Influence of Size of Neodymium:Yttrium-Aluminium-Garnet Laser Posterior Capsulotomy on Visual Function

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Size of Neodymium:Yttrium-Aluminium-Garnet Laser Posterior Capsulotomy on Visual Function Eye (2010) 24, 101–106 & 2010 Macmillan Publishers Limited All rights reserved 0950-222X/10 $32.00 www.nature.com/eye 1 1 2 Influence of size of K Hayashi , F Nakao and H Hayashi CLINICAL STUDY neodymium:yttrium- aluminium-garnet laser posterior capsulotomy on visual function Abstract Introduction Purpose The aim of this study was to It has been shown that posterior capsule examine the influence that the size of a opacification (PCO) following cataract surgery neodymium:yttrium-aluminium-garnet disturbs various visual functions, including (Nd:YAG) laser capsulotomy performed visual acuity (VA), contrast sensitivity and glare for posterior capsule opacification (PCO) disability, although controversy still remains as has on visual acuity (VA), and on contrast to which function is impaired most prominently VA and that in the presence of glare due to PCO.1–9 However, we believe that the (glare VA). impairment of visual functions is related to the Methods A total of 41 consecutive eyes with degree of PCO. In eyes with dense PCO that PCO first underwent Nd:YAG laser require neodymium:yttrium-aluminium-garnet capsulotomy of smaller than pupillary size, (Nd:YAG) laser posterior capsulotomy, as all after which the capsulotomy was secondarily visual functions are impaired, VA is associated 1Hayashi Eye Hospital, enlarged, 2 weeks later, to greater than most strongly with the degree of PCO.7 When Fukuoka, Japan pupillary size. Best-corrected VA, and contrast the PCO is slight, however, contrast sensitivity 2 VA and glare VA under photopic and mesopic or glare disability deteriorates with no marked Department of Ophthalmology, School of conditions were measured after the small and loss of VA.8 Medicine, Fukuoka large capsulotomies were made. Nd:YAG laser posterior capsulotomy University, Fukuoka, Japan Results After enlargement, the mean improves these visual functions. However, capsulotomy area increased significantly from surgeons are often perplexed about what size of Correspondence: K Hayashi, 4.8 to 15.3 mm2 (Po0.0001). Best-corrected VA capsulotomy should be made. When a large Department of did not improve significantly after capsulotomy is made, adverse effects of the Ophthalmology, Hayashi Eye Hospital, enlargement (P ¼ 0.1282). However, photopic Nd:YAG capsulotomy, such as retinal 4-7-13 Hakataekimae, 10–12 12,13 contrast VA and glare VA at moderate to low detachment, cystoid macular oedema or Hakata-Ku, contrast visual target before enlargement were a rise in intraocular pressure (IOP),14,15 tend to Fukuoka 812, significantly worse than those after occur. On the other hand, if the capsulotomy is Japan enlargement (Pp0.0242); furthermore, mesopic too small, visual function may not be recovered. Tel: þ 81 92 431 1680; Fax: þ 81 92 441 5303. contrast VA and glare VA improved Indeed, previous studies showed that glare E-mail: hayashi-ken@ significantly after enlargement (Pp0.0431). disability in eyes with a small capsulotomy is hayashi.or.jp Conclusion Contrast VA and glare VA with a worse than those with a large capsulotomy small capsulotomy were significantly worse despite no significant difference in VA.16–18 Received: 18 November than those with a large capsulotomy, which However, to date, there is no study about the 2008 suggests that a capsulotomy larger than the relationship between capsulotomy size and Accepted in revised form: 31 January 2009 pupillary size is necessary to restore contrast contrast sensitivity. Published online: 6 March sensitivity and glare disability. The aim of the study described herein was 2009 Eye (2010) 24, 101–106; doi:10.1038/eye.2009.41; to examine the influence of Nd:YAG laser published online 6 March 2009 capsulotomy size on VA, and on contrast The authors have no sensitivity with and without glare. Because proprietary interest in