The Escalatory Red Queen Antoine Persoons, Katherine Hayden, Bénédicte Fabre, Pascal Frey, Stéphane De Mita, Aurélien Tellier, Fabien Halkett

Total Page:16

File Type:pdf, Size:1020Kb

The Escalatory Red Queen Antoine Persoons, Katherine Hayden, Bénédicte Fabre, Pascal Frey, Stéphane De Mita, Aurélien Tellier, Fabien Halkett The escalatory Red Queen Antoine Persoons, Katherine Hayden, Bénédicte Fabre, Pascal Frey, Stéphane de Mita, Aurélien Tellier, Fabien Halkett To cite this version: Antoine Persoons, Katherine Hayden, Bénédicte Fabre, Pascal Frey, Stéphane de Mita, et al.. The escalatory Red Queen: Population extinction and replacement following arms race dynamics in poplar rust. Molecular Ecology, Wiley, 2017, 26 (7), pp.1902-1918. 10.1111/mec.13980. hal-01564550 HAL Id: hal-01564550 https://hal.archives-ouvertes.fr/hal-01564550 Submitted on 18 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Molecular Ecology (2017) 26, 1902–1918 doi: 10.1111/mec.13980 MICROBIAL LOCAL ADAPTATION The escalatory Red Queen: Population extinction and replacement following arms race dynamics in poplar rust 1 2 ANTOINE PERSOONS,* KATHERINE J. HAYDEN,* BENEDICTE FABRE,* PASCAL FREY,* STEPHANE DE MITA,* AURELIEN TELLIER† and FABIEN HALKETT* *UMR IAM, INRA, Universite de Lorraine, 54000 Nancy, France, †Section of Population Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universit€at Munchen,€ 85354 Freising, Germany, Abstract Host–parasite systems provide convincing examples of Red Queen co-evolutionary dynamics. Yet, a key process underscored in Van Valen’s theory – that arms race dynamics can result in extinction – has never been documented. One reason for this may be that most sampling designs lack the breadth needed to illuminate the rapid pace of adaptation by pathogen populations. In this study, we used a 25-year temporal sampling to decipher the demographic history of a plant pathogen: the poplar rust fun- gus, Melampsora larici-populina. A major adaptive event occurred in 1994 with the breakdown of R7 resistance carried by several poplar cultivars widely planted in Wes- tern Europe since 1982. The corresponding virulence rapidly spread in M. larici-popu- lina populations and nearly reached fixation in northern France, even on susceptible hosts. Using both temporal records of virulence profiles and temporal population genetic data, our analyses revealed that (i) R7 resistance breakdown resulted in the emergence of a unique and homogeneous genetic group, the so-called cultivated popu- lation, which predominated in northern France for about 20 years, (ii) selection for Vir7 individuals brought with it multiple other virulence types via hitchhiking, resulting in an overall increase in the population-wide number of virulence types and (iii) – above all – the emergence of the cultivated population superseded the initial population which predominated at the same place before R7 resistance breakdown. Our temporal analysis illustrates how antagonistic co-evolution can lead to population extinction and replacement, hence providing direct evidence for the escalation process which is at the core of Red Queen dynamics. Keywords: gene-for-gene interaction, genetic hitchhiking, parasite, Red Queen hypothesis, temporal sampling Received 29 July 2016; revision accepted 15 December 2016 drivers for the evolution of sexual reproduction Introduction (Lively et al. 1990; Busch et al. 2004; Lively 2010) and Since the publication of the ‘new evolutionary law’ by have illustrated co-evolutionary cycles expected with Van Valen more than 40 years ago (Van Valen 1973), the so-called Red Queen dynamics (e.g. Dybdahl & the metaphor of the Red Queen has fostered numer- Lively 1998; Thrall et al. 2001, 2012; Decaestecker et al. ous developments in evolutionary biology (Brockhurst 2007; Betts et al. 2014). Yet to our knowledge, no et al. 2014). Parasites have been credited as primary study has explicitly tested the core hypothesis of Van Valen (1973): antagonistic co-evolution can lead to Correspondence: Fabien Halkett, Fax: +33 3 83 39 40 69; E-mail: extinction (Dawkins & Krebs 1979). In this article, we [email protected] aim to benefit from a comprehensive and long-lasting 1 Present address: Earlham Institute, Norwich Research Park survey to document population extinction in a plant Innovation Centre, Colney Ln, Norwich NR4 7UH, UK pathogen species facing strong selection exerted by 2Present address: Royal Botanic Garden Edinburgh, 