Analysis of Phytochemicals and Anti-Plasmodial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accepted Manuscript
Accepted Manuscript Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki, Félix Forest, Pedro Acevedo-Rodríguez, Martin W. Callmander, Johan A.A. Nylander, Mark Harrington, Isabel Sanmartín, Philippe Küpfer, Nadir Alvarez PII: S1055-7903(09)00017-7 DOI: 10.1016/j.ympev.2009.01.012 Reference: YMPEV 3130 To appear in: Molecular Phylogenetics and Evolution Received Date: 21 May 2008 Revised Date: 27 November 2008 Accepted Date: 23 January 2009 Please cite this article as: Buerki, S., Forest, F., Acevedo-Rodríguez, P., Callmander, M.W., Nylander, J.A.A., Harrington, M., Sanmartín, I., Küpfer, P., Alvarez, N., Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae), Molecular Phylogenetics and Evolution (2009), doi: 10.1016/j.ympev.2009.01.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Buerki et al. 1 1 Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal 2 levels in the soapberry family (Sapindaceae) 3 4 Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, 5 Johan A. -
Plastid and Nuclear DNA Markers.Pdf
Molecular Phylogenetics and Evolution 51 (2009) 238–258 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, Johan A.A. Nylander f, Mark Harrington g, Isabel Sanmartín h, Philippe Küpfer a, Nadir Alvarez a a Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland b Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom c Department of Botany, Smithsonian Institution, National Museum of Natural History, NHB-166, Washington, DC 20560, USA d Missouri Botanical Garden, PO Box 299, 63166-0299, St. Louis, MO, USA e Conservatoire et Jardin botaniques de la ville de Genève, ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland f Department of Botany, Stockholm University, SE-10691, Stockholm, Sweden g School of Marine and Tropical Biology, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia h Department of Biodiversity and Conservation, Real Jardin Botanico – CSIC, Plaza de Murillo 2, 28014 Madrid, Spain article info abstract Article history: The economically important soapberry family (Sapindaceae) comprises about 1900 species mainly found Received 21 May 2008 in the tropical regions of the world, with only a few genera being restricted to temperate areas. The inf- Revised 27 November 2008 rafamilial classification of the Sapindaceae and its relationships to the closely related Aceraceae and Hip- Accepted 23 January 2009 pocastanaceae – which have now been included in an expanded definition of Sapindaceae (i.e., subfamily Available online 30 January 2009 Hippocastanoideae) – have been debated for decades. -
Threatened Ecosystems of Myanmar
Threatened ecosystems of Myanmar An IUCN Red List of Ecosystems Assessment Nicholas J. Murray, David A. Keith, Robert Tizard, Adam Duncan, Win Thuya Htut, Nyan Hlaing, Aung Htat Oo, Kyaw Zay Ya and Hedley Grantham 2020 | Version 1.0 Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Murray, N.J., Keith, D.A., Tizard, R., Duncan, A., Htut, W.T., Hlaing, N., Oo, A.H., Ya, K.Z., Grantham, H. License This document is an open access publication licensed under a Creative Commons Attribution-Non- commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0). Authors: Nicholas J. Murray University of New South Wales and James Cook University, Australia David A. Keith University of New South Wales, Australia Robert Tizard Wildlife Conservation Society, Myanmar Adam Duncan Wildlife Conservation Society, Canada Nyan Hlaing Wildlife Conservation Society, Myanmar Win Thuya Htut Wildlife Conservation Society, Myanmar Aung Htat Oo Wildlife Conservation Society, Myanmar Kyaw Zay Ya Wildlife Conservation Society, Myanmar Hedley Grantham Wildlife Conservation Society, Australia Citation: Murray, N.J., Keith, D.A., Tizard, R., Duncan, A., Htut, W.T., Hlaing, N., Oo, A.H., Ya, K.Z., Grantham, H. (2020) Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Wildlife Conservation Society. ISBN: 978-0-9903852-5-7 DOI 10.19121/2019.Report.37457 ISBN 978-0-9903852-5-7 Cover photos: © Nicholas J. Murray, Hedley Grantham, Robert Tizard Numerous experts from around the world participated in the development of the IUCN Red List of Ecosystems of Myanmar. The complete list of contributors is located in Appendix 1. -