any of the materials mentioned in Keywords: neodymium:yttrium-aluminium- contrast sensitivity and glare disability varies this article and have garnet laser capsulotomy; visual acuity; contrast substantially from patient to patient, we made received no financial sensitivity; glare disability the Nd:YAG laser posterior capsulotomy of support. Size of Nd:YAG capsulotomy and visual function K Hayashi et al 102 smaller and larger than the papillary size in one eye, and Outcome measures the visual function was strictly compared between the Best-corrected VA on decimal charts, and contrast VA eyes with small capsulotomy and those with large and that in the presence of a glare source (glare VA) were capsulotomy. measured at 2 weeks after the first capsulotomy and at 2 weeks after the enlargement. Contrast VA and glare VA Patients and methods were examined using the Contrast Sensitivity Accurate Tester (CAT-2000; Menicon, Tokyo, Japan).8 This device Patients measures the logarithm of the minimal angle of All pseudophakic patients who were consecutively resolution (logMAR) VA using five contrast visual targets scheduled for Nd:YAG laser posterior capsulotomy (100, 25, 10, 5 and 2.5%) under photopic and mesopic between May 2007 and July 2008 were screened for conditions. Measurement under photopic conditions was 2 inclusion in this study. An Nd:YAG laser capsulotomy made with chart lighting of 100 cd/mm , and that under was scheduled when an eye lost two or more decimal the mesopic conditions was done with chart lighting of 2 lines of VA or when the patient complained of blurred 3 cd/mm . A glare light source of 200 lux was located in 1 vision. One of the authors (KH) verified the presence of the periphery at 20 along the visual axis. definite PCO on slit-lamp biomicroscopy and also The area of the Nd:YAG capsulotomy opening was performed patient screening. When both eyes were measured using the Scheimpflug photography system affected, only the eye that was scheduled for Nd:YAG (EAS-1000; Nidek) at 2 weeks after the small capsulotomy first was screened. Pre-laser exclusion capsulotomy was created and at 2 weeks after its criteria were any pathology of the macula or optic nerve, enlargement. The refractive status (spherical and previous history of inflammation, severe contraction of cylindrical powers) and keratometric cylinder were the anterior capsule or liquefied after-cataract. Eyes of measured using an auto-refractometer (KR-7100; Topcon, diabetic patients and of long axial length were not Tokyo, Japan). The manifest spherical equivalent was excluded. Post-laser exclusion criteria were best- determined as the spherical power plus half the corrected VA of o0.5 due to any pathology of unknown cylindrical power. The pupillary diameter under cause, media opacities other than PCO and any photopic and mesopic conditions was examined using an difficulties with data collection or analysis. A total of 45 electronic pupillometer (FP-10000; TMI, Saitama, Japan). eyes of 45 patients who met the inclusion criteria were The central retinal (foveal) thickness was measured using identified and recruited. The study protocol was the Stratus optical coherence tomography-3 (OCT-3; Carl approved by the institutional review board. Informed Zeiss Meditec, Dublin, CA, USA). IOP was measured by consent was obtained from each patient, and the study the same surgeon (FN) using an applanation tonometer was conducted in accordance with the tenets of the before and at 2 h after the Nd:YAG laser capsulotomy. All Declaration of Helsinki Principles. other measurements were made by ophthalmic technicians who were not aware of the purpose of this study. Laser procedures A surgeon (FN) first made an Nd:YAG laser capsulotomy Statistical analysis of smaller than the pupillary diameter using a Q-switched Nd:YAG laser (YC-1300; Nidek, Gamagori, Decimal VA was converted to a logMAR scale for Japan). After topical anaesthesia, a contact lens was statistical analysis. Contrast VA and glare VA were also applied to enhance power density at the level of