Index

Note: Page numbers in italics refer to biofilms, 42, 64, 65 , 81, 84* Figures; those in bold to Tables; Page bioirrigation, 36 echinoderms see echinoderms numbers with an asterisk (eg 24*) indicate biostratinomy, 36, 36 Grypania, 81, 84* color representation. bioturbation, 52, 64 microbial mat-dominated seafloors, 83 early Chengjiang biota, mollusc evolution, 86, 88, 89*,91 AAT see average annual temperature China, 42, 43, 84, 87 organism size, increase in, 81–2, 84* (AAT) ichnodiversity, 210, 212 trilobites, 81 reworked remains, 36, 36 wrinkle structure distribution, 83, 86 Acanthostega, 139 and trace fossils see trace fossils and Cambrorhytium, 84, 87 Acropora bioturbation CAMP see Central Atlantic Magmatic A. cervicornis, 202, 203–4 bivalves Province (CAMP) A. palmata, 202, 203–4 chemosymbiotic lucinid, 25, 26, 105 carbon cycle, 4, 5*, 131, 175 actualism, 14, 24, 76 end- mass , 177, 183, forests, 15*, 16, 139–41, agrichnia, 52, 53 190* 142*, 142–3 agronomic revolution, 83, 85 Lower Miocene Ugly Hill seep Carbon-Oxygen-Phosphorus-Sulfur- Albertosaurus libratus, 144, 144 deposit, 124, 125* Evolution (COPSE) model, amber, 46 microborings, 58–9 14,16 ammonites rudist, 117, 121, 123 Caririchnium, 59, 61 habitats of, 134, 134 tellinacean, 162, 170 catastrophism, 14 planispiral ammonoids, paleoecology of, bonebeds Cenozoic mammal trackways, 63 134, 135* biotic mechanisms, 141, 144 Cenozoic reefs, 122*, 123 shapes and hypothetical life modes, 134, definition, 141 Central Atlantic Magmatic Province 136 dinosaur bones see dinosaurs (CAMP), 208*, 210 angiosperms, 29, 147–8, 150 formation of, 144 Centrosaurus, 144, 144 Anomalocaris,81–2 paleoecological evidence, 141 cephalopods, 2, 58, 99, 133, 133 Anomoepus, 59, 61 physical mechanisms, 141 Ceratopsipes, 59, 61 archaeocyaths, 116, 118*, 169 Brontopodus, 59, 60 Charniodiscus spinosus, 45, 46* Archaeopteryx, 39, 42, 146, 149 Burgessochaeta, 86, 88* cheilostome bryozoans, 159, 162, 169 Archean Strelley Pool Formation, 76, 77* infauna, 86, 88* chemosymbiotic bacteria, 25, 26, 104 asteroid, 10, 14, 175 Choia, 84, 87 Asteroxylon, 139, 140 calcite compensation depth (CCD), 130, Chondrites, 57, 57* Atlantic cod, 202, 203–4 131 chronometric scale, 11*,12 Auca Mahuevo, in Patagonia, 144–6, 147, , 10, 42, 81–2, 86, 157 chronostratigraphic timescale, 11*,12 148 Cambrian Fauna Claraia, 177, 190*, 191, 195 autecology, 17 agronomic revolution, 83, 85 ClimateLeafAnalysisMultivariateProgram Avalon Assemblage, White Sea, 81, 82 Anomalocaris,81–2 (CLAMP), 27 average annual temperature (AAT), 26COPYRIGHTED,27 atmospheric oxygen levels, increases MATERIALCloudina, 81, 83 Axel Heiberg Island, Arctic Canada, 150, in, 82, 84* coal, 5, 16, 140, 142* 151 average ichnofabric index, 82–3, 85 coccolithophores, 128, 130, 131, 170 bioturbated seafloors, 83 cold seep deposits, 124, 125* bacterial sealing, 42, 42, 44, 44 Burgess Shale infauna, 86, 88* Collembolon, 140 Bambachian megaguilds, 157, 165, 199 Cambrian substrate revolution, 83, 87 conical stromatolites, 67, 69*, 77 bedding plane bioturbation index, 57, 58 Chengjiang biota, in China, 84, 87 conodonts, 29, 128, 129 belemnite battlefields, 135, 136, 137 Cloudina, 81, 83 conservation paleobiology, 4

