micromachines Review Light-Emitting Textiles: Device Architectures, Working Principles, and Applications Marco Cinquino 1,2, Carmela Tania Prontera 2,*, Marco Pugliese 1,2 , Roberto Giannuzzi 1,2, Daniela Taurino 1, Giuseppe Gigli 1,2 and Vincenzo Maiorano 2 1 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Arnesano, 73100 Lecce, Italy;
[email protected] (M.C.);
[email protected] (M.P.);
[email protected] (R.G.);
[email protected] (D.T.);
[email protected] (G.G.) 2 Institute of Nanotechnology (CNR-NANOTEC), National Research Council, via Monteroni, 73100 Lecce, Italy;
[email protected] * Correspondence:
[email protected] Abstract: E-textiles represent an emerging technology aiming toward the development of fabric with augmented functionalities, enabling the integration of displays, sensors, and other electronic components into textiles. Healthcare, protective clothing, fashion, and sports are a few examples application areas of e-textiles. Light-emitting textiles can have different applications: sensing, fashion, visual communication, light therapy, etc. Light emission can be integrated with textiles in different ways: fabricating light-emitting fibers and planar light-emitting textiles or employing side- emitting polymer optical fibers (POFs) coupled with light-emitting diodes (LEDs). Different kinds of Citation: Cinquino, M.; Prontera, technology have been investigated: alternating current electroluminescent devices (ACELs), inorganic C.T.; Pugliese, M.; Giannuzzi, R.; and organic LEDs, and light-emitting electrochemical cells (LECs). The different device working Taurino, D.; Gigli, G.; Maiorano, V. principles and architectures are discussed in this review, highlighting the most relevant aspects and Light-Emitting Textiles: Device Architectures, Working Principles, the possible approaches for their integration with textiles.