Search for Dynamical Symmetry Breaking Physics by Using Top Quark

Total Page:16

File Type:pdf, Size:1020Kb

Search for Dynamical Symmetry Breaking Physics by Using Top Quark April 1995 Search for Dynamical Symmetry Breaking Physics by Using Top Quark T.Asaka, N.Maekawa, T.Moroi, Y.Shobuda, and Y.Sumino Department of Physics, Tohoku University Sendai, 980 Japan Abstract We report first results from the investigation on. probing dynamical mech- anism of the electroweak symmetry breaking using top quark. We consider the case where the top quark mass originates from a fermion-antifermion pair condensate, which necessitates (i)strong interaction to cause condensation, and (ii)4-fermi interaction to give top mass. From the observed top mass and the unitarity constraint, we obtain, for the 4-fermi interaction (ii), lower bounds for its strength and upper bounds for its intrinsic new mass scale as we vary the type of the strong interaction (i). Bethe-Salpeter and Schwinger-Dyson equations are solved numerically to study the dynamical symmetry breaking effect semi-quantitatively. — 108 1. Introduction The SU(2) x U(l) gauge theory for describing elcctroweak interactions are very suc- cessful both theoretically and experimentally. However all the experimental tests has been done only for its gauge part. We know that weak bosons and various fermions have their own masses. Because these mass terms are forbidden by gauge symmetry, a mechanism of symmetry breaking is needed, but we have few knowledge about this mechanism so far. Two possibilities have been considered for a symmetry breaking mechanism. In the so- called standard model (SM), symmetry breaking sector consists of an SU(2) gauge doublet of elementary scalar field (Higgs field). By the non-zero vacuum expectation value of this field, gauge symmetry is broken. On the other hand, in models such as technicolor (TC) model [1], new fermions are introduced for its symmetry breaking sector and their condensate breaks symmetry dynamically. Here we consider the latter possibility and intend to search for dynamical symmetry breaking physics by using top quark. Why do we use top quark? Top quark mass is much heavier than other fermions and is of the same order value as the electroweak symmetry breaking scale [2]. When gauge symmetry is dynamically broken by a fermion-antifermion pair, two things are needed to explain fermion masses. First, we need a strong attractive force to form condensate. Second, 4-fermi interaction, which corresponds to the fermion-Higgs Yukawa interaction in the standard model, are needed. Top quark, for example, acquires its mass through a 4-fermi interaction, C = -^HmLtR + h.c. , (1) where M is the new physics scale and \& denotes a new fermion which is introduced in the symmetry breaking sector. From the fermion condensate (XP\I/), top gets mass as This condensate (ty$\ also gives mass to the gauge bosons, because the condensate has a non-zero SU(2) charge. Therefore in the TC-like model, we expect a following inequality: 1/3 < v ~ 0(250 GeV), (3) where v represents the electroweak symmetry breaking scale. The reason we have inequality rather than equality is because there may exist a condensate, which does not give mass to the top quark while giving masses to the gauge bosons, other than this /\&\I/\. From the 109 — observed value of mt a 175 GeV [2], the lower bound for the strength of 4-fermi interaction (~ 1/M2 ) in eq.(l) is obtained via eqs.(2) and (3). We also get the lower bound for the non-standard effect to e.g. Ztt vertex as shown in fig.l. Similar argument holds for other fermions, but the most stringent lower bound tr 4-fermi interaction Figure 1: The Feynman diagram for the non-standard correction from the dynamical sym- metry breaking to the Ztt vertex. for the non-standard gauge-fermion coupling is posed in the case of top quark. This is the reason why we use top quark in searching for a mechanism of dynamical symmetry breaking. To study the dynamical symmetry breaking effect, we solve numerically the Schwinger- Dyson (SD) and Bethe-Salpeter (BS) equations. For the QCD case, taking /„. as the only input parameter, AQCDX^^), Mp,Mai,Ma0,fp, and fai have been calculated by this approach, which meets the experimental value within 20 ~ 30 % accuracy; see refs.[4, 5]. Therefore we expect to calculate the oblique corrections, the Ztt vertex, etc., semi- quantitatively. In this note, we report, as our first results, the numerical estimation of 4-fermi in- teraction which gives rise to the top mass. From the experimental value of mt and the unitarity constraint, we obtain lower bounds for the strength of the 4-fermi interaction and upper bounds for its intrinsic new mass scale by considering various types of the strong interaction which is needed to cause a fermion-antifermion condensate. 