The Benefits of MARINE PROTECTED AREAS © Commonwealth of Australia 2003 ISBN 0 642 54949 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c. -
Dung Beetle Richness, Abundance, and Biomass Meghan Gabrielle Radtke Louisiana State University and Agricultural and Mechanical College, [email protected]
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Tropical Pyramids: Dung Beetle Richness, Abundance, and Biomass Meghan Gabrielle Radtke Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Radtke, Meghan Gabrielle, "Tropical Pyramids: Dung Beetle Richness, Abundance, and Biomass" (2006). LSU Doctoral Dissertations. 364. https://digitalcommons.lsu.edu/gradschool_dissertations/364 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. TROPICAL PYRAMIDS: DUNG BEETLE RICHNESS, ABUNDANCE, AND BIOMASS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Meghan Gabrielle Radtke B.S., Arizona State University, 2001 May 2007 ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. G. Bruce Williamson, and my committee members, Dr. Chris Carlton, Dr. Jay Geaghan, Dr. Kyle Harms, and Dr. Dorothy Prowell for their help and guidance in my research project. Dr. Claudio Ruy opened his laboratory to me during my stay in Brazil and collaborated with me on my project. Thanks go to my field assistants, Joshua Dyke, Christena Gazave, Jeremy Gerald, Gabriela Lopez, and Fernando Pinto, and to Alejandro Lopera for assisting me with Ecuadorian specimen identifications. I am grateful to Victoria Mosely-Bayless and the Louisiana State Arthropod Museum for allowing me work space and access to specimens. -
Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications
Protecting 30% of the planet for nature: costs, benefits and economic implications Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framework Anthony Waldron1; Vanessa Adams2; James Allan3; Andy Arnell4; Greg Asner5; Scott Atkinson6; Alessandro Baccini7; Jonathan EM Baillie8; Andrew Balmford1; J Austin Beau9; Luke Brander10; Eduardo Brondizio11; Aaron Bruner12; Neil Burgess4; K Burkart13; Stuart Butchart14; Rio Button15; Roman Carrasco16; William Cheung17; Villy Christensen18; Andy Clements19; Marta Coll20; Moreno di Marco21; Marine Deguignet4; Eric Dinerstein22; Erle Ellis23; Florian Eppink24; Jamison Ervin25; Anita Escobedo26; John Fa27; Alvaro Fernandes-Llamazares28; Sanjiv Fernando22; Shinichiro Fujimori29; Beth Fulton30; Stephen Garnett31; James Gerber32; David Gill33; Trisha Gopalakrishna34; Nathan Hahn22; Ben Halpern35; Tomoko Hasegawa36; Petr Havlik37; Vuokko Heikinheimo28; Ryan Heneghan38; Ella Henry39; Florian Humpenoder40; Harry Jonas41; Kendall Jones42; Lucas Joppa43; A.R. Joshi44; Martin Jung37; Naomi Kingston4; Carissa Klein45; Tamas Krisztin37; Vicky Lam46; David Leclere39; Peter Lindsey47; Harvey Locke48; TE Lovejoy49; Philip Madgwick50; Yadvinder Malhi34; Pernilla Malmer51; Martine Maron52; Juan Mayorga53; Hans van Meijl54; Dan Miller55; Zsolt Molnar56; Nathaniel Mueller57; Nibedita Mukherjee1; Robin Naidoo58; Katia Nakamura59; Prakash Nepal60; RF Noss61; Beth O’Leary62; D Olson63; Juliano Palcios Abrantes64; Midori Paxton65; Alexander -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
Enhancing Nationally Determined Contributions Through Protected Areas Table of Contents
ENHANCING NATIONALLY DETERMINED CONTRIBUTIONS THROUGH PROTECTED AREAS TABLE OF CONTENTS EXECUTIVE SUMMARY 2 BACKGROUND 5 METHODOLOGY 7 RESULTS 13 1. EXPLICIT MENTION OF PROTECTED AREAS 13 2. ESTABLISHING NEW OR EXPANDING EXISTING PROTECTED AREAS 14 3. UTILIZING PROTECTED AREAS TO HELP PEOPLE ADAPT TO CLIMATE CHANGE (ECOSYSTEM-BASED ADAPTATION) 15 4. MITIGATION BENEFITS FROM CARBON SEQUESTRATION AND AUTHORS AVOIDED EMISSIONS 17 Abigail Hehmeyer, Jacqueline Vogel, Shaun Martin, Ryan Bartlett 5. MANAGING PROTECTED AREAS FOR CLIMATE CHANGE RISKS 18 DISCUSSION AND RECOMMENDATIONS 20 WWF CONCLUSION 27 GLOSSARY 28 For more than 50 years, WWF has been protecting the future of nature. One APPENDICES 31 of the world’s leading conservation organizations, WWF works in nearly 100 countries and is supported by more than 1.1 million members in the United APPENDIX 1: RESULTS BY COUNTRY 31 States and 5 million supporters globally. WWF’s unique way of working APPENDIX 2: COUNTRIES RANKED BY CREDITS EARNED FOR THE combines global reach with a foundation in science, involves action at every level 5 CRITERIA EXAMINED 39 from local to global, and ensures the delivery of innovative solutions that meet the needs of both people and nature. Visit worldwildlife.org to learn more. APPENDIX 3: COUNTRIES REFERENCED IN THIS REPORT, LISTED BY REGION 41 REFERENCES 43 ACKNOWLEDGEMENTS Funding for this analysis, conducted by WWF US, was made possible by the Support Project for the Implementation of the Paris Agreement (SPA), which is implemented by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) under its International Climate Initiative (IKI). -
What Is Inclusive Conservation and Why Is It Important to Biodiversity Conservation and Protected Area Management?
