LC Columns and Accessories

Total Page:16

File Type:pdf, Size:1020Kb

LC Columns and Accessories Thermo Scientific Chromatography Columns and Consumables Thermo Scientific Chromatography Columns and Consumables 2014-2015 2014-2015 Your world of chromatography predictability LC Columns and Accessories As a leader in LC column technology including silica, polymer and porous graphitic carbon manufacturing, bonded phase production and column packing for over 35 years, you can rely on the quality of Thermo Scientific HPLC products. Here we 2014-2015 showcase our latest and most comprehensive range of innovative columns, accessories and equipment for fast LC, analytical HPLC and biomolecule separations. Chromatography Columns and Consumables Thermo Scienti c Thermo Scienti 4 LC Columns and Accessories Section Contents Introduction . 4-001 LC Accessories. 4-158 Column Selection. 4-002 LC Equipment . 4-186 Column Protection . 4-016 LC Reagents . 4-193 Columns for Fast and Analytical LC . 4-022 LC and LC-MS Instrument Parts . 4-209 Columns for Biomolecules . 4-110 Technical Information. 4-231 Featured Products Accucore Columns Syncronis Columns Hypersil GOLD Columns Ultimate core performance - Consistent, reproducible separations, Outstanding peak shape for speed and selectivity combined column after column, time after time your separations PAGE 4-042 PAGE 4-074 PAGE 4-024 MAbPac Columns Acclaim PepMap Columns Viper Connectors Unrivalled resolution and ef ciency The standard for peptide Simple, dead volume free plumbing in the analysis of protein variants separations in proteomics of HPLC and UHPLC systems PAGE 4-126 PAGE 4-149 PAGE 4-158 www.thermoscienti c.com/chromatography 4-001 LC Column Selection Information in the following section will help you make an informed decision on the appropriate HPLC column for your application, based on stationary phase use, analyte properties, LC-MS requirements or USP specifications. You will also find a useful table of Thermo Scientific phases with specifications, as well as recommended Thermo Scientific alternatives for other popular columns. Refer to the Advanced User Graphic (AUG) on the The Pore Size is shown, with larger pore size columns Hydrophobicity corresponding product page (illustrated to the right) being more applicable to larger analytes such as Low High for more help and information on general purpose proteins or peptides. The percentage Carbon Load pH Range column selection. is related to the hydrophobicity. Below the icon, you 012 to 8 4 The AUG will show you Hydrophobicity which gives will see the particle sizes available, as well as the Pore Size the relative retention on the column. Generally, the USP code. These graphics are designed to allow you to quickly compare the main characteristics of multiple 0 80Å 300 higher the hydrophobicity, the greater the retention Carbon Load (%) stationary phases, allowing you to choose quickly the LC Columns and Accessories of neutral compounds and the higher the organic 025 5 content in the mobile phase. A lower value indicates most appropriate stationary phase for your analysis. Particle Size 2.6µm USP L11 a need for higher aqueous mobile phases to achieve For additional help in column selection, please comparable retention and resolution. The see the back cover to contact our expert Technical Advanced User Graphic (AUG) recommended pH Range for the column is illustrated, Support and tap into our expertise to help make outside of which column lifetimes will diminish. the best choice for your application. Common HPLC Phases and Their Uses Common Alternative Functional Normal Reverse Ion HILIC Application Name Name Group Phase Phase Exchange Silica Silica -OH • • Non-polar and moderately polar organic compounds. C1 SAS -(CH ) Least retentive of all alkyl group bonded phases for non-polar solutes. 3 3 • Typically used for moderately polar and multi-functional compounds. C4 Butyl -C4H9 • Shorter retention than C8, C18. Separation of peptides and proteins. C8 MOS -C H Less retentive than C18; normally used for small peptides and 8 17 • proteins, pharmaceuticals, steroids, environmental samples. C18 ODS -C H Most retentive of the alkyl-bonded phases. Used widely for 18 37 • pharmaceuticals, steroids, fatty acids, phthalates, environmental etc. Cyano CPS, CN -(CH2)3CN Unique selectivity for polar compounds, more suitable than base silica for normal phase gradient separations. When used in reversed •• phase, the selectivity is different to that of the C8 and C18 phases. Useful for a wide range of pharmaceutical applications and for mixtures of very different solutes. Amino APS -(CH2)3NH2 HILIC: Carbohydrate analysis and other polar compounds. 