20A Inver- leith Row, Edinburgh EH3 5LR, UK host resistance. © 2016 John Wiley & Sons Ltd GENETIC REVOLUTION AFTER RESISTANCE BREAKDOWN 1903 Plant systems lend themselves to studying the occur- the hosts (Tellier et al. 2014). Recent findings support rence and the mechanisms of extinction events due to the theory with effector genes showing elevated levels host–parasite dynamics, as much is known on the of nonsynonymous polymorphisms (Poppe et al. 2015). molecular basis of the interactions. In plants, major Theory also predicts that extinction of host and/or par- resistance to fungal pathogens relies on the so-called asite populations following co-evolution should occur gene-for-gene interaction (Flor 1971). In the simplest under arms races rather than under trench warfare sce- set-up, the outcome of infection is determined by one narios (Dawkins & Krebs 1979; Brockhurst et al. 2014). locus in the plant (the resistance (R) gene) and in the Therefore, understanding the mechanisms linking allele pathogen (the infectivity gene). One allele of the patho- fixation in host and pathogen populations and the gen infectivity gene, which is termed hereafter as the extinction of a host or parasite species (or population at avirulence (Avr) allele as in the plant pathology litera- the intraspecific level) is of fundamental importance for ture, is recognized by plants harbouring a matching testing the Red Queen predictions. resistance allele at the corresponding R-gene. Once the In this study, we investigate the temporal changes in pathogen is recognized, a defence response is triggered population structure in the poplar rust pathogen, (Jones & Dangl 2006). If plants harbour a susceptibility Melampsora larici-populina, which underwent a severe allele – or if the pathogen has the alternative virulence selection event in poplar-cultivating areas (Xhaard et al. allele – infection occurs. In many cultivated crop spe- 2011). Worldwide, Melampsora spp. (Basidiomycota, Puc- cies, such major resistance genes have been favoured in ciniales) are the most damaging pathogens of poplars selection by plant breeders because they provide com- (Vialle et al. 2011), and M. larici-populina is the largest plete control of the disease. However, despite the problem in European poplar plantations (Frey et al. potential for great efficiency, gene-for-gene resistance 2005). Poplars are particularly susceptible to M. larici- may be quickly broken down, as a single mutation in populina because of their intensive monoclonal the pathogen Avr allele can be sufficient to break or cultivation spanning several decades and the probable change its functionality and impair recognition of the counterselection of nonspecific resistance traits during plant R-gene, thereby restoring virulence (Schulze- breeding (Gerard et al. 2006). Eight resistances (R1 to Lefert et al. 1997). In this case, the so-called resistance R8) have been described in poplar so far (Pinon & Frey breakdown is accompanied by the possible fixation of 2005). Most of them have been deployed in European the virulence allele in the parasite population. Infecti- plantations, and all have been overcome by M. larici- vity loci code for pathogenicity factors, also known as populina (Pinon & Frey 2005). The most economically effectors, which accordingly contribute to the success of damaging resistance breakdown occurred when the pathogen infection. Virulent individuals are often widely planted R7 resistance was overcome and led to shown to exhibit a fitness penalty (the so-called viru- the invasion of France by Vir7 M. larici-populina individ- lence cost) when compared to individuals harbouring uals (Fig. 1). Several poplar cultivars bear the R7 resis- the Avr allele on susceptible plants (Huang et al. 2006; tance, among which Populus 9 interamericana ‘Beaupre’ Bahri et al. 2009a; Montarry et al. 2010). was the most popular, accounting for 57% of the stems Over time, a wide range of dynamics in changes in planted in France in 1996, and as much as 80% in north- allele frequencies in plant and pathogen populations ern France (Pinon & Frey 2005). Conversely, other resis- can be observed. At one end of the spectrum, we find tance types (including R1 to R5) have been planted at a trench-warfare dynamics, in which polymorphism is low and constant frequency since the 1950s (Pinon & maintained in the plant and pathogen populations, as Frey 2005). The first report of R7 resistance breakdown has been shown in several wild species (Thrall et al. occurred in 1994 in Belgium and northern France (Pinon 2001, 2012). At the other end, arms races can occur with & Frey 2005). In fewer than 5 years, Vir7 individuals recurrent fixation of new resistance and virulence alleles spread all over Western Europe and went on to cause in plant and pathogen populations. The ecological con- very destructive epidemics on all cultivated poplar ditions and life history