RUTACEAE 芸香科 Yun Xiang Ke Zhang Dianxiang (张奠湘)1; Thomas G
RUTACEAE 芸香科 yun xiang ke Zhang Dianxiang (张奠湘)1; Thomas G. Hartley2, David J. Mabberley3 Shrubs, trees, or sometimes herbs, sometimes scrambling or scandent, sometimes armed, with aromatic volatile oils contained in glands visible at surface of at least leaves, young branchlets, inflorescences, flower parts, fruit, or cotyledons in seed. Stipules absent [or stipular excrescences rarely present]. Leaves alternate, opposite [or whorled], simple (petiole neither apically swollen nor articulate with leaf blade), 1-foliolate (in individual specimens at least some 1-foliolate leaves with petiole apically swollen and/or articulate with leaf blade), or variously compound. Flowers bisexual or unisexual, usually 3–5-merous, actinomorphic or rarely zygomorphic, hypo- gynous [or rarely perigynous]. Perianth in 2 series, with clearly differentiated calyx and corolla or sometimes in 2 irregular series or 1 series, with ± undifferentiated tepals. Sepals distinct or connate to their full length. Petals distinct [or rarely coherent or connate for part of their length]. Stamens usually as many as or 2 × as many as petals or sometimes more numerous; filaments distinct or sometimes coherent or connate for at least part of their length; anthers introrse or sometimes latrorse, longitudinally dehiscent. Disk [rarely lack- ing] within androecium, nectariferous, flattened, annular, cup-shaped, pulvinate, or sometimes columnar, bell-shaped, conic, or hour- glass-shaped. Gynoecium of 1–5 distinct 1-loculed carpels or 2 to many partially to completely connate carpels; placentation axile [very rarely becoming parietal]; ovules 1 to many per locule. Fruit of 2–5 follicles [drupes or samaras] or a single follicle, capsule, or berry [or samara]. Seeds with relatively large embryo; endosperm present and fleshy or lacking. -
Intro E Metodologia
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO IURA MUNIZ ALVES ESTUDO FITOQUÍMICO DA RAIZ DE Dictyoloma vandellianum A. JUSS SALVADOR 2008 i IURA MUNIZ ALVES ESTUDO FITOQUÍMICO DA RAIZ DE Dictyoloma vandellianum A. JUSS Dissertação apresentada ao Programa de Pós-Graduação em Química, área de concentração Química Orgânica, Instituto de Química, Universidade Federal da Bahia, como requisito parcial para a obtenção do grau de mestre em Química, área Química Orgânica. Orientador: Prof. Dr. Frederico Guaré Cruz Co-orientador: Prof. Dr. Eudes da Silva Velozo Salvador 2008 ii AGRADECIMENTOS Agradeço a: Vanilda, Fernanda, Eagles, Dorivaldo, Lourenço, Profª Elaine, Édler, Zan, Cinara, Railda, Cássia, Edjane, Magnólia, Renata, Ricardo, Luíza, Glaucy, Sandra, Zênis, Eudes, Fred, PC Vieira, Sílvio, Jorge David, Márcia Cristina, Nina, Rita, Fernando, Daniel, Jaff, Lú, Mara Spínola, Janice, Fábio, Luciene, Cleiton, Daniel, Pinho, Cristina “The mother of the groove”, Osvaldo, Enobaldo, Angélica, Renata, Anne, Prof Themístocles, Lucas, Acácio, Pablo, Vitor, Cristiano, Juliana, Michele, Mônica, Zemba, Themístocles, Judson, Tatiana Daltro, João Paulo, Vanessa, Pedro, Milena, Aline, Lorena, Andrea, Jailton, Airan, Lenilton, Luciano, Edvan, Rogério, Acyr, Rolemberg, Djavan, Jair Oliveira, Max de Castro, Wilson Simoninha, Wilson das Neves, Ubaldo Versolato, BB King, Robert Johnson, Stevie Vai, The Jeff Healey Band, Jeff Back, The Funk Como Le Gusta, Eletrotech, Tribaltech, John Scofield, Pat Metheny, Herbie Hancock, Dennis Chambers, -
