Surface Polarization Effects in Confined Polyelectrolyte Solutions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polyelectrolyte Assisted Charge Titration Spectrometry: Applications to Latex and Oxide Nanoparticles
Polyelectrolyte assisted charge titration spectrometry: applications to latex and oxide nanoparticles F. Mousseau1*, L. Vitorazi1, L. Herrmann1, S. Mornet2 and J.-F. Berret1* 1Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France. 2Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS 9048, Université Bordeaux 1, 87 Avenue du Docteur A. Schweitzer, Pessac cedex F-33608, France. Abstract: The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio �, and the peak position �!"# is linked to the particle charge density according to � ~ �!�!"# where �! is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects. Keywords: charge density – nanoparticles - light scattering – polyelectrolyte complex Corresponding authors: [email protected] [email protected] To appear in Journal of Colloid and Interface Science leading to their condensation and to the formation of the electrical double layer [1]. -
Influence of Polyelectrolyte Multilayer Properties on Bacterial Adhesion
polymers Article Influence of Polyelectrolyte Multilayer Properties on Bacterial Adhesion Capacity Davor Kovaˇcevi´c 1, Rok Pratnekar 2, Karmen GodiˇcTorkar 2, Jasmina Salopek 1, Goran Draži´c 3,4,5, Anže Abram 3,4,5 and Klemen Bohinc 2,* 1 Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia; [email protected] (D.K.); [email protected] (J.S.) 2 Faculty of Health Sciences, Ljubljana 1000, Slovenia; [email protected] (R.P.); [email protected] (K.G.T.) 3 Jožef Stefan Institute, Ljubljana 1000, Slovenia; [email protected] (G.D.); [email protected] (A.A.) 4 National Institute of Chemistry, Ljubljana 1000, Slovenia 5 Jožef Stefan International Postgraduate School, Ljubljana 1000, Slovenia * Correspondence: [email protected]; Tel.: +386-1300-1170 Academic Editor: Christine Wandrey Received: 16 August 2016; Accepted: 14 September 2016; Published: 26 September 2016 Abstract: Bacterial adhesion can be controlled by different material surface properties, such as surface charge, on which we concentrate in our study. We use a silica surface on which poly(allylamine hydrochloride)/sodium poly(4-styrenesulfonate) (PAH/PSS) polyelectrolyte multilayers were formed. The corresponding surface roughness and hydrophobicity were determined by atomic force microscopy and tensiometry. The surface charge was examined by the zeta potential measurements of silica particles covered with polyelectrolyte multilayers, whereby ionic strength and polyelectrolyte concentrations significantly influenced the build-up process. For adhesion experiments, we used the bacterium Pseudomonas aeruginosa. The extent of adhered bacteria on the surface was determined by scanning electron microscopy. The results showed that the extent of adhered bacteria mostly depends on the type of terminating polyelectrolyte layer, since relatively low differences in surface roughness and hydrophobicity were obtained. -
Semester II, 2015-16 Department of Physics, IIT Kanpur PHY103A: Lecture # 5 Anand Kumar
Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 8 (Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.) Anand Kumar Jha 19-Jan-2018 Summary of Lecture # 7: • Electrostatic Boundary Conditions E E = Electric Field: = above below E − E = 00 above− below � 0 above − below Electric Potential: V V = 0 above − below • Basic Properties of Conductors (1) The electric field = 0 inside a conductor, always. = 0 = = 0 (2) The charge density inside a conductor. This is because . (3) Any net charge resides on the surface. Why? To minimize the energy. 0 ⋅ (4) A conductor is an equipotential. (5) is perpendicular to the surface, just outside the conductor. 2 Summary of Lecture # 7: Prob. 2.36 (Griffiths, 3rd Ed. ): - Surface charge ? = = − 2 - Surface charge ? 4 + - Surface charge ? = − 2 4 1 2 - ( ) ? = 4 out 2 1 0 � - ( ) ? = 4 out 2 10 �+ - ( ) ? =4 out out 2 � - Force on ? 0 40 - Force on ? 0 3 Summary of Lecture # 7: Prob. 2.36 (Griffiths, 3rd Ed. ): - Surface charge ? = Same ª = − 2 Same - Surface charge ? 4 ª + - Surface charge ? = − 2 Changes � 4 1 2 = - ( ) ? 4 Same ª out 2 1 0 � = 4 - ( ) ? Same ª out 2 � 10 + Changes � - ( ) ? =4 out out 2 - Force on ? 0 0 � 4 Same ª Bring in a third - Force on ? 0 Same ª charge 4 Surface Charge and the Force on a Conductor: What is the electrostatic force on the patch? Force per unit area on the patch is: = (? ) = other = + , above other patch above = + 2 other 0 � = + , below other patch below 1 = = + 2 2 other − � other above below 0 But, inside a metal, = , so = 0 below = = + = 2 2 other � above other � � 5 0 0 0 Surface Charge and the Force on a Conductor: What is the electrostatic force on the patch? Force per unit area on the patch is: = (? ) = other = = 2 other � above � Force per unit0 area on the patch is: 0 = = 2 2 other � Force per unit area is pressure.0 So, the electrostatic pressure is: = = 2 2 20 2 6 0 Capacitor: Two conductors with charge and . -