Recommended publications
  • Parasites Opt for the Best of Both Worlds
    INSIGHT REPRODUCTION Parasites opt for the best of both worlds The fungal parasite Podosphaera plantaginis employs both sexual and asexual reproduction to increase its chances of infecting the plant Plantago lanceolata. ELLEN DECAESTECKER AND LORE BULTEEL plantaginis, which commonly infects the plant Related research article Laine A-L, Barre`s species Plantago lanceolata, commonly known B, Numminen E, Siren JP. 2019. Variable as ribwort plantain (Figure 1). These fungi asex- opportunities for outcrossing result in hot- ually reproduce by producing infective spores spots of novel genetic variation in a patho- throughout their life-cycle. When the host’s gen metapopulation. eLife 8:e47091. DOI: growing season comes to an end P. plantaginis 10.7554/eLife.47091 produce resting spores that can survive the win- ter. These spores can either be produced via mating, or via an asexual process known as hap- loid selfing that involves spores from the same organism ’mating’ with each other ost populations of animals produce (Tollenaere and Laine, 2013; Figure 1). Repro- genetically different offspring via sex- ducing sexually, however, comes at a much M ual reproduction. A small minority of greater cost, bringing into question why patho- animals, however, use asexual reproduction to gens continue to maintain this reproductive produce offspring that are genetically identical strategy. to the parent. Both strategies have their advan- One possible explanation comes from an evo- tages and weaknesses, and some animals actu- lutionary theory known as the Red Queen ally alternate between sexual and asexual hypothesis. Hosts and parasite species con- reproduction (Decaestecker et al., 2009). stantly evolve together in order to outcompete Most parasites reproduce asexually, but they one another: hosts co-evolve an increased resis- can switch to sexual reproduction to encourage tance, whilst parasites increase their ability to diversity and to remain infectious.
    [Show full text]
  • Evolutionary Restoration Ecology
    ch06 2/9/06 12:45 PM Page 113 189686 / Island Press / Falk Chapter 6 Evolutionary Restoration Ecology Craig A. Stockwell, Michael T. Kinnison, and Andrew P. Hendry Restoration Ecology and Evolutionary Process Restoration activities have increased dramatically in recent years, creating evolutionary chal- lenges and opportunities. Though restoration has favored a strong focus on the role of habi- tat, concerns surrounding the evolutionary ecology of populations are increasing. In this con- text, previous researchers have considered the importance of preserving extant diversity and maintaining future evolutionary potential (Montalvo et al. 1997; Lesica and Allendorf 1999), but they have usually ignored the prospect of ongoing evolution in real time. However, such contemporary evolution (changes occurring over one to a few hundred generations) appears to be relatively common in nature (Stockwell and Weeks 1999; Bone and Farres 2001; Kin- nison and Hendry 2001; Reznick and Ghalambor 2001; Ashley et al. 2003; Stockwell et al. 2003). Moreover, it is often associated with situations that may prevail in restoration projects, namely the presence of introduced populations and other anthropogenic disturbances (Stockwell and Weeks 1999; Bone and Farres 2001; Reznick and Ghalambor 2001) (Table 6.1). Any restoration program may thus entail consideration of evolution in the past, present, and future. Restoration efforts often involve dramatic and rapid shifts in habitat that may even lead to different ecological states (such as altered fire regimes) (Suding et al. 2003). Genetic variants that evolved within historically different evolutionary contexts (the past) may thus be pitted against novel and mismatched current conditions (the present). The degree of this mismatch should then determine the pattern and strength of selection acting on trait variation in such populations (Box 6.1; Figure 6.1).