2. Numerical Estimation of the Four-Fermi Interaction Now we consider that top quark mass comes dynamically from a fermion-antifermion pair condensate. In this case, a strong interaction which causes the condensate and a 4-fermi interaction which gives a top mass are required. Here we show the theoretical — 110 — estimation of this 4-fermi interaction using the observed top quark mass and the unitarity constraint. Model First, we explain the model we consider here for the symmetry breaking sector. We consider the one-doublet TC-like model in which the SU(NTC) gauge interaction cause fermion condensation. New fermions which are fundamental representation of SU(NTC) are introduced as QL = I „ I , UR, DR, (4) with the weak hypercharge, Y(QL) = 0, Y(UR) = \, Y(DR) = -\ , (5) where these quantum numbers are chosen to cancel the anomaly. JVd sets of above new fermions are introduced in the breaking sector. We also introduce the kernel K which characterizes the strong interaction between \& and *, where ty denotes the above fermion U or D. Now in the case where the SU(NTc) gauge interaction cause the condensation, we can approximately write down the explicit form of the kernel K. In the improved ladder approximation in Landau gauge [3], the kernel K in the momentum space is written as [4] (the momentum configuration is defined as fig.2 ) <P~k) 2 where C2 is the second Casimir invariant of the SU(N) fundamental representation and the running coupling constant g(p, k) is used. Figure 2: The Feynman diagram for the kernel K(p, k). The helix denotes the techni-gluon propagator. Ill — Once the kernel is fixed as in eq.(6), we can write down the SD eq. and BS eq. which are the self-consistent equations for the full 2-point and 4-point Green functions of $, respectively. In fig.3, these equations are shown diagrammatically. By solving these equa- tions numerically following ref.[4], we obtain the mass function of \&, S(p), and the decay constant, F^. SDeq. BSeq. Figure 3: The graphical representations of the SD eq. and the BS eq. The line with a blob denotes the full propagetor of ty. Top Quark Mass In order to give top quark mass, we also introduce a 4-fermi interaction j^ h.c., (7) where qi denotes the ordinary quark weak doublet and G is the dimension-less coupling. In this 4-fermi interaction, M denotes a new physics scale. Because 4-fermi interaction cannot be a fundamental interaction, there should be a scale M above which this interaction will resolve. Although above this scale there will exist some fundamental theory (such as extended technicolor model[6]) which induce the 4-fermi interaction, we will leave the whole theory and consider only this 4-fermi interaction below the scale M. Now top quark acquires mass through the 4-fermi interaction (7) as shown in fig.4. Using the full propagator of "[/" which is a solution to the SD equation W, top mass can be calculated as [*] In fact, the SD eq. shown in fig.3 is incomplete. Because of the 4-fermi interaction (7), we should consider the mixing of SD eqs. of top quark and "[/", but here we neglect this effect. — 112 — Figure 4: The diagram for the top quark mass. where with x — p% = — p2. Here the new physics scale M is defined as the upper bound of the integral. In order to set the mass scale of the theory, we use the decay constant F* which is obtained by solving the BS eq. of "£/" and "Z?". From the gauge bosons masses, the Fv is normalized as, Mw > ^, (11) where g is the SU(2)L gauge couping constant. Here we have inequality rather than equality, because there may be fermion condensates other than \UU\ and \DD\ , which do not contribute to the top mass while giving masses to the gauge bosons. By substituting the observed top mass mt — 175 GeV [2], we obtain the coupling G for a given M. We consider the case where the strong interaction is given by the SU(2) and SU(3) gauge interaction, and show the G~M contours in figs.5 and 6, respectively. In each figure, the upper region of the lines are allowed because of the inequality in eq.(ll). The behavior of the coupling G can be understood by the momentum dependence of the mass function Y,(x). The E(x) is almost flat for x < A^c, while decreasing rapidly for x 3> A^c as S(z) ~ -(lnx)^"1 , (12) x where B represents the coupling flow and, using the lowest order coefficient of the /? function (/?o), B = /?o/12C2. Now Arc is defined as the scale where the leading-logarithmic running — 113 — coupling constant diverges. Prom this momentum dependence, G behaves as, 2 2 G ~ ~ (for M «A TC), (13) M2 G "onus (fMM2»A->- (14» 2 For M «C Aj-C, the coupling G becomes larger as M —> 0, because the upper bound of the integral is getting smaller.
