Lewisite (L) (C2 H 2 Ascl 3 ) CAS 541-25-3, UN 1556; and Mustard-Lewisite Mixture (HL) CAS Number Not Available, UN 2810
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Responding to a Chemical Warfare Agent Incident: from Sampling and Analysis to Decontamination and Waste Management Stuart Willi
Responding to a Chemical Warfare Agent Incident: from sampling and analysis to decontamination and waste management Stuart Willison & Lukas Oudejans U. S. EPA National Homeland Security Research Center 1 Outline • Homeland Security Relevance to Chemical (Warfare Agent) Incidents and Incident Response Cycle • Identification of Gaps/Needs: PARTNER Process and Stakeholder Priorities • Current High Stakeholder Priorities • Research Efforts to meet these Needs/Gaps Selected Analytical Methods (SAM) Document CWA Method Development and Wipe Efficiency Studies on Surfaces Fate and Transport of CWAs Natural Attenuation of VX Decontamination of Vesicant/Blister CWAs HD, L, HL Analytical Method Development: Lewisite; EA 2192 Best Practices Document for Waste Media from Remediation Activities • Summary 2 Response to Contamination Events Since 9/11, multiple chemical/biotoxin contamination events have occurred in the United States and worldwide: • Several ricin incidents (2002-2014) • Deepwater Horizon oil spill (April 2010) • Kalamazoo River oil spill (July 2010) • CWA sulfur mustard clam shells (2010) • CWA chemical attacks (Syria, Middle East) (March-August 2013 and April 2014-current) • Elk River chemical spill in West Virginia (January 2014) • Toxic algae blooms in Toledo, OH (August 2014) • Arsenic-contaminated soil in Kentucky potentially containing CWA Lewisite (March 2015) • (Organophosphate-) Pesticide over- or misuse across USA in relation to bed bug epidemic (current) 3 Response Cycle Contaminant Release Reduce Vulnerabilities Lessons -
Decontamination of Agent Yellow, a Lewisite and Sulfur Mustard Mixture
EPA 600/R-14/436 | March 2015 | www.epa.gov/research Decontamination of Agent Yellow, a Lewisite and Sulfur Mustard Mixture Office of Research and Development National Homeland Security Research Center Decontamination of Agent Yellow, a Lewisite and Sulfur Mustard Mixture Evaluation Report National Homeland Security Research Center Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, NC 27711 ii Disclaimer The United States Environmental Protection Agency through its Office of Research and Development’s National Homeland Security Research Center funded and managed the research described here under EPA Contract Number EP-C-10-001, Work Assignment Number 4-28 with Battelle. This report has been peer and administratively reviewed and has been approved for publication as an Environmental Protection Agency report. It does not necessarily reflect views of the Environmental Protection Agency. No official endorsement should be inferred. The Environmental Protection Agency does not endorse the purchase or sale of any commercial products or services. Questions concerning this document or its application should be addressed to: Lukas Oudejans, Ph.D. Decontamination and Consequence Management Division National Homeland Security Research Center Office of Research and Development U.S. Environmental Protection Agency (MD-E343-06) 109 T.W. Alexander Drive Research Triangle Park, NC 27711 Phone: 919-541-2973 Fax: 919-541-0496 E-mail: [email protected] iii Acknowledgments The following individuals are acknowledged -
Warfare Agents for Modeling Airborne Dispersion in and Around Buildings
LBNL-45475 ERNEST ORLANDO LAWRENCE BERKELEY NATIn NAL LABORATORY Databaseof Physical,Chemicaland ToxicologicalPropertiesof Chemical and Biological(CB)WarfitreAgentsfor ModelingAirborneDispersionIn and AroundBuildings TracyThatcher,RichSextro,andDonErmak Environmental Energy Technologies Division DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of Catifomia, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of anY information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommend at i on, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced -
Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard
Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Laurent Verdier, René Fournet, Pierre-Alexandre Glaude To cite this version: Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Laurent Verdier, René Fournet, Pierre-Alexandre Glaude. Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas. Journal of Physical Chemistry A, American Chemical Society, 2017, 121 (17), pp.3254-3262. 10.1021/acs.jpca.7b01238. hal-01708219 HAL Id: hal-01708219 https://hal.archives-ouvertes.fr/hal-01708219 Submitted on 13 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas Juan-Carlos Lizardo-Huerta†, Baptiste Sirjean†, Laurent Verdier‡, René Fournet†, Pierre-Alexandre Glaude†,* †Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville BP 20451 54001 Nancy Cedex, France ‡DGA Maîtrise NRBC, Site du Bouchet, 5 rue Lavoisier, BP n°3, 91710 Vert le Petit, France *corresponding author: [email protected] Abstract The destruction of stockpiles or unexploded ammunitions of nitrogen mustard (tris (2- chloroethyl) amine, HN-3) requires the development of safe processes. -