2014-2015 •••• Weak anion exchange: anions and organic acids. Normal Phase: Alternative selectivity to silica. Good for aromatics. Phenyl -(CH3)C6H5 • Aromatic compounds and moderately polar compounds. Penta uo- PFP -C F Extra selectivity and retention for halogenated, polar compounds 6 5 • rophenyl and isomers. Diol -(CH ) Reversed Phase: Proteins, peptides. 2 2O •• • CH2(CH2OH)2 Normal Phase: Similar selectivity to silica, but less polar. SCX Strong Cation -RSO H- Organic bases. 3 • Exchanger SAX Strong Anion -RN+(CH ) Organic acids, nucleotides and nucleosides. 3 3 • Exchanger AX Anion Exchanger -(CH2CH2NH-)n Organic acids, nucleotides and oligonucleotides. Polyethyleneimine • Chromatography Columns and Consumables (PEI) Porous PGC 100% carbon Particularly useful for the separation of highly polar compounds that graphitic are dif cult to retain using conventional silica based columns; •• carbon separation of structurally similar compounds (e.g., isomers, diastereoisomers). Thermo Scienti c Thermo Scienti 4-002 HPLC Stationary Phase Column Selection LC Columns and Accessories Before beginning a new analysis, consider the physical and chemical properties of the analyte(s), the mode of analysis and how the analyte(s) will interact with the surface of the chromatographic phase. To aid column selection, the following guide may be useful. Non-polar Analyte Solubilty Analyte Chemical Properties Mode of Separation Recommended Phase Acclaim Mixed-Mode WAX-1 4-069 Acidic pK > 2 Anion exchange / Reversed-phase mixed mode a Acclaim Trinity P1 4-091 Accucore C18 4-045 Accucore RP-MS 4-044 Accucore C8 4-046 Accucore C30 4-052 Accucore Phenyl-Hexyl 4-049 Acclaim 120 C18 4-061 Acclaim 120 C8 4-062 Non-polar Reversed phase >> Acclaim C30 4-064 Column Selection Acclaim Phenyl-1 4-063 Hypersil GOLD 4-026 Hypersil GOLD C8 4-027 Hypersil GOLD C4 4-028 Neutral Syncronis C18 4-075 Syncronis C8 4-076 Accucore aQ 4-047 Accucore Polar Premium 4-048 Accucore PFP 4-051 Accucore Phenyl-X 4-050 Acclaim PolarAdvantage 4-065 Polar Moderately-polar Reversed phase solvents Acclaim PolarAdvantage II 4-066 Hypersil GOLD aQ 4-029 Hypersil GOLD PFP 4-030 Hypersil GOLD Phenyl 4-031 Syncronis aQ 4-077 Syncronis Phenyl 4-078 Accucore C18 4-045 Accucore RP-MS 4-044 Accucore C8 4-046 Accucore C30 4-052 Accucore Phenyl-Hexyl 4-049 Acclaim 120 C18 4-061 Acclaim 120 C8 4-062 Reversed phase Acclaim C30 4-064 Basic pK < 10 a Acclaim Phenyl-1 4-063 Hypersil GOLD 4-026 Hypersil GOLD C8 4-027 Hypersil GOLD C4 4-028 Syncronis C18 4-075 Syncronis C8 4-076 Acclaim Mixed-Mode WCX-1 4-070 Cation exchange / Reversed-phase mixed mode Acclaim Trinity P1 4-091 www.thermoscienti c.com/chromatography 4-003 HPLC Stationary Phase Column Selection continued Polar Analyte Solubilty Analyte Chemical Properties Mode of Separation Recommended Phase Polar retention effect on graphite Hypercarb 4-084 Hypersil GOLD AX 4-034 Anion exchange Hypersil GOLD SAX 4-035 Acidic pKa < 2 Accucore Urea-HILIC 4-054 Accucore 150-Amide-HILIC 4-146 HILIC Acclaim HILIC-10 4-067 Syncronis HILIC 4-081 Polar retention effect on graphite Hypercarb 4-084 Accucore HILIC 4-053 Acclaim Mixed-Mode HILIC-1 4-068 LC Columns and Accessories Acclaim Mixed-Mode WAX-1 4-069 Acclaim Mixed-Mode WCX-1 4-070 Polar Neutral solvents HILIC Acclaim Trinity P1 4-091 Hypersil GOLD Amino 4-033 Hypersil GOLD HILIC 4-037 Syncronis Amino 4-079 Syncronis HILIC 4-081 Polar retention effect on graphite Hypercarb 4-084 Acclaim Mixed-Mode WCX-1 4-070 Cation exchange Acclaim Trinity P1 4-091 Basic pKa > 10 Accucore Urea-HILIC 4-054 Accucore 150-Amide-HILIC 4-146 HILIC Acclaim HILIC-10 4-067 Syncronis HILIC 4-081 Hypersil GOLD Amino 4-033 Hypersil GOLD CN 4-032 Non-polar Normal phase Hypersil GOLD Silica 4-036 solvents Syncronis Amino 4-079 Syncronis Silica 4-080 The above table recommends columns for the separation of small molecule analytes. Column recommendations for the separation of biomolecules can be found in the table on page 4-111 2014-2015 Chromatography Columns and Consumables Thermo Scienti c Thermo Scienti 4-004 Column Format Selection for LC-MS LC Columns and Accessories The Thermo Scientific range offers a broad array of column designs and stationary phases optimized for LC-MS applications. Use the