Recommended publications
  • Arxiv:1406.7795V2 [Hep-Ph] 24 Apr 2017 Mass Renormalization in a Toy Model with Spontaneously Broken Symmetry
    UWThPh-2014-16 Mass renormalization in a toy model with spontaneously broken symmetry W. Grimus∗, P.O. Ludl† and L. Nogu´es‡ University of Vienna, Faculty of Physics Boltzmanngasse 5, A–1090 Vienna, Austria April 24, 2017 Abstract We discuss renormalization in a toy model with one fermion field and one real scalar field ϕ, featuring a spontaneously broken discrete symmetry which forbids a fermion mass term and a ϕ3 term in the Lagrangian. We employ a renormalization scheme which uses the MS scheme for the Yukawa and quartic scalar couplings and renormalizes the vacuum expectation value of ϕ by requiring that the one-point function of the shifted field is zero. In this scheme, the tadpole contributions to the fermion and scalar selfenergies are canceled by choice of the renormalization parameter δv of the vacuum expectation value. However, δv and, therefore, the tadpole contributions reenter the scheme via the mass renormalization of the scalar, in which place they are indispensable for obtaining finiteness. We emphasize that the above renormalization scheme provides a clear formulation of the hierarchy problem and allows a straightforward generalization to an arbitrary number of fermion and arXiv:1406.7795v2 [hep-ph] 24 Apr 2017 scalar fields. ∗E-mail: [email protected] †E-mail: [email protected] ‡E-mail: [email protected] 1 1 Introduction Our toy model is described by the Lagrangian 1 1 = iχ¯ γµ∂ χ + y χT C−1χ ϕ + H.c. + (∂ ϕ)(∂µϕ) V (ϕ) (1) L L µ L 2 L L 2 µ − with the scalar potential 1 1 V (ϕ)= µ2ϕ2 + λϕ4.
    [Show full text]
  • A Chiral Symmetric Calculation of Pion-Nucleon Scattering
    . s.-q3 4 4t' A Chiral Symmetric Calculation of Pion-Nucleon Scattering UNeOo M Sc (Rangoon University) A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the University of Adelaide Department of Physics and Mathematical Physics University of Adelaide South Australia February 1993 Aword""l,. ng3 Contents List of Figures v List of Tables IX Abstract xt Acknowledgements xll Declaration XIV 1 Introduction 1 2 Chiral Symmetry in Nuclear Physics 7 2.1 Introduction . 7 2.2 Pseudoscalar and Pseudovector pion-nucleon interactions 8 2.2.1 The S-wave interaction 8 2.3 Soft-pion Theorems L2 2.3.1 Partially Conserved Axial Current(PCAC) T2 2.3.2 Adler's Consistency condition l4 2.4 The Sigma Model 16 2.4.I The Linear Sigma, Mocìel 16 2.4.2 Broken Symmetry Mode 18 2.4.3 Correction to the S-wave amplitude . 19 2.4.4 The Non-linear sigma model 2.5 Summary 3 Relativistic Two-Body Propagators 3.1 Introduction . 3.2 Bethe-Salpeter Equation 3.3 Relativistic Two Particle Propagators 3.3.1 Blankenbecler-Sugar Method 3.3.2 Instantaneous-interaction approximation 3.4 Short Range Structure in the Propagators 3.5 Smooth Propagators 3.6 The One Body Limit 3.7 One Body Limit, the R factor 3.8 Application to the zr.lú system 3.9 Summary 4 The Formalisrn 4.r Introduction - 4.2 Interactions in the Cloudy Bag Model . 4.2.1 Vertex Functions 4.2.2 The Weinberg-Tomozawa Term 4.3 Higher order graphs 4.3.1 The Cross Box Interaction 4.3.2 Loop diagram 4.3.3 The Chiral Partner of the Sigma Diagram 4.3.4 Sigma like diagrams 4.3.5 The Contact Interaction 4.3.6 The Interaction for Diagram h .
