(Leguminosae-Papilionoideae) 17. the Genus Dalbergia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Diversity of Sonadia Island – an Ecologically Critical Area of South-East Bangladesh 1 M.S
Bangladesh J. Plant Taxon. 24(1): 107–116, 2017 (June) PLANT DIVERSITY OF SONADIA ISLAND – AN ECOLOGICALLY CRITICAL AREA OF SOUTH-EAST BANGLADESH 1 M.S. AREFIN, M.K. HOSSAIN AND M. AKHTER HOSSAIN Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong 4331, Bangladesh Keywords: Plant Diversity; Ecologically Critical Area; Sonadia Island; Mangroves. Abstract The study focuses the plant diversity in different habitats, status and percentage distribution of plants in Sonadia Island, Moheshkhali, Cox’s Bazar of Bangladesh. A total of 138 species belonging to 121 genera and 52 families were recorded and the species were categorised to tree (56 species), shrub (17), herb (48) and climber (17). Poaceae represents the largest family containing 8 species belonging to 8 genera. Homestead vegetation consists of 78% species followed by roadside (23%) and cultivated land (10%), mangroves (9%), sandy beaches (4%) and wetland (1%). The major traditional use categories were timber, food and fodder, fuel, medicine and fencing where maximum plant species (33% of recorded) were traditionally being used for food and fodder. Introduction Sonadia Island at Moheshkhali of Cox’s Bazar is situated in the southern-eastern coastal region of Bangladesh with partial regular inundations of saline water. The island covers an area of 10,298 hectares including coastal and mangrove plantations, salt production fields, shrimp culture firms, plain agriculture lands, human settlements etc. Ecosystem of this island was adversely affected due to increasing rate of anthropogenic disturbances. To protect the ecosystem of this island, it was declared as Ecologically Critical Area (ECA) in 1999 under section of the Bangladesh Environment Conservation Act, 1995 (MoEF, 2015). -
Dalbergia Proposal Guatemala (Rev.2)
CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of the genus Dalbergia in CITES Appendix II with exception to the species included in Appendix I. The UNEP-WCMC assessed the Dalbergia species of Latin America and concluded: “… all populations of Dalbergia spp. from South and Central America appear to meet the criteria for listing in CITES Appendix II” (UNEP-WCMC, 2015). Including the whole genus in Appendix II will be essential for the control of international trade by eliminating the arduous task of enforcement and customs officers of differentiating between the hundreds of Dalbergia species listed and not listed in CITES. The inclusion will help ensure that legal trade does not become a direct cause of the extinction of these highly threatened species and will help curb illegal trade. Considering that CITES Appendix II must include all species, which although not necessarily now threatened with extinction may become so unless trade in specimens of such species is subject to strict regulation in order to avoid utilization incompatible with their survival, it is important to include the genus Dalbergia in CITES Appendix II. a) Resolution Conf. 9.24, Annex 2 a, Criterion A - ”It is known, or can be inferred or projected, that the regulation of trade in the species is necessary to avoid it becoming eligible for inclusion in Appendix I in the near future”. b) Resolution Conf. 9.24, Annex 2 a, Criterion B - ”It is known, or can be inferred or projected, that regulation of trade in the species is required to ensure that the harvest of specimens from the wild is not reducing the wild population to a level at which its survival might be threatened by continued harvesting or other influences”. -
The Madagascar Rosewood Massacre
MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 4 | ISSUE 2 — DECEMBER 2009 PAGE 98 The Madagascar rosewood massacre Derek Schuurman and Porter P. Lowry III Correspondence: Derek Schuurman E - mail: [email protected] ABSTRACT centaines de tonnes par mois en 1998 à plus de 30,000 tonnes Valuable timber has been exploited from Madagascar’s entre juillet 2000 et juin 2001. Ces bois précieux ont presque rainforests for many decades, and Malagasy rosewood and tous été obtenus d’une exploitation illicite en provenant des palissandre (Dalbergia spp.) are among the most sought after aires protégées et plus particulièrement des Parcs Nationaux hardwoods in the world. Large quantities have been harvested de Marojejy et de Masoala dans la région SAVA (Sambava - and exported at an increasing rate over the last decade, almost Antalaha - Vohémar - Andapa) au nord - est de Madagascar. entirely from illegal logging in protected areas, in particular Ces parcs ont été récemment reconnus au titre de patrimoine Masoala and Marojejy National Parks, which comprise part of mondial de l’UNESCO dans la nouvelle région des forêts the newly - established Atsinanana UNESCO World Heritage Site humides de l’Atsinanana. Nous présentons des informa- in the SAVA (Sambava - Antalaha - Vohémar - Andapa) region tions obtenues de sources régionales qui montrent qu’une of northeast Madagascar. We present information obtained from organisation d’un trafic sans précédent de l’exploitation illégale sources in the region that documents an unprecedented, highly dans les -
Project Rapid-Field Identification of Dalbergia Woods and Rosewood Oil by NIRS Technology –NIRS ID
Project Rapid-Field Identification of Dalbergia Woods and Rosewood Oil by NIRS Technology –NIRS ID. The project has been financed by the CITES Secretariat with funds from the European Union Consulting objectives: TO SELECT INTERNATIONAL OR NATIONAL XYLARIUM OR WOOD COLLECTIONS REGISTERED AT THE INTERNATIONAL ASSOCIATION OF WOOD ANATOMISTS – IAWA THAT HAVE A SIGNIFICANT NUMBER OF SPECIES AND SPECIMENS OF THE GENUS DALBERGIA TO BE ANALYZED BY NIRS TECHNOLOGY. Consultant: VERA TERESINHA RAUBER CORADIN Dra English translation: ADRIANA COSTA Dra Affiliations: - Forest Products Laboratory, Brazilian Forest Service (LPF-SFB) - Laboratory of Automation, Chemometrics and Environmental Chemistry, University of Brasília (AQQUA – UnB) - Forest Technology and Geoprocessing Foundation - FUNTEC-DF MAY, 2020 Brasília – Brazil 1 Project number: S1-32QTL-000018 Host Country: Brazilian Government Executive agency: Forest Technology and Geoprocessing Foundation - FUNTEC Project coordinator: Dra. Tereza C. M. Pastore Project start: September 2019 Project duration: 24 months 2 TABLE OF CONTENTS 1. INTRODUCTION 05 2. THE SPECIES OF THE GENUS DALBERGIA 05 3. MATERIAL AND METHODS 3.1 NIRS METHODOLOGY AND SPECTRA COLLECTION 07 3.2 CRITERIA FOR SELECTING XYLARIA TO BE VISITED TO OBTAIN SPECTRAS 07 3 3 TERMINOLOGY 08 4. RESULTS 4.1 CONTACTED XYLARIA FOR COLLECTION SURVEY 10 4.1.1 BRAZILIAN XYLARIA 10 4.1.2 INTERNATIONAL XYLARIA 11 4.2 SELECTED XYLARIA 11 4.3 RESULTS OF THE SURVEY OF DALBERGIA SAMPLES IN THE BRAZILIAN XYLARIA 13 4.4 RESULTS OF THE SURVEY OF DALBERGIA SAMPLES IN THE INTERNATIONAL XYLARIA 14 5. CONCLUSION AND RECOMMENDATIONS 19 6. REFERENCES 20 APPENDICES 22 APPENDIX I DALBERGIA IN BRAZILIAN XYLARIA 22 CACAO RESEARCH CENTER – CEPECw 22 EMÍLIO GOELDI MUSEUM – M. -
Brazilian Red Propolis: Legitimate Name of the Plant Resin Source