Thonner's Analytical Key to the Families of Flowering Plants
Thonner's analyticalke y to thefamilie s of flowering plants R.Geesin k A.J .M .Leeuwenber g C.E.Ridsdale J.F .Veldkam p PUDOC, Centre for Agricultural Leiden University Press Publishing and Documentation The Hague/Boston/London, Wageningen, 1981 1981 /1/0 07 (P- :>< R. Geesink-Rijksherbarium, Leiden, Netherlands A. J. M. Leeuwenberg - Laboratorium voor Plantensystematiek en Planten- geografie, Agricultural University, Wageningen, Netherlands C. E. Ridsdale-B. A. Krukoff Botanist ofMalesia n Botany, Rijksherbarium, Leiden, Netherlands J. F. Veldkamp-Rijksherbarium, Leiden, Netherlands This volume isliste d inth eLibrar y of Congress Cataloging inPublicatio n Data Thisi sa translate d and revised edition of:Anleitun g zumBestimme n der Familien der Blutenpflanzen, 2nd. ed. 1917, Friedländer, Berlin ISBN 90-220-0730-8 © Centre foragricultura l publishing and documentation, PUDOC, Wageningen 1981 and Martinus Nijhoff Publishers, The Hague, 1981 Allright sreserved . Nopar t ofthi spublicatio n mayb ereproduced , stored ina retrieva l system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publishers, Martinus Nijhoff Publishers, P.O. Box 566, 2501 CN The Hague, The Netherlands, and PUDOC, P.O. Box 4,670 0A AWageningen , TheNetherland s Printed inth e Netherlands Contents Preface toth e2n deditio n(1917 ) vii Introduction viii Acknowledgements x FranzThonne r- Life (1863-1928) xii FranzThonner-Bibliograph y xv FranzThonner-Derive dwork s xviii FranzThonner-Eponym y xx The Key - Introduction and Notes xxii Schemefo r adiagnosti cdescriptio n xxvi Conciseke yt oth ema jo rgrouping s 1 Keyt oth efamilie s 3 Glossary 198 Index 214 'All plants are hybrids, but some are greater bastards than others' lf*!Mfc .-, -e *••-r • + VT-V «-•! * . -
Plant Diversity in Burapha University, Sa Kaeo Campus
doi:10.14457/MSU.res.2019.25 ICoFAB2019 Proceedings | 144 Plant Diversity in Burapha University, Sa Kaeo Campus Chakkrapong Rattamanee*, Sirichet Rattanachittawat and Paitoon Kaewhom Faculty of Agricultural Technology, Burapha University Sa Kaeo Campus, Sa Kaeo 27160, Thailand *Corresponding author’s e-mail: [email protected] Abstract: Plant diversity in Burapha University, Sa Kaeo campus was investigated from June 2016–June 2019. Field expedition and specimen collection was done and deposited at the herbarium of the Faculty of Agricultural Technology. 400 plant species from 271 genera 98 families were identified. Three species were pteridophytes, one species was gymnosperm, and 396 species were angiosperms. Flowering plants were categorized as Magnoliids 7 species in 7 genera 3 families, Monocots 106 species in 58 genera 22 families and Eudicots 283 species in 201 genera 69 families. Fabaceae has the greatest number of species among those flowering plant families. Keywords: Biodiversity, Conservation, Sa Kaeo, Species, Dipterocarp forest Introduction Deciduous dipterocarp forest or dried dipterocarp forest covered 80 percent of the forest area in northeastern Thailand spreads to central and eastern Thailand including Sa Kaeo province in which the elevation is lower than 1,000 meters above sea level, dry and shallow sandy soil. Plant species which are common in this kind of forest, are e.g. Buchanania lanzan, Dipterocarpus intricatus, D. tuberculatus, Shorea obtusa, S. siamensis, Terminalia alata, Gardenia saxatilis and Vietnamosasa pusilla [1]. More than 80 percent of the area of Burapha University, Sa Kaeo campus was still covered by the deciduous dipterocarp forest called ‘Khok Pa Pek’. This 2-square-kilometers forest locates at 13°44' N latitude and 102°17' E longitude in Watana Nakorn district, Sa Kaeo province. -