    [Show full text]
  • Strongly Coupled Fermions on the Lattice
    Syracuse University SURFACE Dissertations - ALL SURFACE December 2019 Strongly coupled fermions on the lattice Nouman Tariq Butt Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Butt, Nouman Tariq, "Strongly coupled fermions on the lattice" (2019). Dissertations - ALL. 1113. https://surface.syr.edu/etd/1113 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Since its inception with the pioneering work of Ken Wilson, lattice field theory has come a long way. Lattice formulations have enabled us to probe the non-perturbative structure of theories such as QCD and have also helped in exploring the phase structure and classification of phase transitions in a variety of other strongly coupled theories of interest to both high energy and condensed matter theorists. The lattice approach to QCD has led to an understanding of quark confinement, chiral sym- metry breaking and hadronic physics. Correlation functions of hadronic operators and scattering matrix of hadronic states can be calculated in terms of fundamental quark and gluon degrees of freedom. Since lat- tice QCD is the only well-understood method for studying the low-energy regime of QCD, it can provide a solid foundation for the understanding of nucleonic structure and interaction directly from QCD. Despite these successes problems remain. In particular, the study of chiral gauge theories on the lattice is an out- standing problem of great importance owing to its theoretical implications and for its relevance to the electroweak sector of the Standard Model.
    [Show full text]
  • Optimized Probes of the CP Nature of the Top Quark Yukawa Coupling at Hadron Colliders
    S S symmetry Article Optimized Probes of the CP Nature of the Top Quark Yukawa Coupling at Hadron Colliders Darius A. Faroughy 1, Blaž Bortolato 2, Jernej F. Kamenik 2,3,* , Nejc Košnik 2,3 and Aleks Smolkoviˇc 2 1 Physik-Institut, Universitat Zurich, CH-8057 Zurich, Switzerland; [email protected] 2 Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; [email protected] (B.B.); [email protected] (N.K.); [email protected] (A.S.) 3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia * Correspondence: [email protected] Abstract: We summarize our recent proposals for probing the CP-odd ik˜t¯g5th interaction at the LHC and its projected upgrades directly using associated on-shell Higgs boson and top quark or top quark pair production. We first recount how to construct a CP-odd observable based on top quark polarization in Wb ! th scattering with optimal linear sensitivity to k˜. For the corresponding hadronic process pp ! thj we then present a method of extracting the phase-space dependent weight function that allows to retain close to optimal sensitivity to k˜. For the case of top quark pair production in association with the Higgs boson, pp ! tth¯ , with semileptonically decaying tops, we instead show how one can construct manifestly CP-odd observables that rely solely on measuring the momenta of the Higgs boson and the leptons and b-jets from the decaying tops without having to distinguish the charge of the b-jets. Finally, we introduce machine learning (ML) and non-ML techniques to study the phase-space optimization of such CP-odd observables.