Ion Current Rectification in Extra-Long Nanofunnels
applied sciences Article Ion Current Rectification in Extra-Long Nanofunnels Diego Repetto, Elena Angeli * , Denise Pezzuoli, Patrizia Guida, Giuseppe Firpo and Luca Repetto Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy; [email protected] (D.R.); [email protected] (D.P.); [email protected] (P.G.); giuseppe.fi[email protected] (G.F.); [email protected] (L.R.) * Correspondence: [email protected] Received: 29 April 2020; Accepted: 25 May 2020; Published: 28 May 2020 Abstract: Nanofluidic systems offer new functionalities for the development of high sensitivity biosensors, but many of the interesting electrokinetic phenomena taking place inside or in the proximity of nanostructures are still not fully characterized. Here, to better understand the accumulation phenomena observed in fluidic systems with asymmetric nanostructures, we study the distribution of the ion concentration inside a long (more than 90 µm) micrometric funnel terminating with a nanochannel. We show numerical simulations, based on the finite element method, and analyze how the ion distribution changes depending on the average concentration of the working solutions. We also report on the effect of surface charge on the ion distribution inside a long funnel and analyze how the phenomena of ion current rectification depend on the applied voltage and on the working solution concentration. Our results can be used in the design and implementation of high-performance concentrators, which, if combined with high sensitivity detectors, could drive the development of a new class of miniaturized biosensors characterized by an improved sensitivity. Keywords: nanofunnel; FEM simulation; ionic current rectification; micro-nano structure interface 1. -
Beryllium Desorption from Minerals and Organic Ligands Over Time
Chemical Geology 439 (2016) 52–58 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Beryllium desorption from minerals and organic ligands over time Vanessa Boschi ⁎,JaneK.Willenbring Department of Earth and Environmental Science, University of Pennsylvania, 251 Hayden Hall, 240 South 33rd Street, Philadelphia, PA 19104, USA article info abstract Article history: Beryllium isotopes sorbed to sediments have provided useful tools in the field of geochronology and geomor- Received 13 April 2016 phology over the last few decades. The use of beryllium isotopes relies on the premise that beryllium sorbed to Received in revised form 3 June 2016 sediments is unaltered over large timescales. Changes in the environmental chemistry, either in-situ or en Accepted 10 June 2016 route from soil to fluvial system, to the ocean, can cause beryllium desorption and may preclude some beryllium Available online 11 June 2016 isotopic applications. Keywords: Four mechanisms were tested to determine the relative desorption potential of beryllium including a reduction Beryllium in pH, an increase in ionic strength (NaCl) and complexation by soluble organic (malonic acid) and inorganic spe- Desorption cies (NaF). To assess the relative effect of each mechanism on beryllium desorption from both organic and min- Minerals eral fractions, we prepared separate solutions of beryllium bound to minerals and organic compounds and Organic ligands measured beryllium concentrations in solution before and after each chemical perturbation. We conclude a re- Inner and outer sphere complexation duction in pH resulted in the greatest amount of desorption among the four treatments, removing 97% and 75% of sorbed beryllium from illite and montmorillonite, respectively, and none from the organic ligands tested. -
Assembling of Prussian Blue Nanoclusters Along Single
Assembling of Prussian Blue Nanoclusters Samples preparation. PMB was deposited onto the substrate from the 0.0005 g/l acid water (pH 2, HCl, Aldrich) solution by the dipping of the Along Single Polyelectrolyte Molecules substrate into the solution or by drop casting. To deposit PC chains in stretched conformation we placed several drops of the solution onto Anton Kiriy1, Vera Bocharova1, Ganna Gorodyska1, Sergiy Minko2, the substrate rotating at 10000 rpm. The dry samples were and Manfred Stamm1 investigated with AFM. Deposition of PB clusters. To prepare a dispersion of PB clusters, the 1 Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 solution of K4Fe(CN)6·3H20 (0.5 g/l, 1.18 mMol/l) in acid water (HCl, pH Dresden, Germany 2.0) and equal volume of the FeCl3 solution (0.048 g/l, 0.296 mMol/l) in 2Department of Chemistry, Clarkson University, Potsdam, NY 13699- acid water (HCl, pH 2.0) were intensively mixed for several minutes. 