Fact Sheet What is inclusive conservation and why is it important to biodiversity conservation and protected area management? October 2019 ‘Inclusive Conservation’ is a trans-disciplinary approach to balancing stakeholder visions, and promoting shared agreements for the future management of protected areas through the development and application of multiple tools and processes. - 2 - Protecting our natural areas Global context Protected areas are clearly defined geographical spaces, recognised, dedicated and managed, through legal or other effective means to achieve the long-term conservation of nature with associated Figure 1: Growth in ecosystem services and cultural values.1 Protected areas are critical for protected area coverage conserving local to regional biodiversity, particularly the characteristic on land and in the ocean (Exclusive Economic Zones of threatened species, habitats and ecosystems.2,3 (EEZ) and Areas Beyond At a global level, Parties to the Convention on Biological Diversity (CBD) National Jurisdiction (ABNJ)) between 1990 agreed in 2010 to a target of protecting at least 17% of terrestrial and and 2018 and projected inland water areas, and 10% of coastal and marine areas (Aichi Target growth to 2020 according 11), by 2020. Currently, protected areas cover almost 15% of land and to commitments from countries and territories.5 inland waters and 8% of the world’s oceans.4 (Figure 1). Area (Million km2) 40 2 30 3 20 10 1 0 1990 1995 2000 2005 2010 2015 2020 1 ABNJ 2 EEZ 3 Land - 3 - Despite this expansion, protected areas only partly cover important sites for biodiversity, and there are issues associated with their ecological representativeness and equitable management6. -
"Species Richness: Small Scale". In: Encyclopedia of Life Sciences (ELS)
Species Richness: Small Advanced article Scale Article Contents . Introduction Rebecca L Brown, Eastern Washington University, Cheney, Washington, USA . Factors that Affect Species Richness . Factors Affected by Species Richness Lee Anne Jacobs, University of North Carolina, Chapel Hill, North Carolina, USA . Conclusion Robert K Peet, University of North Carolina, Chapel Hill, North Carolina, USA doi: 10.1002/9780470015902.a0020488 Species richness, defined as the number of species per unit area, is perhaps the simplest measure of biodiversity. Understanding the factors that affect and are affected by small- scale species richness is fundamental to community ecology. Introduction diversity indices of Simpson and Shannon incorporate species abundances in addition to species richness and are The ability to measure biodiversity is critically important, intended to reflect the likelihood that two individuals taken given the soaring rates of species extinction and human at random are of the same species. However, they tend to alteration of natural habitats. Perhaps the simplest and de-emphasize uncommon species. most frequently used measure of biological diversity is Species richness measures are typically separated into species richness, the number of species per unit area. A vast measures of a, b and g diversity (Whittaker, 1972). a Di- amount of ecological research has been undertaken using versity (also referred to as local or site diversity) is nearly species richness as a measure to understand what affects, synonymous with small-scale species richness; it is meas- and what is affected by, biodiversity. At the small scale, ured at the local scale and consists of a count of species species richness is generally used as a measure of diversity within a relatively homogeneous area. -
The Blue Paradox: Preemptive Overfishing in Marine Reserves
PAPER The blue paradox: Preemptive overfishing in COLLOQUIUM marine reserves Grant R. McDermotta,1,2, Kyle C. Mengb,c,d,1,2, Gavin G. McDonaldb,e, and Christopher J. Costellob,c,d,e aDepartment of Economics, University of Oregon, Eugene, OR 97403; bBren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106; cDepartment of Economics, University of California, Santa Barbara, CA 93106; dNational Bureau of Economic Research, Cambridge, MA 02138; and eMarine Science Institute, University of California, Santa Barbara, CA 93106 Edited by Jane Lubchenco, Oregon State University, Corvallis, OR, and approved July 25, 2018 (received for review March 9, 2018) Most large-scale conservation policies are anticipated or an- This line of reasoning suggests that the anticipation of a new nounced in advance. This risks the possibility of preemptive conservation policy may give rise to a set of incentives that is resource extraction before the conservation intervention goes distinct from—but possibly just as important as—the incentives into force. We use a high-resolution dataset of satellite-based fish- arising from the policy’s implementation. While this kind of pre- ing activity to show that anticipation of an impending no-take emptive behavior has been well-documented for landowners, gun marine reserve undermines the policy by triggering an unin- owners, and owners of natural resource extraction rights, it has tended race-to-fish. We study one of the world’s largest marine not been studied in the commons. For vast swaths of the ocean, reserves, the Phoenix Islands Protected Area (PIPA), and find that no single owner has exclusive rights and so must compete against fishers more than doubled their fishing effort once this area was others for extraction. -
World Environment Day