Lewisite Fact Sheet
Lewisite Fact Sheet HIGHLIGHTS: It is unlikely that the general population will be exposed to blister agents Lewisite or Mustard-Lewisite. People who breathe in vapors of Lewisite or Mustard-Lewisite may experience damage to the respiratory system. Contact with the skin or eye can result in serious burns. Lewisite or Mustard-Lewisite also can cause damage to bone marrow and blood vessels. Exposure to high levels may be fatal. Blister agents Lewisite and Mustard-Lewisite have not been found in any of the 1,585 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are lewisite and mustard-lewisite? Lewisite is an oily, colorless liquid with an odor like geraniums. Mustard-Lewisite Mixture is a liquid with a garlic-like odor. Mustard-Lewisite is a mixture of Lewisite and a sulfur mustard known as HD. Lewisite might have been used as a chemical weapon by Japan against Chinese forces in the 1930s, but such reports have not been confirmed. Any stored Lewisite in the United States must be destroyed before April 2007, as mandated by the Chemical Weapons Convention. What happens to lewisite and mustard-lewisite when it enters the environment? • Blister agents Lewisite and Mustard-Lewisite could enter the environment from an accidental release. • In air, blister agents Lewisite and Mustard-Lewisite will be broken down by compounds that are found in the air, but they may persist in air for a few days before being broken down. • Lewisite and Mustard-Lewisite will be broken down in water quickly, but small amounts may evaporate. • Lewisite and Mustard-Lewisite will be broken down in moist soil quickly, but small amounts may evaporate. -
Warning: the Following Lecture Contains Graphic Images
What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl). -
First Aid in the Prevention and Treatment of Chemical Casualties
OCD 2202-1 January 1943 FIRST AID in the Prevention and Treatment of CHEMICAL CASUALTIES Revised MEDICAL DIVISION OFFICE OF CIVILIAN DEFENSE Washington, D. C. PREFACE This booklet is intended for the personnel of Emergency Medical Field Units and others who may be immediately concerned in the cleansing of persons and the administration of first aid to chemical casualties. Identification, character- istics, and tactical uses of the various agents are discussed only briefly; the reader is referred to the Civilian Defense textbook, “Protection Against Gas,” for a more extensive discussion of these matters. For information on medical care and treatment consult Technical Manual 8-285, “Treat- ment of Casualties from Chemical Agents,” prepared by the War Department and published by the Government Printing Office. CONTENTS Chapter Page I. General Considerations 3 A. Kinds - 3 B. Recognition 3 1. Identification by Odor 4 2. Table of Odors and Effects 4 C. General Protective Measures 5 If. Lung irritants (Phosgene, Chlorpicrin, Chlorine, Nitric Fumes) 6 A. Latent Period 6 B. Effects 6 C. Symptoms 7 D. First Aid 7 Iff. Blister Bases (Mustard, Lewisite, Ethyldichlorar- sine) „ 8 A. Special Characteristics 8 Table of Differences between Lewisite and Mustard-_ 10 B. Mustard H 1. Effects-- 11 2. Prevention—First Aid . 12 C. Lewisite 14 1. Early Effects 15 2. Late Effects 15 3. Prevention—First Aid 15 D. Ethyldichlorarsine 16 1. Immediate Effects 16 2. First Aid 16 1 496407°—43 1 IV. Tear liases (Lacrimators) (Chloracetophenone, Chloracetophenone Solution, C N B Solution, Brom- benzyl cyanide) 17 A. Effects .1 ’ 17 B. -
Chemical Name Federal P Code CAS Registry Number Acutely
Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime. -
Chemical, Radiological and Nuclear Medical Countermeasures
Chemical, Radiological and Nuclear Medical Countermeasures Ron Manning,g, Ph.D. Chief, Chemical, Radiological and Nuclear Division of CBRN Countermeasures June 7, 2011 Roadmap • Rad Nuc Background and the threat • Rad Nuc Scenario considerations and Reqquirements development • Areas of Rad Nuc Programmatic Interest • Rad Nuc Portfolio Strategy • Special Considerations for Development Efforts • Solicitations in Fed Biz Ops • The Chemical Threat • Vesicants • Chem Special Instructions • Continuing Challenges • Interagency Partnering • BARDA funding 11 Rad Nuc Background •The detonation of an Improvised Nuclear Device (IND) has the potential to produce a large number of victims with multiple and mixed injuries •Exposure to radiation induces dose-dependent injury to cells and tissue through a cascade of molecular and biochemical changes that lead to cell death