following table to help you choose your column format to best meet your application needs. A variety of HPLC column hardware configurations are available, designed to give superior results for high speed, high sensitivity, high efficiency and convenience. A wide range of particle and monolithic stationary phases allows choices for optimized selectivity. Column Hardware Selection for LC-MS LC-MS Application Column Hardware Design Description High throughput analysis Javelin HTS columns Direct-connection columns Slim design, 20mm length, 1mm to 4.6mm ID High sensitivity analysis Acclaim PepMap nano, capillary Nano, capillary and micro columns 0.075mm to 1mm ID; 50 to 250mm length and micro columns nanoViper format
Recommended publications
  • I. Chromatography
    Chromatography & Electrophoresis I. Chromatography • Chroma: “color” + graph: “measure” Separation Techniques – Developed in 19th century to separate pigments from plants and dyes Purifying & analyzing macromolecules – Refined technique now used to separate, (e.g., proteins & DNA) from a mixture analyze, & purify wide range of compounds I. Chromatography • Still called “chromatography” even though no longer limited to separating colored molecules II. Electrophoresis Mixture of macromolecule solutes from Chromatography sample dissolved in mobile phase Stationary phase: gel, beads, or other solid medium with specific absorptive characteristics Mobile phase: fluid solvent that flows over/through the stationary phase Separation of macromolecule solutes Solutes interact with stationary phase from mixture in original sample — ↑ interaction Æ Ø migration rate based upon relative rates of migration through the stationary phase Ø interaction Æ ↑ migration rate •Solutes that interact strongly with the stationary phase do not migrate very far Types of interactions: Interactions may be modified by manipulating •Solutes that interact with the stationary phase • Size migrate slower than the mobile phase • Charge the mobile phase: ∆ pH • Polarity/hydrophobicity ∆ Ionic strength • Non-specific binding ∆ Polarity •Solutes that do not interact with the stationary phase • Specific binding migrate at the same rate as the mobile phase ∆ Competitive binding Bruce Heyer 1 Chromatography & Electrophoresis Column chromatography Column chromatography • Solid phase as beads or particles packed in a cylinder • Solid phase as beads or particles packed in a cylinder Load sample containing mixture of macromolecules onto top of solid phase bed Pattern of bands reveals which • Elution macromolecules were in the sample mixture – Allows collecting separated fractions containing purified macromolecules Elute mobile phase fluid from bottom of column while adding fresh mobile phase to top Other types of chromatography II.
    [Show full text]
  • F:\IJCAS\Sept 2010 Ijcas\3Aasth
    Aastha Ahuja et al. /International Journal of Chemical and Analytical Science 2010, 1(9),205-207 Review Article Available online through ISSN: 0976-1209 www.ijcas.info Advances In HPLC Column Packing *Aastha Ahuja, Rahul Chib, Mukul Sonker, Geet Sethi, Shweta Gupta , Anju Hooda Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), University of Delhi Pushp vihar, sector-3, New Delhi-110017 Received on: 20-05-2010; Revised on: 16-06-2010; Accepted on:15-07-2010 ABSTRACT High Performance Liquid Chromatography (HPLC) is a highly improved form of column chromatography in which instead of a solvent being allowed to drip through a column under gravity, it is forced through under high pressures of up to 400 atmospheres(500-5000 p.s.i). The sensitivity and range of the technique depends on the choice of column and on the efficiency of the overall system. Column technology has seen great developments over the years. The transition from large porous particles and pellicular materials to small porous particles occurred in the early 1970s, when micro particulate silica gel (10 -mm dp) came into light and appropriate packing methods were developed. Monolithic columns are a promising alternative to packed columns in the future but much of the research is yet to be done. The use of CAPILLARY COLUMNS (4 mm) has increased in recent years, in part because small-diameter columns use much less solvent and provide higher sensitivity. While speaking of the future of packaging development, silica gel with chemically bonded phases will be around for a long time. The field is a promising one with great scope for research and development.