the converted to the logarithm of inverse values for statistical posterior capsule. The central posterior capsule within analysis. Best-corrected VA, contrast VA and glare VA, the pupillary area was cleared as much as was possible area of the anterior capsule opening and other without pupil dilation by emitting laser energy on the continuous variables before and after enlargement of posterior capsule; energy levels were between 0.5 and the capsulotomy opening were compared using the 1.5 mJ. Special care was taken to not to pit the intraocular Wilcoxon signed-rank test. Any differences showing lens (IOL) optic. a P-value of o0.05 were considered to be statistically At approximately 2 weeks after the first capsulotomy, significant. after full pupil dilation, the capsulotomy opening was enlarged to greater than the pupillary area Results (approximately 5.0 mm in diameter) by the same surgeon who used almost the same technique as was used for the Of the 45 eyes of 45 patients originally enrolled, 4 eyes smaller capsulotomy. were excluded: 2 patients refused to undergo two-step Eye Size of Nd:YAG capsulotomy and visual function K Hayashi et al 103 Table 1 Patient characteristics significantly better than those before enlargement (P 0.0242), although no significant difference was found Characteristics After small After large P-value p capsulotomy capsulotomy at high contrast visual targets. Under mesopic conditions (Figure 2), contrast VA and glare VA at high to moderate ± F Age 74.1 8.0 visual targets improved significantly after enlargement to Gender (M/F) 9/32 F the large capsulotomy (Pp0.0136), but no significant Left/right 17/24 F SE (D) À0.90±0.90 À1.02±0.87 0.0897a difference was found in the contrast VA and glare VA at low contrast visual target primarily because it was Keratometric immeasurable in most of the patients (Figure 2). ± ± a Cylinder (D) 0.86 0.55 0.83 0.55 0.4468 After both small and large capsulotomies, no significant correlation was found between the opening Pupillary diameter (mm) Photopic 2.47±0.43 2.68±0.69 0.0208b area created by the capsulotomy and best-corrected VA, Mesopic 3.43±0.76 3.62±0.69 0.1504a and between the opening area and the contrast VA or glare VA.
Recommended publications
  • The Important Role of Dysprosium in Modern Permanent Magnets
    The Important Role of Dysprosium in Modern Permanent Magnets Introduction Dysprosium is one of a group of elements called the Rare Earths. Rare earth elements consist of the Lanthanide series of 15 elements plus yttrium and scandium. Yttrium and scandium are included because of similar chemical behavior. The rare earths are divided into light and heavy based on atomic weight and the unique chemical and magnetic properties of each of these categories. Dysprosium (Figure 1) is considered a heavy rare earth element (HREE). One of the more important uses for dysprosium is in neodymium‐iron‐ boron (Neo) permanent magnets to improve the magnets’ resistance to demagnetization, and by extension, its high temperature performance. Neo magnets have become essential for a wide range of consumer, transportation, power generation, defense, aerospace, medical, industrial and other products. Along with terbium (Tb), Dysprosium (Dy) Figure 1: Dysprosium Metal(1) is also used in magnetostrictive devices, but by far the greater usage is in permanent magnets. The demand for Dy has been outstripping its supply. An effect of this continuing shortage is likely to be a slowing of the commercial rollout or a redesigning of a number of Clean Energy applications, including electric traction drives for vehicles and permanent magnet generators for wind turbines. The shortage and associated high prices are also upsetting the market for commercial and industrial motors and products made using them. Background Among the many figures of merit for permanent magnets two are of great importance regarding use of Dy. One key characteristic of a permanent magnet is its resistance to demagnetization, which is quantified by the value of Intrinsic Coercivity (HcJ or Hci).