MOJ Food Processing & Technology Opinion Open Access Brazilian red propolis: legitimate name of the plant resin source Abstract Volume 6 Issue 1 - 2018 Red propolis ranks as the second most produced Brazilian propolis type. Its main chemical constituents are phenolic substances typical of the subfamily Faboideae of Antonio Salatino Maria Luiza F Salatino the Fabaceae (Leguminosae) family, such as neoflavanoids, chalcones, flavanones and Department of Botany, Institute of Biosciences, University of isoflavonoids, among them isoflavones (e.g. biochanin a, daidzein) and pterocarpans São Paulo, Brazil (e.g. medicarpin). The plant source of Brazilian red propolis has been referred to as Dalbergia ecastophyllum throughout the propolis literature. Such scientific binomial, Correspondence: Antonio Salatino, Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão however, is a synonym of the legitimate name Dalbergia ecastaphyllum. 277, 05508-090, São Paulo, SP, Brazil, Tel (+5511)3091-7532, Keywords: botanical origin, brazilian propolis, dalbergia ecastaphyllum, Email [email protected] isoflavonoids, legitimate name, medicarpin, neoflavonoids, phenolic compounds, Received: January 03, 2018 | Published: January 08, 2018 synonym Introduction caffeoylquinic acids predominated as its main constituents. Brazilian green propolis is consumed domestically and exported to several Propolis is a product from honey bee hives, containing chiefly countries, mainly to Japan and China. beeswax and a resin obtained from diverse plant sources, such as apical buds, young leaves and exudates. Color, smell and texture Brazilian red propolis vary according to propolis types and plant sources. Beginning in the last decade of the last century the number of publications about This type of propolis was chemically and botanically characterized 9,10 propolis escalated, giving rise to successive reviews about propolis almost concomitantly by two independent publications. -
DALBERGIA Linnaeus F., Suppl
Flora of China 10: 121–130. 2010. 54. DALBERGIA Linnaeus f., Suppl. Pl. 52, 316. 1782, nom. cons. 黄檀属 huang tan shu Trees, shrubs, or woody climbers. Leaves alternate, imparipinnate; stipules often small and early caducous; leaflets alternate, rarely opposite, estipellate. Inflorescences terminal or axillary, racemes or panicles, usually numerous flowered; bracts and bracteoles usually small, caducous, rarely persistent. Flowers small. Calyx campanulate, 5-toothed; teeth unequal, rarely subequal, lowest tooth usually largest, upper pair usually wider than others and partially connate. Corolla white, pale green, or rarely purple; petals clawed; standard ovate, oblong, or orbicular; wings with base cuneate, truncate, or sagittate; keel often boat-shaped, ± united above. Stamens 9 or 10, monadelphous, usually united in an open sheath, or diadelphous and then in 2 bundles of 5 each (5+5), or 9 united and 1 free (9+1); anthers erect, small, dehiscent by short apical slits. Ovary stipitate, few ovuled; style usually incurved, long or short; stigma terminal, small. Fruit an indehiscent legume, of 4 types: (a) strongly flattened, translucent, raised over seeds (“samaroid”); (b) thick- er, ± leathery, often with lenticels; (c) thick, ± woody; (b+c) when more than 1 seed develops, legume lomentaceous. Seeds reniform, compressed, those of legume types b, c, and b+c usually not visible from outside; radicle inflexed. Between 100 and 120 species: tropical and subtropical regions of North and South America, Africa, and Asia; 29 species (14 endemic, one intro- duced) in China. Due to insufficient data, Dalbergia tonkinensis (species no. 29) could not be included in the key. Dalbergia esquirolii H. -
Rosewood) to CITES Appendix II.2 the New Listings Entered Into Force on January 2, 2017