    [Show full text]
  • Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), Ion Exchange Chromatography (IC), Super Critical Fluid Chromatography (SFC)
    Chromatography For S. Y. B. Sc. Sem-IV By: Dr Vipul B. Kataria The technique was invented by Russian botanist Mikhail tswett in 1906. The word Chromatography is derived from latin language and in this word chroma means “colour” and graphein means “to write”. It can be defined as a method of separating a mixture of components into individual component through equilibrium distribution between two phases. Essentially, it is based upon the differences in rate at which the components of mixture move through a porous medium (stationary phase) under the influence of gas or liquid (mobile phase). Some basic terminology Analyte: substance that to be analysed. Chromatogram: Visual output of chromatography. Stationary phase: Non-moving phase that provides support for mixture to move. Mobile phase: Moving phase to specific direction. Eluent: Solvent that carries analyte. Retention time: it is specific time required for a particular analyte to pass through the system. Classification of chromatography Chromatography can be classified into different way based upon different aspects. 1 | Page 1. Based upon geometry On the basis of geometry, chromatography can be classified into following. a. Planar: Paper chromatography and thin layer chromatography (TLC) b. Column: Gas chromatography (GC), High performance liquid chromatography (HPLC), Ion exchange chromatography (IC), Super critical fluid chromatography (SFC). 2. Based upon mobile phase On the basis of mobile phase, chromatography can be classified into following. a. Gas chromatography: Mobile phase is gas. b. Liquid chromatography: Mobile phase is liquid. c. SFC: Supercritical fluid chromatography. Mobile phase is CO2 in liquid form. 3. Based upon stationary phase On the basis of stationary phase, Chromatography can be classified into following.
    [Show full text]
  • Basic Principles of Chromatography
    27 chapter Basic Principles of Chromatography Baraem Ismail ∗ Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108-6099, USA [email protected] and S. Suzanne Nielsen Department of Food Science, Purdue University, West Lafayette, IN 47907-2009, USA [email protected] 27.1 Introduction 475 27.2.3 Countercurrent Extraction 475 27.2 Extraction 475 27.3 Chromatography 475 27.2.1 Batch Extraction 475 27.3.1 Historical Perspective 475 27.2.2 Continuous Extraction 475 27.3.2 General Terminology 476 S.S. Nielsen, Food Analysis, Food Science Texts Series, DOI 10.1007/978-1-4419-1478-1_27, 473 °c Springer Science+Business Media, LLC 2010 474 Part V • Chromatography 27.3.3 Gas Chromatography 476 27.4.3 Ion-Exchange Chromatography 483 27.3.4 Liquid Chromatography 477 27.4.4 Size-Exclusion Chromatography 485 27.3.4.1 Paper Chromatography 477 27.4.5 Affinity Chromatography 488 27.3.4.2 Thin-Layer 27.5 Analysis of Chromatographic Peaks 489 Chromatography 478 27.5.1 Separation and Resolution 490 27.3.4.2.1 General 27.5.1.1 Developing a Separation 490 Procedures 478 27.5.1.2 Chromatographic 27.3.4.2.2 Factors Affecting Resolution 491 Thin-Layer 27.5.1.2.1 Introduction 491 Separations 478 27.5.1.2.2 Column 27.3.4.3 Column Liquid Efficiency 492 Chromatography 479 27.5.1.2.3 Column 27.3.5 Supercritical Fluid Chromatography 480 Selectivity 494 27.4 Physicochemical Principles of Chromatographic 27.5.1.2.4 Column Capacity Separation 481 Factor 494 27.4.1 Adsorption (Liquid–Solid) 27.5.2 Qualitative Analysis 495 Chromatography 481
    [Show full text]
  • Mechanism of Paper Chromatography of Inorganic Ions on Impregnated Papers: Separation of Ag(I), Cu(II), Ni(II), Co(II), Hg(II), Pbcii) & Feciii)