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Some Structural Aspects of Neodymium Praseodymium Oxalate Single Crystals Grown in Hydro Silica Gels
    Bull. Mater. Sci., Vol. 20, No. 1, February 1997, pp. 37-48. © Printed in India. Some structural aspects of neodymium praseodymium oxalate single crystals grown in hydro silica gels CYRIAC JOSEPH, M A ITTYACHEN and K S RAJU* School of Pure and Applied Phy~cs, Mahatma Gandhi University, Kottayam 686 031, India *Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India MS received 25 September 1996; revised 14 November 1996 Abstract. The mixed crystals of neodymium praseodymium oxaiate are grown by the diffusion of a mixture of aqueous solutions of neodymium nitrate and praseodymium nitrate (as an upper reactant) into the set gel embedded with oxalic acid. By varying the concentration (by volume) of rare earth nitrates in the upper reactant, the incorporation of Nd and Pr in the mixed crystals has been studied. Tabular crystals with the well defined hexagonal basal planes are observed in the mixed crystals of varying concentrations. X-ray diffraction patterns of these powdered samples reveal that these mixed crystals are 'isostructural', while IR and FTIR spectra establish the presence of oxalate groups. TGA and DSC analyses show the correctness of the chemical formula for the mixed crystals, by the release of water molecules (endothermic) and of CO and CO2 (exothermic), with the rare earth oxides as the stable residue. X-ray fluorescence (XRF) and energy dispersive X-ray analyses (EDAX) establish the presence of heavy rare earth elements qualitatively and to a good extent quantitatively. X-ray photo- electron spectroscopic (XPS) studies confirm the presence of rare earth elements (Nd and Pr) as their respective oxides.
    [Show full text]
  • Interactions of Lanthanides and Liquid Alkali Metals for “Liquid-Like” Lanthanide Transport in U-Zr Fuel
    Interactions of Lanthanides and Liquid Alkali Metals for “Liquid-Like” Lanthanide Transport in U-Zr Fuel THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jeremy Payton Isler Graduate Program in Nuclear Engineering The Ohio State University 2017 Master's Examination Committee: Dr. Jinsuo Zhang, Advisor Dr. Marat Khafizov, Co-Advisor Copyrighted by Jeremy Payton Isler 2017 Abstract One of the major limitations in achieving increased burnup in metallic U-Zr nuclear fuel is Fuel-Cladding Chemical Interaction (FCCI). The migration of the fission product lanthanides from within the fuel to the peripheral is one of the major contributors to FCCI. A “liquid-like” transport mechanism proposes the lanthanide transport is aided by liquid cesium and liquid sodium in the pores of the fuel and at the fuel peripheral. The purpose of this thesis was to provide additional experimental evidence towards this proposed mechanism. This thesis investigated the interaction between the lanthanides and cesium and sodium, with a focus on the solubility of the lanthanides in these liquid alkali metals. First, a prediction of the solubility was calculated using the Miedema model. This prediction was then compared to the inversion crucible solubility experiment performed in this thesis. The solubility experiment studied the temperature and liquid-composition dependence of the lanthanides in liquid sodium, cesium and sodium-cesium mixtures. In addition, the solubility in mixtures shows the various alkali metals concentration effect on the solubility. With the results of differential scanning calorimetry (DSC) experiments, updated phase diagrams for sodium-neodymium and cesium-neodymium were obtained from the experimental data in this thesis.