    [Show full text]
  • Bridging the Gap Between Theory and Data: the Red Queen Hypothesis for Sex
    bioRxiv preprint doi: https://doi.org/10.1101/637413; this version posted May 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bridging the gap between theory and data: the Red Queen Hypothesis for sex Sang Woo Park and Benjamin M Bolker May 13, 2019 Abstract Sexual reproduction persists in nature despite its large cost. The Red Queen Hypothesis postulates that parasite pressure maintains sexual reproduction in the host population by selecting for the ability to produce rare genotypes that are resistant to infection. Mathematical models have been used to lay theo- retical foundations for the hypothesis; empirical studies have confirmed these predictions. For example, Lively used a simple host-parasite model to predict that the frequency of sexual hosts should be positively correlated with the preva- lence of infection. Lively et al. later confirmed the prediction through numerous field studies of snail-trematode systems in New Zealand. In this study, we fit a simple metapopulation host-parasite coevolution model to three data sets, each representing a different snail-trematode system, by matching the observed prevalence of sexual reproduction and trematode infection among hosts. Using the estimated parameters, we perform a power analysis to test the feasibility of observing the positive correlation predicted by Lively. We discuss anomalies in the data that are poorly explained by the model and provide practical guidance to both modelers and empiricists.
    [Show full text]
  • On Sex, Mate Selection and the Red Queen
    On Sex, Mate Selection and the Red Queen Gabriela Ochoa School of Cognitive and Computing Sciences The University of Sussex, Falmer, Brighton BN1 9RH, UK E-mail: [email protected] Klaus Jaffé Departamento de Biología de Organismos Universidad Simón Bolívar, Apartado 89000, Caracas 10801A, Venezuela E-mail: [email protected] Abstract The widespread occurrence of sexual reproduction despite the twofold disadvantage of producing males, is still an unsolved mystery in evolutionary biology. One explanatory theory, called the 'Red Queen' hypothesis, states that sex is an adaptation to escape from parasites. A more recent hypothesis, the mate selection hypothesis, assumes that non-random mating, possible only with sex, accelerates the evolution of beneficial traits. This paper tests these two hypotheses, using an agent-based or ‘microanalytic’ evolutionary algorithm where host-parasite interaction is simulated adhering to biological reality. While previous simpler models testing the 'Red Queen' hypothesis considered mainly haploid hosts, stable population density, random mating and simplified expressions of fitness, our more realistic model allows diploidy, mate selection and variable population densities. Results suggest that the two hypotheses tested seem to explain partially but not exhaustively the adaptive value of sex. However, mate selection seems to be crucial in explaining the adaptive value of sex. Introduction Sex remains an enigma within a mystery as there is still no widely accepted consensus for the existence and maintenance of sex (Maynard Smith, 1971, Judson and Normak 1996). The central question stated by John Maynard Smith is as follows: “what selective forces maintain sexual reproduction and genetic recombination in nature?” (Maynard Smith, 1978).