    indian Journal or Chemistry Vol. 15A, December 1977, pp. 1089-109l Mechanism of Paper Chromatography of Inorganic Ions on Impregnated Papers: Separation of Ag(I), Cu(II), Ni(II), Co(II), Hg(II), PbCII) & FeCIII) R. P. BHATNAGAR & N. P. BHATNAGAR Department of Chemistry. Jiwaji University. Gwalior 2 Received 24 September 1976; revised 28 March 1977; accepted 16 July 1977 Migration of ions on filter papers impregnated with aqueous glycine (2%, w/v) and ammonium thiocyanate (4%, w{v) solutions has been studied. Organic solvents like alcohols, ketones and chloroform have been used as mobile phases to get the RJ data. The migration tendencies of different ions have been explained on the basis of a new mechanism of paper chromatography with impregnated papers using polar and non-polar solvents. The migration of inorganic ions in polar solvents (with donor properties) on untreated papers has also been studied. ANY attempts have been made to explain the tapering free end (width 2 mm; length 2-3 em) were mechanism of paper chromatography+P, Re- prepared as described earlier13,14 from untreate d Mcently janardhan and Paul-l have tried to as well as treated (impregnated) papers. Spotting explain the migration of inorganic ions by proposing of the metal ions was done by micropipette (",,0·02 a stepwise mechanism involving (i) adsorption of the ml or 30-50 fLgper drop). After the spots had been metal ion on the cellulose through ion association dried, development was carried out by irrigating leading to ion-associated metal-cellulose complex, with the required solvent system (--2 hr) in airtight (ii) desorption of the ion due to its displacement chambers previously saturated with the vapours by the proton of the acid present in the solvent of the solvent concerned and water.
    [Show full text]
  • PAPER and THIN LAYER CHROMATOGRAPHY (TLC) Objectives
    PAPER AND THIN LAYER CHROMATOGRAPHY (TLC) Objectives • Understand the principle of Paper and Thin Layer Chromatography (TLC). • Diagnose two samples of urine for Phenylketonuria and Cystinuria, using paper chromatography and TLC. Chromatography • Is the collective term for a set of laboratory techniques for the separation of mixtures. • Chromatography is a method by which a mixture is separated by distributing its components between two phases. The stationary phase remains fixed in place while the mobile phase carries the components of the mixture through the medium being used • -The separation of materials is based on differential partitioning [retardation]between the mobile and stationary phases. Chromatography • The mobile phase (also known as solvent) may be either liquid or gas. • The stationary phase (also known as sorbent) can be either a solid or liquid, a liquid stationary phase is held stationary by a solid (support or matrix). • The molecules in the mixture to be separated are the solutes Uses of Chromatography Uses of chromatography in general Identifying To know the Can be used as a Establishing purity unknown property of a purification of a sample compounds. specific compound process Types of Chromatography will be studied in this course • Thin layer chromatography • Paper chromatography • Gel filtration • Ion exchange chromatography Paper and Thin layer chromatography • Method for testing the purity of compounds and identifying substances. • Useful technique because it is relatively quick and requires small quantities of material. 1-Paper chromatography - is one of the types of chromatography procedures which runs on a piece of specialized paper. Phases in which substance will be separated The stationary phase Mobile phase is a water molecules is the solvent (in our bound to an (inert) lab butanol with cellulose matrix acetic acid) • [solutes are separated according to their solubility in mobile phase, or their attraction to the stationary phase] -(Depend in the polarity).