    [Show full text]
  • Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion As Well to the Graviton Mediating the Interaction in Celestial Bodies
    Hindawi Advances in Mathematical Physics Volume 2019, Article ID 6765827, 10 pages https://doi.org/10.1155/2019/6765827 Research Article Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion as well to the Graviton Mediating the Interaction in Celestial Bodies Connor Martz,1 Sheldon Van Middelkoop,2 Ioannis Gkigkitzis,3 Ioannis Haranas ,4 and Ilias Kotsireas4 1 University of Waterloo, Department of Physics and Astronomy, Waterloo, ON, N2L-3G1, Canada 2University of Western Ontario, Department of Physics and Astronomy, London, ON N6A-3K7, Canada 3NOVA, Department of Mathematics, 8333 Little River Turnpike, Annandale, VA 22003, USA 4Wilfrid Laurier University, Department of Physics and Computer Science, Waterloo, ON, N2L-3C5, Canada Correspondence should be addressed to Ioannis Haranas; [email protected] Received 25 September 2018; Revised 25 November 2018; Accepted 4 December 2018; Published 1 January 2019 Academic Editor: Eugen Radu Copyright © 2019 Connor Martz et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Research on gravitational theories involves several contemporary modifed models that predict the existence of a non-Newtonian Yukawa-type correction to the classical gravitational potential. In this paper we consider a Yukawa potential and we calculate the time rate of change of the orbital energy as a function of the orbital mean motion for circular and elliptical orbits. In both cases we fnd that there is a logarithmic dependence of the orbital energy on the mean motion. Using that, we derive an expression for the mean motion as a function of the Yukawa orbital energy, as well as specifc Yukawa potential parameters.
    [Show full text]
  • Topics in Two-Dimensional Heterotic and Minimal Supersymmetric Sigma Models
    Topics in Two-dimensional Heterotic and Minimal Supersymmetric Sigma Models A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jin Chen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Prof. Arkady Vainshtein May, 2016 c Jin Chen 2016 ALL RIGHTS RESERVED Acknowledgements I am deeply grateful to my advisor, Arkady Vainshtein, for his step by step guidance, constant encouragement and generous support throughout these years at University of Minnesota. Arkady has been a knowledgeable, passionate, and also patient advisor, mentor and friend to me. He teaches me physics knowledge and ways of thinking, fosters my independent study, as well as tolerates my capriciousness and digressions on research. Besides conduct of research, I also got greatly enjoyed and influenced by Arkady's optimistic and humorous personality during countless discussions and debates with him. I also want to express my special appreciation and thanks to Misha Shifman, who co- advised me and provided many insightful ideas on research and precious suggestions on my physics career during these years. Misha introduced me the topic on heterotic sigma model years ago and led me to this long but fascinating journey, while at that time I was not able to appreciate the beauty of the topic yet. I would like to thank Sasha Voronov. Arkady introduced me to Sasha. I learned from him how to calculate characteristic classes of the Grassmannian manifolds which was a key step in my research. I thank Sasha, Ron Poling and Misha Voloshin for serving on my thesis committee as well.
    [Show full text]
  • 1. Introduction
    TWO-QUARK BOUND STATES: MESON SPECTRA AND REGGE TRAJECTORIES 1 2 G. Ganbold • t and G.V. Efimov1 (1) Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna (2) lnstitute of Physics and Technology, MAS, Ulaanbaatar 1' E-mail: ganbold@thsunl .jinr. ru Abstract We consider simple relativistic quantum field models with the Yukawa interaction of quarks and gluons. In the presence of the analytic confinement there exist bound states of quarks and gluons at relatively weak coupling. By using a minimal set of free parameters (the quark masses and the confinement scale) and involving the mass-dependent coupling constant of QCD we satisfactorily explain the observed meson spectra and the asymptotically linear Regge trajectories. 1. Introduction The conventional theoretical description of colorless hadrons within the QCD implies they are bound states of quarks and gluons considered under the color confinement. A realisation of the confinement is developed in [l, 2] by using an assumption that QCD vacuum is realized by the self-dual homogeneous vacuum gluon field. Accordingly, this can lead to the quark and gluon confinement as well as a necessary chiral symmetry breaking. Hereby, propagators of quarks and gluons in this field are entire analytic fonctions in the p2-complex plane, i.e. the analytic confinement takes place. On the other hand, there exists a prejudice to the idea of the analytic confinement (for example, [3]). Therefore, it seems reasonable first to consider simple quantum field models in order to investigate only qualitative effects. In our earlier paper [4] we considered simple scalar­ field models to clarify the "pure role" of the analytic confinement in formation of the hadron bound states.