5810 The substrate with deposited PC was then dipped into the freshly prepared dispersion of PB clusters for 3 min at ambient temperature and afterward rinsed in water. Finally, the substrate was dried with the INTRODUCTION Argon flux. Molecular electronics is attracting considerable interest of AFM measurements. Multimode AFM instrument or NanoScope IV- scientists because of physical and economic limitations expected for D3100 (Digital Instruments, Santa Barbara) were operating in the existing bottom down lithographic technologies. The use of various tapping mode. Silicon tips with radius of 10-20 nm, spring constant of biological templates to assemble nanoscale nonbiological building 30 N/m and resonance frequency of 250-300 KHz were used after the blocks into well-defined meso- and macroscopic objects1 is nn calibration with gold nanoparticles (5 nm in diameter). -
6.007 Lecture 5: Electrostatics (Gauss's Law and Boundary
Electrostatics (Free Space With Charges & Conductors) Reading - Shen and Kong – Ch. 9 Outline Maxwell’s Equations (In Free Space) Gauss’ Law & Faraday’s Law Applications of Gauss’ Law Electrostatic Boundary Conditions Electrostatic Energy Storage 1 Maxwell’s Equations (in Free Space with Electric Charges present) DIFFERENTIAL FORM INTEGRAL FORM E-Gauss: Faraday: H-Gauss: Ampere: Static arise when , and Maxwell’s Equations split into decoupled electrostatic and magnetostatic eqns. Electro-quasistatic and magneto-quasitatic systems arise when one (but not both) time derivative becomes important. Note that the Differential and Integral forms of Maxwell’s Equations are related through ’ ’ Stoke s Theorem and2 Gauss Theorem Charges and Currents Charge conservation and KCL for ideal nodes There can be a nonzero charge density in the absence of a current density . There can be a nonzero current density in the absence of a charge density . 3 Gauss’ Law Flux of through closed surface S = net charge inside V 4 Point Charge Example Apply Gauss’ Law in integral form making use of symmetry to find • Assume that the image charge is uniformly distributed at . Why is this important ? • Symmetry 5 Gauss’ Law Tells Us … … the electric charge can reside only on the surface of the conductor. [If charge was present inside a conductor, we can draw a Gaussian surface around that charge and the electric field in vicinity of that charge would be non-zero ! A non-zero field implies current flow through the conductor, which will transport the charge to the surface.] … there is no charge at all on the inner surface of a hollow conductor. -
Chapter 5 Capacitance and Dielectrics
Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15 -
Electrical Double Layer Interactions with Surface Charge Heterogeneities
Electrical double layer interactions with surface charge heterogeneities by Christian Pick A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Christian Pick All rights reserved Abstract Particle deposition at solid-liquid interfaces is a critical process in a diverse number of technological systems. The surface forces governing particle deposition are typically treated within the framework of the well-known DLVO (Derjaguin-Landau- Verwey-Overbeek) theory. DLVO theory assumes of a uniform surface charge density but real surfaces often contain chemical heterogeneities that can introduce variations in surface charge density. While numerous studies have revealed a great deal on the role of charge heterogeneities in particle deposition, direct force measurement of heterogeneously charged surfaces has remained a largely unexplored area of research. Force measurements would allow for systematic investigation into the effects of charge heterogeneities on surface forces. A significant challenge with employing force measurements of heterogeneously charged surfaces is the size of the interaction area, referred to in literature as the electrostatic zone of influence. For microparticles, the size of the zone of influence is, at most, a few hundred nanometers across. Creating a surface with well-defined patterned heterogeneities within this area is out of reach of most conventional photolithographic techniques. Here, we present a means of simultaneously scaling up the electrostatic zone of influence and performing direct force measurements with micropatterned heterogeneously charged surfaces by employing the surface forces apparatus (SFA). A technique is developed here based on the vapor deposition of an aminosilane (3- aminopropyltriethoxysilane, APTES) through elastomeric membranes to create surfaces for force measurement experiments. -
Gero Decher, Jean-Claude Voegel La Recherche, No