    [Show full text]
  • Separation Science - Chromatography Unit Thomas Wenzel Department of Chemistry Bates College, Lewiston ME 04240 [email protected]
    Separation Science - Chromatography Unit Thomas Wenzel Department of Chemistry Bates College, Lewiston ME 04240 [email protected] LIQUID-LIQUID EXTRACTION Before examining chromatographic separations, it is useful to consider the separation process in a liquid-liquid extraction. Certain features of this process closely parallel aspects of chromatographic separations. The basic procedure for performing a liquid-liquid extraction is to take two immiscible phases, one of which is usually water and the other of which is usually an organic solvent. The two phases are put into a device called a separatory funnel, and compounds in the system will distribute between the two phases. There are two terms used for describing this distribution, one of which is called the distribution coefficient (DC), the other of which is called the partition coefficient (DM). The distribution coefficient is the ratio of the concentration of solute in the organic phase over the concentration of solute in the aqueous phase (the V-terms are the volume of the phases). This is essentially an equilibration process whereby we start with the solute in the aqueous phase and allow it to distribute into the organic phase. soluteaq = soluteorg [solute]org molorg/Vorg molorg x Vaq DC = --------------- = ------------------ = ----------------- [solute]aq molaq/Vaq molaq x Vorg The distribution coefficient represents the equilibrium constant for this process. If our goal is to extract a solute from the aqueous phase into the organic phase, there is one potential problem with using the distribution coefficient as a measure of how well you have accomplished this goal. The problem relates to the relative volumes of the phases.
    [Show full text]
  • Laboratory Manual
    Biology Laboratory Manual Twelfth Edition Darrell S. Vodopich Baylor University Randy Moore University of Minnesota vod00720_fm_i-xii.indd 1 10/16/18 1:57 PM BIOLOGY LABORATORY MANUAL, TWELFTH EDITION Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2020 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Previous editions © 2017, 2014, and 2011. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning. Some ancillaries, including electronic and print components, may not be available to customers outside the United States. This book is printed on acid-free paper. 1 2 3 4 5 6 7 8 9 LMN 21 20 19 ISBN 978-1-260-20072-0 (bound edition) MHID 1-260-20072-8 (bound edition) ISBN 978-1-260-41330-4 (loose-leaf edition) MHID 1-260-41330-6 (loose-leaf edition) Portfolio Manager: Andrew Urban Product Developer: Donna Nemmers Marketing Manager: Kelly Brown Content Project Managers: Jessica Portz & Sandra Schnee Buyer: Laura Fuller Design: David W. Hash Content Licensing Specialist: Lorraine Buczek Cover Image: ©Darrell S. Vodopich Compositor: MPS Limited All credits appearing on page are considered to be an extension of the copyright page. Some of the laboratory experiments included in this text may be hazardous if materials are handled improperly or if procedures are conducted incorrectly.
    [Show full text]
  • Experiment 4: Thin Layer Chromatography (TLC) in LTOC, Read the Introduction to Part 4, Chromatography, on Pp 253-254, Then Read Pp 255-269, Chapter 18
    1 Experiment 4: Thin Layer Chromatography (TLC) In LTOC, read the introduction to Part 4, Chromatography, on pp 253-254, then read pp 255-269, Chapter 18. View video 18.1 Thin-layer Chromatography at http://www.macmillanlearning.com/Catalog/studentresources/mohrig4e. Thin layer chromatography (TLC) is an easy, convenient and inexpensive way to determine how many components are in a mixture and, in many instances, can be used to identify the components as well. In today’s experiments, you will gain experience with both paper and thin layer chromatography, you will work with a variety of developing solvents, and you will use several different techniques to visualize the spots of a chromatogram. Paper chromatography, which will be used to separate amino acids, is a form of partition chromatography (see LTOC page 253). Water, a component of the developing solvent, forms hydrogen bonds with the fibers of the paper and serves as the stationary phase. The organic liquids that are also present in the developing solvent serve as the mobile phase. The components of the mixture are drawn up the paper to different heights, depending on their solubility in the mobile phase. The compounds that are more soluble in the organic liquid remain dissolved in the mobile phase longer than those that are less soluble and thus travel further up the paper. Proteins, large molecules found in all living organisms, serve a variety of functions in metabolism, such as catalysis, transport, storage, control of growth and immune protection. Amino acids are the building blocks of proteins. Every amino acid has an amino group, a carboxyl group and a distinctive side-chain.