or disruption 98-- 7- 6 5- 4- Dangerous Fallout 3- ground-zero 2- --1- 0- Light Damage Miles from 1 kT Moderate Damage 0.1 kT 10 kT MdiMedium Severe Damage Small Large •Acute Radiation Syndrome (ARS) is the medical consequence of approximately 2 Gy exposure •The symptoms and progressionprogression of radiation injuryinjury occur even after the radiation exposure has ceased and there is a continuity of medical consequences from the ARS to the Delayed Effects of the Acute Exposure (DEARE) to chronic radiation damage 2 IND Scenarios and Requirements Development • Hundreds of IND scenarios ─ Developed with modeling and working groups with subject matter experts ─ Several cities modeled ─ Several radiation yields ─ 12 months (Jan - Dec): (e.g. Monthly winds and weather affect the fallout pattern)pattern) • Requirements established from modeling scenarios • Fulfillment of requirements ─ Acquisition of products via Project BioShield contracts ─ Development of products via Advanced Research and Development contracts ─ Review portfolio as requirements change • Requirements are reviewed on a regular basis and do change over time. -
Inorganic Arsenic Compounds Other Than Arsine Health and Safety Guide
OS INTERNATiONAL I'ROGRAMME ON CHEMICAL SAFETY Health and Safety Guide No. 70 INORGANIC ARSENIC COMPOUNDS OTHER THAN ARSINE HEALTH AND SAFETY GUIDE i - I 04 R. Q) UNEP UNITED NATIONS INTERNATIONAL ENVIRONMENT I'R( )GRAMME LABOUR ORGANISATION k\s' I V WORLD HEALTH ORGANIZATION WORLD HEALTH ORGANIZATION, GENEVA 1992 IPcs Other H EA LTH AND SAFETY GUIDES available: Aerytonitrile 41. Clii rdeon 2. Kekvau 42. Vatiadiuni 3 . I Bula not 43 Di meLhyI ftirmatnide 4 2-Buta101 44 1-Dryliniot 5. 2.4- Diehlorpheiioxv- 45 . Ac rylzi mule acetic Acid (2.4-D) 46. Barium 6. NIcihylene Chhride 47. Airaziiie 7 . ie,i-Buia nol 48. Benlm'.ie 8. Ep Ichioroli) Olin 49. Cap a 64 P. ls.ihutaiiol 50. Captaii I o. feiddin oeth N lene Si. Parai.tuat II. Tetradi ion 51 Diquat 12. Te nacelle 53. Alpha- and Betal-lexachloro- 13 Clils,i (lane cyclohexanes 14 1 kpia Idor 54. Liiidaiic IS. Propylene oxide 55. 1 .2-Diciilroetiiane Ethylene Oxide 5t. Hydrazine Eiulosiillaii 57. F-orivaldehydc IS. Die h lorvos 55. MLhyI Isobu I V I kcloiic IV. Pculaehloro1heiiol 59. fl-Flexaric 20. Diiiiethoaie 61), Endrin 2 1 . A iii in and Dick) 0in 6 I . I sh IIZiLI1 22. Cyperniellirin 62. Nicki. Nickel Caution I. and some 23. Quiiiloieiic Nickel Compounds 24. Alkthrins 03. Hexachlorocyclopeuladiene 25. Rsiiiethii ins 64. Aidicaib 26. Pyr rot ii,id inc Alkaloids 65. Fe nitrolhioit 27. Magnetic Fields hib. Triclilorlon 28. Phosphine 67. Acroleiii 29. Diiiiethyl Sull'ite 68. Polychlurinated hiphenyls (PCBs) and 30. Dc lianteth nil polyc h In ruiated letlilienyls (fs) 31. -
Acutely / Extremely Hazardous Waste List
Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime. -
44 Xenobiotic: Vesicant, WMD Blister Agent, Lewisite, Phosgene, Sulfur Mustard, Nitrogen Mustard Expected States of Matter: Liqu
44 Xenobiotic: Vesicant, WMD Blister Agent, Lewisite, Phosgene, Sulfur mustard, Nitrogen mustard Expected states of matter: Liquid, Vapor, Gas Purpose: Vesicants typically begin having chemical effects on the body within minutes through a complex mechanism of action but signs and symptoms do not present for 4-6 hours depending on exposure concentrations & time. Treatment begins with early recognition and limiting exposure. Otherwise, treatment is dependant on route of exposure and should be addressed symptomatically. Signs & Symptoms: Conjunctivitis, Corneal opacification or ulceration. Erythema to the skin, Vesicles. Laryngeal edema, dyspnea or respiratory obstruction. Coagulation necrosis of the skin. Warmth and humidity increase dermal damage, Targets groin and axilla General Response: Establish zones of control to protect responders & the public Protect responders with appropriate PPE Entry: Level A Decon: Level C Transport: Street level PPE Decon victims with high volume of water Specialized dedon: Soap & water Does victim present risk of secondary contamination? No Specific Treatments: ● There is no specific antidote available for blister agents. Treatment should be symptomatic and similar to thermal burns. Albuterol 2.5mg/3mL nebulized over 5-10 minutes For bronchoconstriction Diphenhydramine 50mg IM/IV over 1-2 min Relieves itching due to dermal damage Treat pain according to PAIN MANAGEMENT PROTOCOL Alkaline Gargle 5mL normal saline with 5mL of sodium bicarbonate. Treats pharyngitis Gargle for 10-15 seconds without swallowing 45 ● For vapor/gas exposure or liquid exposure to the eyes - Tetracaine Hydrochloride 1-2 gtts/eye. Analgesic Rationale for Treatment: Exposure to blister agents are rarely fatal, but designed to incapacitate. They require long periods of convalescence with some of the major threats being infection through multiple routes.