    [Show full text]
  • Remark on the QCD-Electroweak Phase Transition in a Supercooled Universe
    Remark on the QCD-electroweak phase transition in a supercooled Universe Dietrich B¨odeker1 Fakult¨at f¨ur Physik, Universit¨at Bielefeld, 33501 Bielefeld, Germany Abstract In extensions of the Standard Model with no dimensionful parameters the elec- troweak phase transition can be delayed to temperatures of order 100 MeV. Then the chiral phase transition of QCD could proceed with 6 massless quarks. The top- quark condensate destabilizes the Higgs potential through the Yukawa interaction, triggering the electroweak transition. Based on the symmetries of massless QCD, it has been argued that the chiral phase transition is first order. We point out that the top-Higgs Yukawa interaction is non-perturbatively large at the QCD scale, and that its effect on the chiral phase transition may not be negligible, violating some of the symmetries of massless QCD. A symmetry breaking top-quark condensation would then happen in a second-order phase transition, a symmetry-breaking first-order transition could occur in the light-quark sector. First-order phase transitions are interesting for cosmology because they can leave ob- servable relics such as the baryon asymmetry of the universe [1,2], gravitational waves [3], or large scale magnetic fields [4]. In the Standard Model there is neither an electroweak, nor a QCD, or quark-hadron phase transition: both electroweak symmetry [5, 6] and the approximate symmetries of QCD get broken in a smooth crossover [7, 8] However, in nearly scale-invariant extensions of the Standard Model there can be a first-order electroweak phase transition, and, furthermore, it can have very peculiar fea- tures: The decay rate of the metastable high-temperature phase can be tiny down to very low temperatures, so that the universe supercools well below the critical tempera- ture [9–12].
    [Show full text]
  • The Higgs As a Pseudo-Goldstone Boson
    Universidad Autónoma de Madrid Facultad de Ciencias Departamento de Física Teórica The Higgs as a pseudo-Goldstone boson Memoria de Tesis Doctoral realizada por Sara Saa Espina y presentada ante el Departamento de Física Teórica de la Universidad Autónoma de Madrid para la obtención del Título de Doctora en Física Teórica. Tesis Doctoral dirigida por M. Belén Gavela Legazpi, Catedrática del Departamento de Física Teórica de la Universidad Autónoma de Madrid. Madrid, 27 de junio de 2017 Contents Purpose and motivation 1 Objetivo y motivación 4 I Foundations 9 1 The Standard Model (SM) 11 1.1 Gauge fields and fermions 11 1.2 Renormalizability and unitarity 14 2 Symmetry and spontaneous breaking 17 2.1 Symmetry types and breakings 17 2.2 Spontaneous breaking of a global symmetry 18 2.2.1 Goldstone theorem 20 2.2.2 Spontaneous breaking of the chiral symmetry in QCD 21 2.3 Spontaneous breaking of a gauge symmetry 26 3 The Higgs of the SM 29 3.1 The EWSB mechanism 29 3.2 SM Higgs boson phenomenology at the LHC: production and decay 32 3.3 The Higgs boson from experiment 34 3.4 Triviality and Stability 38 4 Having a light Higgs 41 4.1 Naturalness and the “Hierarchy Problem” 41 4.2 Higgsless EWSB 44 4.3 The Higgs as a pseudo-GB 45 II Higgs Effective Field Theory (HEFT) 49 5 Effective Lagrangians 51 5.1 Generalities of EFTs 51 5.2 The Chiral Effective Lagrangian 52 5.3 Including a light Higgs 54 5.4 Linear vs.