    [Show full text]
  • Essays-Biology / Medicine/Download/8035
    CRITICAL SCIENTIFIC REFLEXIONS ABOUT THE RED QUEEN HYPOTHESIS. 5 David L. ESPESSET ----------------------------- 10 72, chemin des Baumillons, F-13015 Marseille, France. [email protected] 15 1 ABSTRACT. In evolutionary sciences, the Red Queen Hypothesis deals with extinction rates over geological time. In this article, I propose a critical reflexion on this 20 hypothesis, because some implications or metaphorical applications of the hypothesis might be considered as misinterpretations of evolutionary facts. I review various scientific interpretations of evolution and their relationship with the Red Queen Hypothesis. Eventually, I propose to rename it, to correct past misinterpretations and avoid new ones. 25 KEYWORDS. Biological evolution – Darwinism – Red Queen Hypothesis – Co-evolution – Convergence – Evolutionary ecology – Laws of nature. 30 2 EVOLUTION AND CO-EVOLUTION. Biological evolution is the changing of living beings in their heritable traits over successive generations and geological time. Various evolutionary 35 processes give rise to diversity at every level of biological organisation, including the levels of taxa, species, individual organisms, cells, and molecules. Among other scientific theories, the “Modern Synthesis” [1, 2] explains the evolutionary process, mainly based upon a so-called “Darwinian” mechanism [3], which involves random mutations followed by natural selection. Another 40 mechanism, the genetic drift, explains how an allele can be randomly fixed in small sized populations [4]. During the course of evolution, many species develop close relationships with each other to ensure their survival: as one species evolves, it will somehow affect other species. These species are said to coevolve [5]. Such 45 'symbiotic' relationships keep species from becoming extinct. Among many instances of coevolving species, some are famous and have been extensively studied, such as the coevolution of pollinating Insects and flowering plants (Angiosperms) and the many examples of coevolution between parasites and hosts [6].
    [Show full text]
  • Expanding the Horizon: the Red Queen and Potential Alternatives
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2008 Expanding the horizon: the Red Queen and potential alternatives Tobler, M ; Schlupp, I Abstract: The Red Queen hypothesis (RQH) is one of the most widely accepted hypotheses explaining the persistence of sexual reproduction despite its costs. It posits that sexual species, compared with asexuals, are more adept at countering parasites, because their per-generation recombination rate is higher. Despite theroretical support, current empirical studies have failed to provide unanimous support. Here, we suggest that future tests of the RQH should more thoroughly elucidate its underlying assumptions and potential alternative hypotheses. While the RQH predicts that negative frequency-dependent selection shapes host-parasite interactions, differences between sexuals and asexuals are potentially important. Key assumptions about asexual species and their sexual close relatives include (i) ecological and behavioral traits are similar, (ii) among-individual genetic diversity is greater in sexuals than in asexual, and (iii) within-individual genetic diversity is similar in asexuals and sexuals. We review current evidence for the RQH, highlight differences between asexual and sexual species and how those differences might translate into differential responses to parasite infections, and discuss how they can influence the resultsand interpretation of empirical studies. Considering differences between asexual and sexual species in future tests of the RQH will help to refine predictions and eliminate alternative hypotheses. DOI: https://doi.org/10.1139/Z08-056 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-4352 Journal Article Originally published at: Tobler, M; Schlupp, I (2008).
    [Show full text]
  • Review Article the Dobzhansky's Concept of Genetic Coadaptation
    Review Article The Dobzhansky’s concept of genetic coadaptation: Drosophila ananassae is an exception to this concept BASHISTH N. SINGH* Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi221005,India *E-mail:[email protected], [email protected] Running title: Genetic coadaptation in Drosophila Keywords: genetic coadaptation; Drosophila species; inversion polymorphism. Abstract Dobzhansky (1947) was first to show that inversion polymorphism in Drosophila pseudoobscura is subject to natural selection and is a device to cope with the diversity of environments. His extensive work on D. pseudoobscura has revealed interesting phenomena of population genetics. In continuation of his work on this species, he constructed a number of homozygous lines for different gene arrangements in the third chromosome, and while employing these lines in intra- and inter-population crosses, he quantified the fitness of inversion homokaryotypes and heterokaryotypes. Interestingly, his results showed that heterokaryotypes formed by chromosomes coming from the same geographic area exhibited superiority over corresponding homokaryotypes. However, superiority of heterokaryotypes was lost in the crosses when chromosomes were derived from different localities. Based on these results, Dobzhansky (1949) suggested the concept of genetic coadaptation. According to this concept, “in each locality the chromosomes with different gene arrangements are mutually adjusted or coadapted to yield highly fit inversion heterozygotes through long continued natural selection. However, this adaptive superiority of inversion heterozygotes breaks down in interracial hybridization experiments when two gene arrangements are derived from different localities”. This concept has received experimental evidence in its favor on the basis of work done in other species of 1 Drosophila, such as D.