This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Molecular Phylogenetics and Evolution 57 (2010) 258–265 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Implications of a molecular phylogenetic study of the Malagasy genus Cedrelopsis and its relatives (Ptaeroxylaceae) Sylvain G. Razafimandimbison a,*, Marc S. Appelhans b,c, Harison Rabarison d, Thomas Haevermans e, Andriarimalala Rakotondrafara f, Stephan R. Rakotonandrasana f, Michel Ratsimbason f, Jean-Noël Labat e, Paul J.A. Keßler b,c, Erik Smets b,c,g, Corinne Cruaud h, Arnaud Couloux h, Milijaona Randrianarivelojosia i,j a Department of Botany, Bergius Foundation, Stockholm University, SE-10691, Stockholm, Sweden b Netherlands Centre for Biodiversity Naturalis (section NHN), Leiden University, 2300 RA, The Netherlands c Hortus Botanicus Leiden, Leiden, The Netherlands d Département de Biologie et Ecologie Végétales, Université d’Antananarivo, Madagascar e Muséum National d’Histoire Naturelle, Département Systématique et Evolution, UMR 7205 CNRS/MNHN Origine, Structure et Evolution de la Biodiversité, C.P. -
CNEORACEAE 1. HARRISONIA R. Brown Ex A. Jussieu, Mém. Mus
This PDF version, published online on 26 August 2008, supersedes the printed treatment in Fl. China (11: 98–99. 2008). CNEORACEAE 牛筋果科 niu jin guo ke Peng Hua (彭华)1; Thomas G. Hartley2 Shrubs (sometimes scrambling or rarely somewhat climbing) or rarely small trees, monoclinous or andromonoecious, armed or unarmed, apparently without oil glands. Stipules absent. Leaves alternate, simple, odd-pinnate, or digitately trifoliolate; blades of simple leaves entire at margin, those of compound leaves crenulate, crenate, lobulate, or rarely entire at margin. Flowers solitary and axillary or in terminal and/or axillary cymes, racemes, or rarely thyrses, actinomorphic, hypogynous, 3–5(or 6)-merous. Sepals distinct or connate to ± half their length. Petals distinct, imbricate or narrowly so in bud. Stamens equal to or 2 × as many as petals, inserted in lateral pits on disk or at base of disk; filaments distinct, linear, with or without adaxial ligulate appendage at base; anthers longitudinally dehiscent. Disk within androecium, nectariferous, columnar to barrel-shaped or pulvinate to cup-shaped. Gynoecium 3–5(or 6)-carpelled and -loculed; ovaries axially or ± completely connate; placentation apical-axile; ovules pendulous, solitary or collateral in each locule; style terminal, stylar elements coherent or rarely distinct at base; stigma 3- or 4-branched or capitate (often slightly lobed). Fruit drupaceous, of separating mericarps or ± completely syncarpous, drying brown to black or rarely pale gray-brown when ripe; abortive carpels, if any, persistent; outer pericarp (exocarp and mesocarp) ± fleshy; endocarp bony next to locule(s), otherwise woody, in mericarps developed from 2-ovuled carpels forming a median longitudinal partial partition within locule. -
Determination of the Allelopathic Potential of Cambodia's Medicinal
sustainability Article Determination of the Allelopathic Potential of Cambodia’s Medicinal Plants Using the Dish Pack Method Yourk Sothearith 1,2,* , Kwame Sarpong Appiah 1 , Hossein Mardani 1, Takashi Motobayashi 1,* , Suzuki Yoko 3, Khou Eang Hourt 4, Akifumi Sugiyama 5 and Yoshiharu Fujii 1,* 1 Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; [email protected] (K.S.A.); [email protected] (H.M.) 2 Department of Biodiversity, Ministry of Environment, Morodok Techcho (Lot 503) Tonle Bassac, Chamkarmorn, Phnom Penh 12301, Cambodia 3 Aromatic Repos, AHOLA, A2 Soleil Jiyugaoka, 1-21-3, Jiyugaoka, Meguro, Tokyo 152-0035, Japan; [email protected] 4 National Authority for Preah Vihear, Thomacheat Samdech Techo Hun Sen Village, Sraem Commune, Choam Khsant District, Cheom Ksan 13407, Preah Vihear, Cambodia; [email protected] 5 Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011, Japan; [email protected] * Correspondence: [email protected] (Y.S.); [email protected] (T.M.); [email protected] (Y.F.) Abstract: Plants produce several chemically diverse bioactive substances that may influence the growth and development of other organisms when released into the environment in a phenomenon called allelopathy. Several of these allelopathic species also have reported medicinal properties. In this study, the potential allelopathic effects of more than a hundred medicinal plants from Cambodia Citation: Sothearith, Y.; Appiah, K.S.; were tested using the dish pack method. The dish pack bioassay method specifically targets volatile Mardani, H.; Motobayashi, T.; Yoko, allelochemicals. -