    [Show full text]
  • The Role of Cobalt in Neodymium Iron
    TECHNotes The Role of Cobalt in NdFeB Permanent Magnets Neodymium iron boron (“Neo”) permanent magnets, discovered in 1980 and commercialized by 1984, remain the strongest magnets known to man – at least near room temperature. All magnets experience a change in properties as a function of temperature. As the Neo magnet temperature increases, both intrinsic coercivity, HcJ, and magnetic field strength, Br, decrease. Over a limited temperature range, these changes are non-destructive and reversible and are quantified by what are called Reversible Temperature Coefficients of Induction, (Br), and Intrinsic Coercivity (HcJ). These coefficients are the average rate of change between temperature limits. The changes are non-linear so it is necessary to state the temperature range over which the coefficients are calculated. To permit Neo magnets to operate at elevated temperatures, two composition changes are introduced. Figure 1. Magnetic field strength of iron, cobalt and nickel as a 1. The substitution of the heavy rare earth elements function of temperature. [1] (HREEs) dysprosium and/or terbium for a portion of the neodymium increases the anisotropy field. This provides higher room temperature intrinsic coercivity and reduces the rate at which coercivity drops as temperature increases – smaller reversible temperature coefficient of (intrinsic) coercivity. 2. Substitution of cobalt for a portion of iron raises the magnet Curie temperature, Tc, and reduces the rate at which magnetic field strength, B, changes as a function of temperature. This TECHNote focuses on the effects of cobalt on magnet Curie temperature, residual induction, intrinsic coercivity and corrosion resistance. Curie Temperature Figure 2. Magnetization versus magnetic field strength for Both ferro- and ferrimagnetic materials exhibit a NdFeB magnets with three levels of cobalt.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Effect of the Addition of Low Rare Earth Elements (Lanthanum, Neodymium, Cerium) on the Biodegradation and Biocompatibility of Magnesium
    Acta Biomaterialia 11 (2015) 554–562 Contents lists available at ScienceDirect Acta Biomaterialia journal homepage: www.elsevier.com/locate/actabiomat Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium Elmar Willbold a,b,1, Xuenan Gu c,d,1, Devon Albert a,b,e, Katharina Kalla a,b, Katharina Bobe a,b, Maria Brauneis a,b, Carla Janning a,b, Jens Nellesen f, Wolfgang Czayka f, Wolfgang Tillmann f, ⇑ ⇑ Yufeng Zheng c, , Frank Witte a,b,2, a Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany b CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopaedic Surgery, Hannover Medical School, Feodor-Lynen-Straße 31, 30625 Hannover, Germany c Department of Materials Science and Engineering, College of Engineering, Peking University, No. 5 Yi-He-Yuan Road, Hai-Dian District, Beijing 100871, China d Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China e Swanson School of Engineering, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA f Institute of Materials Engineering, Technische Universität Dortmund, Leonhard-Euler-Straße 2, 44227 Dortmund, Germany article info abstract Article history: Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegrad- Received 7 May 2014 able devices in biomedical applications. Rare earth elements have significant effects on the high temper- Received in revised form 15 September ature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance.
    [Show full text]
  • Developing a High Grade Neodymium & Praseodymium Mine
    Developing a High Grade Neodymium & Praseodymium Mine HASTINGS Investor Presentation Technology Metals Limited July 2018 All currency amounts are in A$ unless stated otherwise. Disclaimer This presentation has been prepared by Hastings Technology Metals Limited (“Company”). It does not purport to contain all the information that a prospective investor may require in connection with any potential investment in the Company. You should not treat the contents of this presentation, or any information provided in connection with it, as financial advice, financial product advice or advice relating to legal, taxation or investment matters. This presentation is provided expressly on the basis that you will carry out your own independent inquiries into the matters contained in the presentation and make your own independent decisions about the affairs, financial position or prospects of the Company. The Company reserves the right to update, amend or supplement the information at any time in its absolute discretion (without incurring any obligation to do so). Neither the Company, nor its related bodies corporate, officers, their advisers, agents and employees accept any responsibility or liability to any person or entity as to the accuracy, completeness or reasonableness of the information, statements, opinions or matters (express or implied) arising out of, contained in or derived from this presentation or provided in connection with it, or any omission from this presentation, nor as to the attainability of any estimates, forecasts or projections set out in this presentation. Pursuant to the general law (whether for negligence, under statute or otherwise), or any Australian legislation or any other jurisdiction. Any such responsibility or liability is, to the maximum extent permitted by law, expressly disclaimed and excluded.
