensional symmetric Dirichlet processes (Adviser: Alexander Schied) 10/96 { 03/04 BS/MS in Mathematics, University of Vienna Thesis: Calculation of the Greeks by Malliavin Calculus (Advisers: Walter Schachermayer and Josef Teichmann) Administration 2019{21 Associate Editor, SIAM Journal on Financial Mathematics 2019{20 Associate Director, Center for Industrial and Applied Mathematics and Statistics, WPI Since 2018 Steering Committee, Eastern Conference on Mathematical Finance 1 Publications Peer-reviewed Journals 1) Z. Feinstein, W. Pang, B. Rudloff, E. Schaanning, S. Sturm and M.
    [Show full text]
  • Commodity Price Dynamics a Structural Approach
    Commodity Price Dynamics A Structural Approach Craig Pirrong Bauer College of Business University of Houston Contents Preface page vi 1 Introduction 1 1.1 Introduction 1 1.2 A Commodity Taxonomy 4 1.3 Commodity Markets and Data 6 1.4 An Overview of the Remainder of the Book 8 1.4.1 Modeling Storable Commodity Prices 9 1.4.2 A Two Factor Model of a Continuously Produced Commodity 9 1.4.3 The Empirical Performance of the Two Factor Model 9 1.4.4 Commodity Pricing With Stochastic Fundamen- tal Volatility 10 1.4.5 The Pricing of Seasonally Produced Commodities 10 1.4.6 The Pricing of Pollution Credits 11 1.4.7 Non-Storable Commodities Pricing: The Case of Electricity 12 1.5 Where This Book Fits in the Literature 12 2 Storables Modeling Basics 17 2.1 Introduction 17 2.2 Dynamic Programming and the Storage Problem: An Overview 19 2.2.1 Model Overview 19 2.2.2 Competitive Equilibrium 21 2.2.3 The Next Step: Determining the Forward Price 23 2.2.4 Specifying Functional Forms and Shock Dynamics 26 2.3 A More Detailed Look at the Numerical Implementation 29 iv Contents 2.3.1 Solving a PDE Using Finite Differences: The One Dimensional Case 35 2.3.2 Solving the 2D PDE 36 2.3.3 Boundary Conditions 38 2.4 Summary 40 3 Continuously Produced Commodity Price Dynamics 41 3.1 Introduction 41 3.2 The Storage Economy With a Continuously Produced Commodity 44 3.2.1 Introduction 44 3.2.2 Framework and Numerical Solution 44 3.3 Moments and the State Variables 46 3.4 Derivatives Pricing 49 3.5 Extension: Storage Capacity Constraints 56 3.6 speculationspeculation
    [Show full text]
  • Lecture Notes: Topics in Asset Pricing: Part1
    Topics in Asset Pricing Lecture Notes Professor Doron Avramov Background, Objectives, and Pre-requisite The past few decades have been characterized by an extraordinary growth in the use of quantitative methods in the analysis of various asset classes; be it equities, fixed income securities, commodities, currencies, and derivatives. In response, financial economists have routinely been using advanced mathematical, statistical, and econometric techniques to understand asset pricing models, market anomalies, equity premium predictability, asset allocation, security selection, volatility, correlation, and the list goes on. This course attempts to provide a fairly deep understanding of such topical issues. It targets advanced master and PhD level students in finance and economics. Required: prior exposure to matrix algebra, distribution theory, Ordinary Least Squares, as well as kills in computer programing beyond Excel: MATLAB, R, and Python are the most recommended for this course. STATA or SAS are useful. 2 Topics to be covered From CAPM to market anomalies Credit risk implications for the cross section of asset returns Rational versus behavioural attributes of stylized cross-sectional effects Are market anomalies pervasive? Conditional CAPM Conditional versus unconditional portfolio efficiency Multi-factor models Interpreting factor models Panel regressions with fixed effects and their association with market-timing and cross-section investment strategies Machine learning methods: Lasso, Ridge, elastic net, group Lasso,
    [Show full text]
  • CHAPTER 5 REAL OPTION VALUATION the Essence of Real
    1 CHAPTER 5 REAL OPTION VALUATION The approaches that we have described in the last three chapters for assessing the value of an asset, for the most part, are focused on the negative effects of risk. Put another way, they are all focused on the downside of risk and they miss the opportunity component that provides the upside. The real options approach is the only one that gives prominence to the upside potential for risk, based on the argument that uncertainty can sometimes be a source of additional value, especially to those who are poised to take advantage of it. We begin this chapter by describing in very general terms the argument behind the real options approach, noting its foundations in two elements – the capacity of individuals or entities to learn from what is happening around them and their willingness and the ability to modify behavior based upon that learning. We then describe the various forms that real options can take in practice and how they can affect the way we assess the value of investments and our behavior. In the last section, we consider some of the potential pitfalls in using the real options argument and how it can be best incorporated into a portfolio of risk assessment tools. The Essence of Real Options To understand the basis of the real options argument and the reasons for its allure, it is easiest to go back to risk assessment tool that we unveiled in chapter 6 – decision trees. Consider a very simple example of a decision tree in figure 5.1: Figure 5.1: Simple Decision Tree p =1/2 $ 100 -$120 1-p =1/2 Given the equal probabilities of up and down movements, and the larger potential loss, the expected value for this investment is negative.