Original language: English CoP18 Inf. 50 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth meeting of the Conference of the Parties Geneva (Switzerland), 17-28 August 2019 IMPLEMENTING CITES ROSEWOOD SPECIES LISTINGS: A DIAGNOSTIC GUIDE FOR ROSEWOOD RANGE STATES This document has been submitted by the United States of America at the request of the World Resources Institute in relation to agenda item 74.* * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. CoP18 Inf. 50 – p. 1 Draft for Comment August 2019 Implementing CITES Rosewood Species Listings A Diagnostic Guide for Rosewood Range States Charles Victor Barber Karen Winfield DRAFT August 2019 Corresponding Author: Charles Barber [email protected] Draft for Comment August 2019 INTRODUCTION The 17th Meeting of the Conference of the Parties (COP-17) to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), held in South Africa during September- October 2016, marked a turning point in CITES’ treatment of timber species. While a number of tree species had been brought under CITES regulation over the previous decades1, COP-17 saw a marked expansion of CITES timber species listings. The Parties at COP-17 listed the entire Dalbergia genus (some 250 species, including many of the most prized rosewoods), Pterocarpus erinaceous (kosso, a highly-exploited rosewood species from West Africa) and three Guibourtia species (bubinga, another African rosewood) to CITES Appendix II.2 The new listings entered into force on January 2, 2017. -
Specificity in Legume-Rhizobia Symbioses
International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). -
Plants of Cat Tien National Park DANH LỤC THỰC VẬT VƯỜN
Plants of Cat Tien National Park 22 January 2017 * DANH LỤC THỰC VẬT VƯỜN QUỐC GIA CÁT TIÊN Higher Family Chi - Loài NGÀNH / LỚP v.v. HỌ / HỌ PHỤ Rec. No. Clas. (& sub~) Species Authority ssp., var., syn. etc. & notes TÊN VIỆT NAM Ds Cd Mã số Clade: Embryophyta Nhánh: Thực vật có phôi (Division) Marchantiophyta Liverworts Ngành Rêu tản (Division) Anthocerotophyta Hornworts Ngành Rêu sừng (Division) Bryophyta Mosses Ngành Rêu Tracheophyta: Vascular plants: Thực vật có mạch: (Division) Lycopodiophyta clubmosses, etc Ngành Thạch tùng Lycopodiaceae 1. HỌ THẠCH TÙNG Huperzia carinata (Poir.) Trevis Thạch tùng sóng K C - T 4 Huperzia squarrosa (Forst.) Trevis Thạch tùng vảy K T 12 Huperzia obvalifolia (Bon.) Thạch tùng xoan ngược K C - T 8 Huperzia phlegmaria (L.) Roth Râu cây K C - T 9 Lycopodiella cernua (L.) Franco & Vasc Thạch tùng nghiên K T 16 Lycopodiella sp. Thạch tùng K T Selaginellaceae spikemosses 2. HỌ QUYỂN BÁ Selaginella delicatula (Desv) Alst. Quyển bá yếu K T 41 Selaginella rolandi-principis Alston. Hoa đá K T 27 Selaginella willdenowii (Desv.) Baker. Quyển bá Willdenov K T 33 Selaginella chrysorrhizos Spring Quyển bá vàng K 39 Selaginella minutifolia Spring Quyển bá vi diệp K 49 (Division) Pteridophyta (Polypodiophyta) Leptosporangiate ferns Ngành Dương xỉ Class: Marattiopsida Lớp Dương xỉ tòa sen Marattiaceae (prev. Angiopteridaceae) 4. HỌ HIỀN DỰC Angiopteris repandulade Vriese. Ráng hiền dực K 82 Class: Pteridopsida or Polypodiopsida Lớp Dương xỉ Order: Polypodiales polypod ferns Bộ Dương xỉ Aspleniaceae 5. HỌ CAN XỈ Asplenium nidus L. Ráng ổ phụng K 456 Asplenium wightii Eatoni Hook. -
Part I Chinese Plant Names Index 2010-2017
This Book is Sponsored by Shanghai Chenshan Botanical Garden 上海辰山植物园 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences 中国科学院上海辰山植物科学研究中心 Special Fund for Scientific Research of Shanghai Landscaping & City Appearance Administrative Bureau (G182415) 上海市绿化和市容管理局科研专项 (G182415) National Specimen Information Infrastructure, 2018 Special Funds 中国国家标本平台 2018 年度专项 Shanghai Sailing Program (14YF1413800) 上海市青年科技英才扬帆计划 (14YF1413800) Chinese Plant Names Index 2010-2017 DU Cheng & MA Jin-shuang Chinese Plant Names Index 2010-2017 中国植物名称索引 2010-2017 DU Cheng & MA Jin-shuang Abstract The first two volumes of Chinese Plant Names Index (CPNI) cover the years 2000 through 2009, with entries 1 through 5,516, and 2010 through 2017, with entries 5,517 through 10,795. A unique entry is generated for the specific name of each taxon in a specific publication. Taxonomic treatments cover all novelties at the rank of family, genus, species, subspecies, variety, form and named hybrid taxa, new name changes (new combinations and new