    [Show full text]
  • Red Queen Hypothesis Supported by Parasitism in Sexual and Clonal Fish
    Reprinted from Nature, Vol. 344, No. 6269, pp. 864-866, 26th April, 1990 © Macmillan Magazines Ltd., 1990 transplanted from a nearby downstream population, resulting Red Queen hypothesis supported in an increase in the local genotypic diversity of the sexual 26 population . Collections ofthe fish from Heart Pool were made by parasitism in sexual and both before (1983) and after (1985) the transplant. Before the transfer of sexual females into Heart Pool, the clonal fish number of parasites per unit length of fish was significantly Curtis M. Lively*, Clark Craddock greater in the highly homozygous inbred sexual fish than in clone MML/I (Fig. Ie; Table 1). Because MML/I was more & Robert C. Vrijenhoek a Center for Theoretical and Applied Genetics. Cook College. LOG POOL (1978) Rutgers University. New Brunswick. New Jersey 08903-0231. USA 140 " P. monacha / 0 MMUI /0 THE Red Queen hypothesis for the maintenance of biparental 120 / sexual reproduction suggests that, for species locked in 100 0 / coevolutionary struggles with biological enemies, the production 0 0 " of variable progeny compensates for the genetic or ecological 80 l 7 0 disadvantages of sex - • The advantage of sex and recombination Q under this hypothesis stems from the production ofrare phenotypes, 60 " Q Q which are expected to be more likely to escape infection or preda­ 40 0 tion by coevolved biological enemies. Like many evolutionary 0 Q Q Q) 20 0 hypotheses, the Red Queen hypothesis is difficult to test directly, ttl 7 18 ~OO~~ 0"" but its assumptions and predictions can be evaluated - • The most > ~ 0 'J critical assumption is that biological enemies will disproportion­ " " I9 15 20 25 30 35 40 ately attack the most common phenotype ,2o.
    [Show full text]
  • Adaptive Speciation
    Adaptive Speciation Edited by Ulf Dieckmann, Michael Doebeli, Johan A.J. Metz, and Diethard Tautz PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http: //www.cambridge.org c International Institute for Applied Systems Analysis 2004 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of the International Institute for Applied Systems Analysis. http://www.iiasa.ac.at First published 2004 Printed in the United Kingdom at the University Press, Cambridge Typefaces Times; Zapf Humanist 601 (Bitstream Inc.) System LATEX A catalog record for this book is available from the British Library ISBN 0 521 82842 2 hardback Contents Contributing Authors xi Acknowledgments xiii Notational Standards xiv 1 Introduction 1 Ulf Dieckmann, Johan A.J. Metz, Michael Doebeli, and Diethard Tautz 1.1 AShiftinFocus............................... 1 1.2 AdaptiveSpeciation............................. 2 1.3 AdaptiveSpeciationinContext....................... 6 1.4 SpeciesCriteria................................ 9 1.5 RoutesofAdaptiveSpeciation.......................