    [Show full text]
  • Neodymium, Samarium and Europium Capture Cross-Section Adjustments Based on Ebr-Ii Integral Measurements
    NEODYMIUM, SAMARIUM AND EUROPIUM CAPTURE CROSS-SECTION ADJUSTMENTS BASED ON EBR-II INTEGRAL MEASUREMENTS by R. A. Anderi and Y. D. Marker Idaho National Engineering Laboratory EG&G Idaho, Inc. F. Schmittroth Hanford Engineering Development Laboratory Contributed Paper for the NEANDC Specialist Meeting on Neutron Cross Sections of Fission-Product Nuclei December 12-14, 1979, Bologna, Italy - DISCLAIMER • DISTRIBUTION 0F THIS DOCUHSfT IS NEODYMIUM, SAMARIUM AND EUROPIUM CAPTURE CROSS-SECTION ADJUSTMENTS BASED ON EBR-II INTEGRAL MEASUREMENTS R. A. Anderl and Y. D. Harker Idaho National Engineering Laboratory EG&G Idaho, P.O. Box 1625 Idaho Falls, Idaho USA 83415 F. Schmittroth Hanford Engineering Development Laboratorty P.O. Box 1970 Richland, Washington 99352 Abstract Integral capture measurements have been made for high-enriched iso- topes of neodymium, samarium and europium irradiated in a row 3 position of EBR-II with samples located both at mid-plane and in the axial reflector. Broad response, resonance, and threshold dosimeters were included to character- ize the neutron spectra at the sample locations. The saturation reaction rates for the rare-earth samples were determined by post-irradiation mass- spectrometric analyses and for the dosimeter materials by the gamma-spectro- metric method. The HEDL maximum-likelihood analysis code, FERRET, was used to make a "least-squares adjustment" of the ENDF/B-IV rare-earth cross sections based on the measured dosimeter and fission-product reaction rates. Preliminary results to date indicate a need for a significant upward adjust- ment of the capture cross sections for ltf3Nd, li+5Nd, lt+7Sm and li+aSm. Introduction In recent years, integral data (capture reaction rates and reactivity worth measurements in fast-reactor fields) have played an important role in the evaluation of fission-product capture cross sections of importance to reactor technology, especially the development of fast reactor systems/1/.
    [Show full text]
  • BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To
    BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged to Four and Five Significant Figures Norman E. Holden Energy Sciences & Technology Department National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Prepared for the 44th IUPAC General Assembly, in Torino, Italy August 2007 Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • The Separation of Neodymium and Praseodymium by Ion Exchange I
    THE SEPARATION OF NEODYMIUM AND PRASEODYMIUM BY ION EXCHANGE I. EFFECT OF COLUMN LENGTH, LOADING, AND pH OF ELUENT A THESIS Presented to the Faculty of the Division of Graduate Studies Georgia Institute of Technology In Partial Fulfillment of the Requirements for the Degree [aster of Science in Chemical Engineering by William Nelson Johnson June 1950 228S89 ii THE SEPARATION OP NEODYMIUM AND PRASEODYMIUM BY ION EXCHANGE,.I. EFFECT OF COLUMN LENGTH LOADING, AND pH OF ELUENT. Approved: * ___. JLzZ__ ~7^- """" -s jL-J- i L ±-Zi Date Approved by Chairman 7g^t Z7 f*JS~b iii ACKNOWLEDGEMENTS I wish to thank Dr. W. T. Ziegler for his invalu­ able aid, guidance, and encouragement in the prosecution of this problem as well as for his suggestion of it, I also wish to express my thanks to Mr. J, T. Roberts, Jr. and Mr. -P. LaPond for experimental information aiding and verifying my experiments. Last, but by no means least, I wish to express my gratitude to my wife for her help and encouragement in the long hours required at the laboratory in the gathering of data. iv TABLE OF CONTENTS PAGE Approval of thesis ii Acknowledgements iii List of Tables vi List of Figures vii Foreword ..... viii Abstract of Thesis ix CHAPTER I INTRODUCTION 1 II GENERAL THEORETICAL BACKGROUND 5 III EXPERIMENTAL 8 Apparatus 8 Materials ....„• 8 Column Operation 10 IV DISCUSSION OF RESULTS 13 General 13 Flow rate 20 Acid Front 21 Effect of pH 22 Effect cf Column length 29 Effect of Loading 32 BIBLIOGRAPHY 1+0 V APPENDIX I: Preparation of adsorbate solution lj-2 Conditioning of the resin i|lj.
    [Show full text]