Reconciling taxon senescence with the Red Queen’s Hypothesis Indrė Žliobaitė* (a,b,c), Mikael Fortelius (a,b) and Nils Chr. Stenseth (b) (a) Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland (b) Centre for Ecological and Evolutionary Synthesis (CEES) Dept. of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway (c) Department of Computer Science, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland *Correspondence:
[email protected] October 23, 2017 (preprint) Image credit: Ika Österblad 1 In the fossil record, taxa exhibit a regular pattern of waxing and waning of occupancy, range or diversity between their origin and extinction. This hat-like pattern is well established for species, genera and higher taxa of terrestrial mammals1,2,3, marine invertebrates4,5,6, marine micro-organisms7, and recently living Hawaiian clades of animals and plants8. This pattern appears to contradict the Law of Constant Extinction9, which states that the probability of a taxon’s extinction is independent of its age. Here we show that the apparent contradiction between stochastically constant extinction and the seemingly deterministic “hat” pattern disappears when we consider the peak of taxon’s expansion rather than its final extinction. To a first approximation we find that biotic drivers of evolution pertain mainly to the peak, abiotic drivers mainly to the extinction of taxa. The Red Queen’s Hypothesis9, one of the most influential ideas in evolutionary biology since Darwin, was originally proposed as an explanation of the Law of Constant Extinction. Much effort has since been devoted to the question how this hypothesis, emphasizing biotic interactions, relates to the effects of environmental change.