    [Show full text]
  • Rational Multi-Curve Models with Counterparty-Risk Valuation Adjustments
    Rational Multi-Curve Models with Counterparty-Risk Valuation Adjustments St´ephaneCr´epey 1; Andrea Macrina 2;3, Tuyet Mai Nguyen1, David Skovmand 4 1 Laboratoire de Math´ematiqueset Mod´elisationd'Evry,´ France 2 Department of Mathematics, University College London, United Kingdom 3 Department of Actuarial Science, University of Cape Town, South Africa 4 Department of Finance, Copenhagen Business School, Denmark February 27, 2015 Abstract We develop a multi-curve term structure setup in which the modelling ingredients are expressed by rational functionals of Markov processes. We calibrate to LIBOR swaptions data and show that a rational two-factor lognormal multi-curve model is suf- ficient to match market data with accuracy. We elucidate the relationship between the models developed and calibrated under a risk-neutral measure Q and their consistent equivalence class under the real-world probability measure P. The consistent P-pricing models are applied to compute the risk exposures which may be required to comply with regulatory obligations. In order to compute counterparty-risk valuation adjustments, such as CVA, we show how positive default intensity processes with rational form can be derived. We flesh out our study by applying the results to a basis swap contract. Keywords: Multi-curve interest rate term structure, forward LIBOR process, rational asset pricing models, calibration, counterparty-risk, risk management, Markov func- tionals, basis swap. 1 Introduction arXiv:1502.07397v1 [q-fin.MF] 25 Feb 2015 In this work we endeavour to develop multi-curve interest rate models which extend to counterparty risk models in a consistent fashion. The aim is the pricing and risk manage- ment of financial instruments with price models capable of discounting at multiple rates (e.g.
    [Show full text]
  • Commodity Risk Factors and Intertemporal Asset Pricing
    COMMODITY RISK FACTORS AND INTERTEMPORAL ASSET PRICING JOËLLE MIFFRE1, ANA-MARIA FUERTES2, and ADRIAN FERNANDEZ-PEREZ3 1 EDHEC Business School, Nice, France 2 Cass Business School, City University London, U.K. 3 Auckland University of Technology, Auckland, New Zealand Abstract This article provides a comprehensive in-sample and out-of-sample analysis of the predictive ability of commodity risk factors for future long-horizon changes in investment opportunities. Motivated by the theories of storage and hedging pressure, the factors are constructed according to signals that are linked to backwardation and contango. The encouraging findings on predictive ability lead us to propose an Intertemporal CAPM (ICAPM) implementation that utilizes the commodity risk factors as state variables. We show that the proposed model implies intertemporal “hedging” risk premiums that are theoretically consistent with rational pricing by risk-adverse investors. The model is also able to price relatively well a large cross-section of test assets that include stocks, fixed income securities and commodities. Keywords: ICAPM; Theory of Storage; Hedging Pressure Hypothesis. JEL classification: G13, G14. This version: May 2014. _____________________________________________________________________ 1 EDHEC Business School, 392 Promenade des Anglais, Nice, France; Tel: +33 (0)4 9318 3255; e-mail: [email protected]. 2 Cass Business School, City University London, Faculty of Finance, ECIY 8TZ, London, England; Tel: +44 (0)20 7040 0186; e-mail: [email protected]. Corresponding author. 3 Auckland University of Technology, Department of Finance, Private Bag 92006, 1142 Auckland, New Zealand. Phone: +64 9 921 9999; e-mail: [email protected]; [email protected].
    [Show full text]