    [Show full text]
  • Evolution of Reproductive Isolation
    Adaptive Speciation Ulf Dieckmann Director, Evolution and Ecology Program International Institute for Applied Systems Analysis Laxenburg, Austria Co-authors in alphabetical order: Åke Brännström, Michael Doebeli, Varvara Fazalova, Ben Haller, Mikko Heino, Simone Heinz, Joachim Hermisson, Michael Kopp, Olof Leimar, Leithen M’Gonigle, Rupert Mazzucco, Géza Meszéna, Hans Metz, Isabelle Olivieri, Sally Otto, Joshua Payne, Agnes Rettelbach, Virginie Ravigné, Akira Sasaki, Diethard Tautz, and Barbara Taborsky Speciation Modes: Pattern and Process Pattern-based classification Allopatric speciation Parapatric speciation Sympatric speciation Process-based classifications Competitive speciation Ecological speciation Adaptive speciation Evolution of Reproductive Isolation Divergent selection Disruptive selection Ecological speciation In deme 1 In deme 2 Reproductive isolation Reproductive isolation may occur along the way may be selected for directly Long-lived Evolutionary Trapping Frequency- Frequency-dependent independent disruptive selection disruptive selection Adaptive speciation Disruptiveness is unstable Disruptiveness is stabilized and thus short-lived and may thus be long-lived Competitive speciation is the expansion of a species from a single ecological opportunity to an unexploited ecological opportunity, followed by that species’ sympatric breakup into two daughters, one using the original opportunity, the other the newly exploited one Rosenzweig (1978) Ecological speciation happens through the evolution of reproductive isolation
    [Show full text]
  • The Red Queen: Sex and the Evolution of Human Nature
    About the Author MATT R I D L E Y is the author of Nature Via Nurture: Genes, Experience, and What Makes Us Human; the critically acclaimed national bestseller Genome: The Autobiography of a Species in 23 Chapters; The Origins of Virtue: Human Instincts and the Evolution of Cooperation; and the New York Times Notable Book The Red Queen: Sex and the Evolution of Human Nature. His books have been short-listed for six literary awards, including the Los Angeles Times Book Prize. Formerly a scientist, journalist, and a national newspaper columnist, he is a visiting professor at Cold Spring Harbor Laboratory in New York and the chairman of the International Centre for Life in Newcastle, England: THE RED QUEEN Sex and the Evolution of Human Nature MATT RIDLEY Perennial An Imprint of HarperCollinsPublishers For Matthew This book was first published in Great Britain in 1993 by Penguin Books Ltd: 1t is here reprinted by arrangement with Penguin Putnam. THE RED QUEEN: Copyright © 1993 by Matt Ridley: All rights reserved: Printed in the United States of America: No part of this book may be used or reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information address Penguin Putnam, 375 Hudson Street, New York, NY 10014: HarperCollins books may be purchased for educational, business, or sales promotional use: For information please write: Special Markets Depart- ment, HarperCollins Publishers 1nc., to East 53rd Street, New York, NY 10022: First Perennial edition published 2003. Library of Congress Cataloging-in-Publication Data Ridley, Matt.
    [Show full text]
  • Adaptations for Ecological Forecasting Under Environmental Change
    Implications of existing local (mal)adaptations for ecological forecasting under environmental change Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Walters, R. J. and Berger, D. (2019) Implications of existing local (mal)adaptations for ecological forecasting under environmental change. Evolutionary Applications, 12 (7). pp. 1487-1502. ISSN 1752-4571 doi: https://doi.org/10.1111/eva.12840 Available at http://centaur.reading.ac.uk/85156/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1111/eva.12840 Publisher: Wiley All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Received: 3 August 2018 | Revised: 22 June 2019 | Accepted: 24 June 2019 DOI: 10.1111/eva.12840 SPECIAL ISSUE ORIGINAL ARTICLE Implications of existing local (mal)adaptations for ecological forecasting under environmental change Richard J. Walters1,2 | David Berger3 1Centre for Environmental and Climate Research, Lund University, Lund, Sweden Abstract 2School of Biological Sciences, University of Standing genetic variation represents a genetic load on population fitness but can Reading, Reading, UK also support a rapid response to short‐term environmental change, and the great‐ 3Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala est potential source of such standing genetic variation typically exists among locally University, Uppsala, Sweden adapted populations living along an environmental gradient.
    [Show full text]