'Swachh Bharat Pakhwada' by ENVIS Centres (1st June- 15th June, 2016) Swachh Bharat Abhiyan - A Brief Report Conceptualized by ENVIS Secretariat, Ministry of Environment, Forest and Climate Change, Govt. of India World Environment Day The celebration of World Environment Day (WED) is a forty-four year old concept in world history. The United Nations Environment Programme (UNEP) initiated the observance of this day to globally celebrate the spirit of positive environmental action. Every year, millions of individuals and organizations engage in various activities on this day which includes tree-planting drives, art exhibitions, social media campaigns, etc. This way, there is a build-up of a collective power of people belonging to different walks of life, leading to the generation of an exponential positive impact on the planet. The UN General Assembly declared June 5 as World Environment Day in the year 1972. Two years later in 1974, WED was celebrated for the first time, with the United States hosting it. The theme for this first ever WED was 'Only One Earth'. Since then, WED has been trending every year with a different theme. The most recent theme of WED (for 2016) was 'Go Wild for Life: Zero Tolerance for the Illegal Wildlife Trade'. Angola was the global host country of WED 2016. As a consequence of man's insatiable greed, illegal trade in wildlife product is booming in an alarming rate. Ecosystems are getting corrupted and, the killing and smuggling of different species are leading them to extinction. Wildlife crime is endangering a number of species of elephants, rhinos, tigers, gorillas and sea turtles, along with many other lesser-known victims. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Marine Protected Areas (Mpas) in Management 1 of Coral Reefs
ISRS BRIEFING PAPER 1 MARINE PROTECTED AREAS (MPAS) IN MANAGEMENT 1 OF CORAL REEFS SYNOPSIS Marine protected areas (MPAs) may stop all extractive uses, protect particular species or locally prohibit specific kinds of fishing. These areas may be established for reasons of conservation, tourism or fisheries management. This briefing paper discusses the potential uses of MPAs, factors that have affected their success and the conditions under which they are likely to be effective. ¾ MPAs are often established as a conservation tool, allowing protection of species sensitive to fishing and thus preserving intact ecosystems, their processes and biodiversity and ultimately their resilience to perturbations. ¾ Increases in charismatic species such as large groupers in MPAs combined with the perception that the reefs there are relatively pristine mean that MPAs can play a significant role in tourism. ¾ By reducing fishing mortality, effective MPAs have positive effects locally on abundances, biomass, sizes and reproductive outputs of many exploitable site- attached reef species. ¾ Because high biomass of focal species is sought but this is quickly depleted and is slow to recover, poaching is a problem in most reef MPAs. ¾ Target-species ‘spillover’ into fishing areas is likely occurring close to the MPA boundaries and benefits will often be related to MPA size. Evidence for MPAs acting as a source of larval export remains weak. ¾ The science of MPAs is at an early stage of its development and MPAs will rarely suffice alone to address the main objectives of fisheries management; concomitant control of effort and other measures are needed to reduce fishery impacts, sustain yields or help stocks to recover. -
Aquaculture and Marine Protected Areas: Exploring Potential Opportunities and Synergies
Aquaculture and Marine Protected Areas: Exploring Potential Opportunities and Synergies To meet the Convention on Biological Diversity’s Aichi Target 11 on marine biodiversity protection, Aichi Target 6 on sustainable fisheries by 2020, as well as the Sustainable Development Goal (SDG) 2 on food security and SDG 14 on oceans, by 2030, there is an urgent need to reconcile nature conservation and sustainable development. It is also widely recognised that aquaculture significantly contributes to sustainable development in coastal communities and plays a vital role in ensuring food security, poverty alleviation, and economic resilience. In the framework of integrated management, the time has therefore come to identify the potential opportunities and synergies that can enable aquaculture and conservation to work together more effectively. CONTENT Understanding the various types of aquaculture and their potentialities ……………………………………… 3 The types of MPAs and matrix of interactions showing aquaculture & sustainability principles …… 7 Understanding aquaculture and MPA interactions …… 8 Towards MPAs and aquaculture compatibility and sustainability ……………………………………………10 Background In order to feed the world's growing human population, attention will need to increasingly focus on where the protein needs of the world will be supplied from. While capture fisheries have now reached a plateau of production, marine aquaculture of fish, shellfish and algae has been steadily increasing over the past decades and has become a valid option to make up the protein shortfall. However, one of the major constraints for the aquaculture production sector is the availability of, and access to space. In many coastal areas, competition with other marine activities is already high, mainly because the bulk of marine aquaculture is located close to the shore.