names), new records, new synonyms and new typifications for vascular plants reported or recorded from China. Detailed information on the place of publication, including author, publication name, year of publication, volume, issue, and page number, are given in detail. Type specimens and collects information for the taxa and their distribution in China, as well as worldwide, are also provided. The bibliographies were compiled from 182 journals and 138 monographs or books published worldwide. In addition, more than 400 herbaria preserve type specimens of Chinese plants are also listed as an appendix. This book can be used as a basic material for Chinese vascular plant taxonomy, and as a reference for researchers in biodiversity research, environmental protection, forestry and medicinal botany. -
Ecology, and Population Status of Dalbergia Latifolia from Indonesia
A REVIEW ON TAXONOMY, BIOLOGY, ECOLOGY, AND POPULATION STATUS OF DALBERGIA LATIFOLIA FROM INDONESIA K U S U M A D E W I S R I Y U L I T A , R I Z K I A R Y F A M B A Y U N , T I T I E K S E T Y A W A T I , A T O K S U B I A K T O , D W I S E T Y O R I N I , H E N T I H E N D A L A S T U T I , A N D B A Y U A R I E F P R A T A M A A review on Taxonomy, Biology, Ecology, and Population Status of Dalbergia latifolia from Indonesia Kusumadewi Sri Yulita, Rizki Ary Fambayun, Titiek Setyawati, Atok Subiakto, Dwi Setyo Rini, Henti Hendalastuti, and Bayu Arief Pratama Introduction Dalbergia latifolia Roxb. (Fabaceae) is known as sonokeling in Indonesia. The species may not native to Indonesia but have been naturalised in several islands of Indonesia since it was introduced from India (Sunarno 1996; Maridi et al. 2014; Arisoesilaningsih and Soejono 2015; Adema et al. 2016;). The species has beautiful dark purple heartwood (Figure 1). The wood is extracted to be manufactured mainly for musical instrument (Karlinasari et al. 2010). At present, the species have been cultivated mainly in agroforestry (Hani and Suryanto 2014; Mulyana et al., 2017). The main distribution of species in Indonesia including Java and West Nusa Tenggara (Djajanti 2006; Maridi et al. -
Disease Survey in Nurseries and Plantations of Forest Tree Species Grown in Kerala
KFRI Research Report 36 DISEASE SURVEY IN NURSERIES AND PLANTATIONS OF FOREST TREE SPECIES GROWN IN KERALA J.K.Sharma C.Mohanan E.J.Maria Florence KERALA FOREST RESEARCH INSTITUTE PEECHI, THRISSUR December 1985 Pages: 268 CONTENTS Page File Abstract 1 r. 36.2 Subject index i r. 36.9 1 Introduction 3 r.36.3 2 Materials and methods 6 r.36.4 3 Results 15 r.36.5 4 Discussion and conclusion 227 r.36.6 5 References 233 r.36.7 6 Appendix 244 r.36.8 ABSTRACT During the disease survey in Tectona grandis, Bombax ceiba, Ailanthus triphysa, Gmelina arborea. Dalbergia latifolia, Ochroma pyramidale and Eucalyptus spp. a total of 65 pathogenic and 13 other diseases (unknown etiology, non-infectious and phanerogamic parasite) were recorded. With these diseases altogether 88 pathogens were associated, of which 64 are new host record, including seven new species viz. Pseudoepicoccum tectonae and Phoinopsis variosporum on T, grandis, Meliola ailan thii on A. triphysa, Griphospharria gmelinae on G. arborca, Physalospora dalbergiae on D. latifolia and Cytospora eucalypti and Valsa eucalypticola on Eucalyptus spp., while 29 are first record from India, T. grandis had fifteen diseases, two in nursery and fourteen in plantations; one being common to both. Ten organisms were associated with these diseases; mostly causing foliar damage; six pathogens are new host record and four first record from India. None of the two diseases in nurseries were serious whereas in plantations die -back caused by insect-fungus complex and a phanerogamic parasite, Dendrop- hthoe falcata were serious diseases capable of causing large-scale destruction.