    [Show full text]
  • Chromatography Chromatography Is Usually Introduced As a Technique for Separating And/Or Identifying the Components in a Mixture
    116 Modern Chemical Techniques THE ROYAL Unilever SOCIETY OF CHEMISTRY 5. Chromatography Chromatography is usually introduced as a technique for separating and/or identifying the components in a mixture. The basic principle is that components in a mixture have different tendencies to adsorb onto a surface or dissolve in a solvent. It is a powerful method in industry, where it is used on a large scale to separate and purify the intermediates and products in various syntheses. The theory There are several different types of chromatography currently in use – ie paper chromatography; thin layer chromatography (TLC); gas chromatography (GC); liquid chromatography (LC); high performance liquid chromatography (HPLC); ion exchange chromatography; and gel permeation or gel filtration chromatography. Basic principles All chromatographic methods require one static part (the stationary phase) and one moving part (the mobile phase). The techniques rely on one of the following phenomena: adsorption; partition; ion exchange; or molecular exclusion. Adsorption Adsorption chromatography was developed first. It has a solid stationary phase and a liquid or gaseous mobile phase. (Plant pigments were separated at the turn of the 20th century by using a calcium carbonate stationary phase and a liquid hydrocarbon mobile phase. The different solutes travelled different distances through the solid, carried along by the solvent.) Each solute has its own equilibrium between adsorption onto the surface of the solid and solubility in the solvent, the least soluble or best adsorbed ones travel more slowly. The result is a separation into bands containing different solutes. Liquid chromatography using a column containing silica gel or alumina is an example of adsorption chromatography (Fig.
    [Show full text]
  • Table of Contents
    Table of Contents List of Figures and Tables 3 List of Abbreviations 4 Abstract 5 Introduction 6 Background 6 Phytochemical categorization 6 Extraction 10 Separation and detection techniques 11 Experimental Methods 15 Chemicals and materials 15 Extraction 15 Absorbance 16 Paper chromatography 16 Total phenolic content 17 Capillary electrophoresis 17 Isoquercetin standard solution preparation 18 Data Analysis 18 Results and Discussion 19 Paper Chromatography 19 Extraction Method Optimization 20 Capillary Electrophoresis Optimization 26 Capillary Electrophoresis Analysis 30 Conclusion 35 Future Work 36 Acknowledgements 37 References 38 2 List of Figures and Tables Figure 1: Phytochemical categorization based on structure 8 Figure 2: Chemical structures of isoquercetin and quercetin 9 Figure 3: Bioactivity of previously identified phytochemicals by category in Moringa 10 oleifera Figure 4: Bioactivity of previously identified flavonoids by category in Moringa 10 oleifera Figure 5: Basic setup of capillary electrophoresis 13 Figure 6: Separation of compounds by size and charge in CZE 14 Figure 7: Extraction method for Moringa oleifera leaves 16 Figure 8: Paper chromatograph of Moringa oleifera leaves extract 20 Figure 9: Absorbance spectra of whole Moringa oleifera leaves extracted in 80% 22 ethanol, acidified 80% ethanol, and 100% ethanol by refluxing Figure 10: Absorbance spectra of whole Moringa oleifera leaves extracted in 80% 22 ethanol and 100% ethanol by shaking Figure 11: Proposed mechanism of quercetin antioxidant activity in an
    [Show full text]
  • Fundamentals of HPLC
    Fundamentals of HPLC Tom Sirard ©2012 Waters Corporation 1 Introduction PHOTO About today’s presenter: – This webinar will be presented by Tom Sirard. Tom is a Sr. Inside Chemistry Specialist at the Waters Corporate Offices in Milford, MA. He graduated from University of Massachusetts Lowell and has been with Waters for more than 13 years. He has helped hundreds of scientists achieve more successful LC separations through recommending the most appropriate Waters LC Columns for their separations needs. ©2012 Waters Corporation 2 Outline What is Liquid Chromatography? – Chromatography Technology – Three Modes of Liquid Chromatography – What is HPLC? – Origin of HPLC HPLC System Overview – Review of main components of an HPLC system How an HPLC column works – Sample band vs. analyte band HPLC Detectors – Common types of HPLC detectors – How a UV detector works Chromatogram overview – Identification & Quantitation Types of Solvent Runs – Isocratic vs. Gradient Modes of LC Separations – Normal Phase, Reversed-phase, Ion Exchange, Size Exclusion Separation Scale (Analytical, Semi-Prep, etc…) Particle Shape & Particle Size Alliance® HPLC System Overview What is UPLC® Technology? Educational Books from Waters Corporation ©2012 Waters Corporation 3 Outline What is Liquid Chromatography? – Chromatography Technology – Three Modes of Liquid Chromatography – What is HPLC? – Origin of HPLC HPLC System Overview – Review of main components of an HPLC system How an HPLC column works – Sample band vs. analyte band HPLC Detectors – Common
    [Show full text]