An Introduction to Polyelectrolyte Multilayers Layer-by-Layer Adsorption (LbL): An Enabling Technology for the Nano- construction of Multifunctional Films on Solvent Accessible Surfaces. G. Decher / Institut Charles Sadron Institut Charles Sadron 1 Differences between chemistry in bulk and at interfaces Some trivia: • Surface functional groups accessible only from the solution side. ( SN1 might be favored over SN2 ; reactivities different from bulk) • Typical monolayer thicknesses of 0.5 nm to 5 nm. • Typical surface areas of 0.20 nm2 per molecule, 5 1014 molecules per cm2. • At a mass of 400 g/mol, 1 cm2 of a densely packed monolayer corresponds to 0.33 µg of material. • 5g (semi-preparative scale), would cover an area of 1500 m2. • Monomolecular layers of polymer may be thinner and less dense and typically consist of 0.1 to 1.5 mg of material per 1 m2. • Less than 0.02 mg for chemical analysis and physical characterization Advantage: We only need tiny amounts from colleagues doing synthesis Institut Charles Sadron 4 Build-to-Order Assembled Films Build-to-Order (BTO) is the capability to quickly build standard or mass-customized products upon receipt of spontaneous orders without forecasts. Layer-by-Layer assembly allows to design functional surfaces and surface-based nano-devices in a "build-to-order" fashion. It exceeds simple self-organization under equilibrium conditions by making it possible to arrange many different materials at will with nanoscale precision. Institut Charles Sadron 5 The multilayer films that can do everything . Pierre Schaaf, Gero Decher, Jean-Claude Voegel La Recherche, No. 389, SEPT. -
Surface Charge
Surface Charge Gerald Ehrenstein Outline I Introduction II Gouy-Chapman Theory III Experimental Evidence Supporting Gouy-Chapman Theory IV Experimental Evidence Disagreeing with Gouy-Chapman Theory V Possible Resolution of Experimental Differences VI Significance of Surface Charge Copyright by author, 2001 I Introduction The overall magnitude of the electric charge on a cell can be determined by measurement of the cell’s electrophoretic mobility. Such a measurement provides an estimate of the average charge density over the entire cell membrane. This chapter will be concerned not with this average surface charge density, but rather with the local surface charge density in and near voltage-dependent ionic channels. The primary method of measuring local charge density is to examine the electrical properties of the voltage-dependent channels under normal conditions and under conditions where the surface charge near the channel is neutralized, thus changing the local electric field. Since voltage-dependent channels are sensitive to this local electric field, neutralization of surface charge is expected to cause changes in voltage-dependent properties, such as conductance and time constants. If surface charge were static, it would be expected that a particular neutralization of surface charge would cause a corresponding change in electric field, leading to a translation of all voltage-dependent properties along the voltage axis. The magnitude of the charge neutralization can be determined by measurement of the magnitude of the translation. II Gouy-Chapman Theory Gouy-Chapman theory describes the effect of a static surface charge on the membrane potential. A negative surface charge leads to formation of a double layer, since positive ions in solution tend to balance the negative surface charge. -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title A Fundamental Perspective on Polyelectrolyte Coagulants and Flocculants in Water Treatment Permalink https://escholarship.org/uc/item/5f30h7k4 Author Bhattacharya, Arkadeep Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles A Fundamental Perspective on Polyelectrolyte Coagulants and Flocculants in Water Treatment A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemical Engineering by Arkadeep Bhattacharya 2021 ABSTRACT OF THE THESIS A Fundamental Perspective on Polyelectrolyte Coagulants and Flocculants in Water Treatment by Arkadeep Bhattacharya Master of Science in Chemical Engineering University of California Los Angeles, 2021 Professor Samanvaya Srivastava, Chair Coagulation and flocculation are important phenomena which find widespread applications in water treatment. Polyelectrolytes are charged macromolecules which have found relevance in this domain due to their proven efficiency and effectiveness. The objective of the thesis would be to review and emphasize the fundamental mechanisms on which both natural and synthetic polyelectrolyte coagulants and flocculants operate. Advances in understanding phase characteristics and structure of aggregated polyelectrolyte complexes post interaction with charged impurities are discussed. These would help elucidate the correlation between salient polyelectrolyte properties