Medicinal and Poisonous Plants of the Tropics
Medicinalan d poisonous plants of the tropics Proceedings of Symposium 5-35 of the 14th International Botanical Congress, Berlin, 24July- I August 1987 A.J.M. Leeuwenberg (compiler) 5 7PO ; \\' ^ '* ,7^ Pudoc Wageningen •tciï CIP-gegevensKoninklijk e Bibliotheek, Den Haag ISBN90-220-0921- 1 NUGI824 ©Centre for Agricultural Publishingan dDocumentation , Wageningen, 1987 No part of thispublication ,apar t from bibliographic dataan dbrie f quotations embodiedi n critical reviews, may bereproduced , re-recorded or published inan yfor m including print, photocopy, microform, electronic or electromagnetic record without written permission from the publisher Pudoc, P.O.Bo x 4,670 0A A Wageningen, Netherlands. Printed inth e Netherlands L. CONTENTS Preface 7 Research onmedicina l and poisonous plants of the tropics -past , present and future - I.Hedber g 9 Medicinal plants in tropical areas of China -Pei Sheng-ji 16 Tropical plants used in Chinesemedicine :potentia l leads for pharmaceutical development -Pau l Pui-Hay But 24 Medicinal plants of wide use in Zimbabwe -N.Z .Nyazem a 36 Some common African herbal remedies for skin diseases: with special reference to Kenya -J.0 .Kokwar o 44 Plants as sources of antimalarial and amoebicidal compounds - J.D. Phillipson, M.J. O'Neill, C.W. Wright,D.H . Bray and D.C.Warhurs t 70 Plants in thehealt h care delivery system of Africa -Dawi t Abebe 79 The investigation and research onHseny i -natura l resources of Henan -Ga o Zengyi,Zho u Changshan, CuiBo ,A n Zhuojun and / Tang Shian 88 Introduction to the ethnobotanical pharmacopeia of the Amazonian Jivaro of Peru -W.H . -
CYP27A1-Dependent Anti-Melanoma Activity of Limonoid Natural Products Targets Mitochondrial Metabolism
Article CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial metabolism Graphical abstract Authors Hyelim Cho, Qiong Shen, Lydia H. Zhang, ..., Stephen M. Canham, Jeremy L. Jenkins, William C. Forrester Correspondence [email protected] (J.L.J.), [email protected] (W.C.F.) In brief Selective targeting of melanoma cells by limonoid natural products involves their conversion to a reactive electrophilic metabolite by CYP27A1, a mitochondrial cytochrome p450 enzyme, leading to toxic adducts of key mitochondrial proteins. CYP27A1 is a target gene of MITF, the oncogenic transcription factor deregulated in melanoma. Highlights d The limonoid, harrpernoid D, was isolated and described d Harrperonid D is activated by CYP27A1, to overcome BRAFi- resistant melanoma d Metabolism of harrpernoid D into a reactive enedial modifies mitochondrial proteins Cho et al., 2021, Cell Chemical Biology 28, 1–13 September 16, 2021 ª 2021 Elsevier Ltd. https://doi.org/10.1016/j.chembiol.2021.03.004 ll Please cite this article in press as: Cho et al., CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial meta- bolism, Cell Chemical Biology (2021), https://doi.org/10.1016/j.chembiol.2021.03.004 ll Article CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial metabolism Hyelim Cho,1 Qiong Shen,1 Lydia H. Zhang,4,5 Mikiko Okumura,4,5 Akinori Kawakami,3 Jessi Ambrose,1 Frederic Sigoillot,1 Howard R. Miller,1 Scott Gleim,1 Amanda Cobos-Correa,2 Ying Wang,2 Philippe Piechon,2 Guglielmo Roma,2 Fabian Eggimann,2 Charles Moore,2 Peter Aspesi, Jr.,1 Felipa A.