    [Show full text]
  • Massive Graviton Geons
    PHYSICAL REVIEW D 97, 044005 (2018) Massive graviton geons † ‡ Katsuki Aoki,1,* Kei-ichi Maeda,1, Yosuke Misonoh,1, and Hirotada Okawa2,1,§ 1Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan 2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan (Received 24 October 2017; published 5 February 2018) We find vacuum solutions such that massive gravitons are confined in a local spacetime region by their gravitational energy in asymptotically flat spacetimes in the context of the bigravity theory. We call such self-gravitating objects massive graviton geons. The basic equations can be reduced to the Schrödinger- Poisson equations with the tensor “wave function” in the Newtonian limit. We obtain a nonspherically symmetric solution with j ¼ 2, l ¼ 0 as well as a spherically symmetric solution with j ¼ 0, l ¼ 2 in this system where j is the total angular momentum quantum number and l is the orbital angular momentum quantum number, respectively. The energy eigenvalue of the Schrödinger equation in the nonspherical solution is smaller than that in the spherical solution. We then study the perturbative stability of the spherical solution and find that there is an unstable mode in the quadrupole mode perturbations which may be interpreted as the transition mode to the nonspherical solution. The results suggest that the nonspherically symmetric solution is the ground state of the massive graviton geon. The massive graviton geons may decay in time due to emissions of gravitational waves but this timescale can be quite long when the massive gravitons are nonrelativistic and then the geons can be long-lived.
    [Show full text]
  • SLAC-PUB-1525 January 1975 (T) QUARK CONFINEMENT, RISING
    SLAC-PUB-1525 January 1975 (T) - -h QUARK CONFINEMENT, RISING TRAJECTORIES AND ASYMPTOTIC BEHAVIdR OF FORM FACTORS* Harald J. W. Muller-Kirstenf Stanford Linear Accelerator Center‘ Stanford University, Stanford, California 94305 r ABSTRACT Several long range force models of quark confinement are considered with particular emphasis on gluon exchange analogous to linear and har- monic potentials. First the nonrelativistic case is discussed and the con- nection between the rise of the Regge trajectories and the power of the potential is derived. Then semirelativistic and relativistic equations are considered. It is shown that in each case the rising trajectories result from large quark-gluon coupling constants. It is also shown that an asymptotic power decrease of bound-state form factors follows only if the interaction contains an additional Coulomb- or Yukawa-like part, and only in the space-like or the time-like domain. The significance of infrared cutoffs is examined, violations of unitarity are pointed out and the behavior in the static limit is discussed. (Submitted for publication. ) *Work supported in part by the U. S. Atomic Energy Commission. f-Max Kade Foundation Fellow. On leave from University of Trier- Kaiserslautern, Kaiserslautern, Germany. Address after February 1, 1975: Fachbereich Physik, UniversitZit Trier-Kaiserslautern, 675 Kaiserslautern, Germany. I 2- 1. Introduction Gsnsiderable experimental evidence has accumulated in recent years in support of the idea that hadrons are composite. Also the most popular model of composite hadrons, the quark model, has been successful in explaining several high energy phenomena. Yet all attempts to isolate and observe the quarks have failed to date.
    [Show full text]
  • Three-Loop Β-Functions for Top-Yukawa and the Higgs Self
    TTP12-012 SFB/CPP-12-23 Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model K. G. Chetyrkin a, M. F. Zoller a a Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany Abstract We analytically compute the dominant contributions to the β-functions for the top-Yukawa coupling, the strong coupling and the Higgs self-coupling as well as the anomalous dimensions of the scalar, gluon and quark fields in the unbroken phase of the Standard Model at three- loop level. These are mainly the QCD and top-Yukawa corrections. The contributions from the Higgs self-interaction which are negligible for the running of the top-Yukawa and the strong coupling but important for the running of the Higgs self-coupling are also evaluated. 1 Introduction Using perturbation theory in any renormalizable quantum field theory comes with the price that the parameters of this theory, e.g. the couplings and masses, in general depend on the renormalization scale µ. The precise description of the evolution of these parameters with the energy scale is an important task in any model. This is done by means of the Renormalization Group functions, that is the β-functions and anomalous dimensions. The knowledge of the three-loop contributions to the β-functions for the Standard Model (SM) and its extensions is important for physics at the very high energy frontier and for cosmology. Here are some examples: The running of the gauge couplings plays an important role for the construction of Grand Unified theories of the strong and electroweak interactions.
    [Show full text]