Paleoecology: Past, Present and Future, First Edition. David J. Bottjer. © 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd. 218 Index conservation paleoecology, 4 Diplodocus, 59, 60 Phanerozoic-style soft substrates, 89, ancient hyperthermal events see domal stromatolites, 64, 65 91* hyperthermal events domichnia, 52, 53 Proterozoic-style substrates, 89, 91* exotic species, migrations of, 206, 207–8 , China, 78–9, 79 end- mass extinction, 175 marine ecosystems, shifting baselines dragonflies, 15*,16 cyclostome and cheilostome in, 202, 203–4 colonies, 183, 197 nonanalog pollen assemblages, 204, early extraterrestrial impact, 182 204–5*, 207 cladistic methodology, 78 pelagic communities, recovery variability overfishing, effects of, 7, 8, 202, 203–4 Ediacara biota fossils see Ediacara biota of, 183, 198 Coprinisphaera ichnofacies, 59 fossils end-Permian mass extinction, 117, 156 crabs, 153, 154 phylum, crown and stem group, 78 age relationships, 177, 184 Cretan ocean, 170, 172, 172* , Doushantuo ammonoids and conodonts, 180, 182, crinoids microfossils, 78–9, 79 196 Lower Mississippian Maynes Creek early Cambrian Chengjiang biota, in anachronistic facies, 176, 181 Formation, 41, 43* China, 42, 43, 84, 87 benthic paleocommunities, 177, 190* onshore–offshore evolutionary Early Cretaceous Jehol Biota, 21, 23* biotic crisis, 175 pattern, 159, 168 EARTHTIME project, 12 bivalves, 177, 183, 190* Crumillospongia, 84, 87 echinoderms, 91 bryozoans, 180, 194* cryptobiotic crust, 64, 139 early and Middle Cambrian, 89, 92 carbon isotopes, Nanpanjiang cubic spline curve fitting, 12, 12* evolution of, 88–9, 90* Basin, 175, 177 Late Cambrian through Early habitable Zone, 180, 194 Darwin, 1 Carboniferous, 89, 92 ecological recovery model, 180, 195 dead zones, 4, 6*,8 Phanerozoic-style soft substrates, 89, foraminifera, size reduction of, 177, 192 death masks, 44, 44 91* geometric mean size, benthic deep-sea ichnofabric, 56, 56 Proterozoic-style substrates, 89, 91* invertebrates, 177, 191 deep time stylophorans, 89–90, 92 ichnofabric index, 177, 187 geological timescale see geological ecologic reef, 115, 116 low oxygen conditions, 177, 187 timescale ecology metazoan reef building, restriction Phanerozoic marine evolutionary faunas autecology, 17 of, 177, 182 see Phanerozoic marine definition, 17 microbialite-dominated reef evolutionary faunas Earth’s environments, categorization abundance, 176, 179 radioactivity, 10 of, 17, 18 ocean acidification, 177, 182, 185 radiometric age dating, 10 functional morphology see functional oxygen minimum zone, 177, 186 degraded reefs, 115, 116 morphology sea surface temperature, 175, 178, 179 deposit-feeding, 19* keystone species, 17 self-mobile and nonmobile detrended correspondence analysis marine food web, 17, 19* organisms, 177, 187 (DCA), 97 and paleoecology see paleoecology Siberian trap eruptions, 175, 176 freshwater ecosystems, 139 Ediacara biota fossils, 91 sponges, 177, 184 diatoms, 46, 47, 172, 203–4 Avalon Assemblage, 81, 82 stenolaemate bryozoans, 177, 188* Dickinsonia, 44, 44, 80, 80, 81, 84* biogenic sedimentary structure, 44, 45 stromatolites, 176, 181 Dinomischus, 84, 87, 88 Dickinsonia, 44, 44 temporal recovery, regional patterns dinosaurs from Ediacara Hills, South Australia, 80, of, 180, 193 Auca Mahuevo, in Patagonia, 144–6, 80 tetrapods, marine reptiles, and fish, 147, 148 frond-shaped organisms, 80 restriction of, 180, 193* Dinosaur Park Formation, 144, 144 Funisia dorothea, 81, 81 wrinkle structures, 176, 180* end of Cretaceous, 175 microbial mats, 42, 44, 44 eocrinoids environmental and ecological Mistaken Point Formation, 45, 46* early and Middle Cambrian, 89, 92 scenarios, 146 Nama Assemblage, 81, 82 evolution of, 88–9, 90* Gigantoraptor erlianensis, 144, 145* shoreline and shelf environments, 79, Phanerozoic-style soft substrates, 89, ornithischia, trackways of, 59, 61 79–80 91* Protoceratops nest in Mongolia, 144, 146 White Sea Assemblage, 81, 82 Proterozoic-style substrates, 89, 91* saurischians, trackways of, 59, 60 Ediacara Hills, South Australia, 80, 80 estuaries, 7, 8, 202, 203–4 sauropod and theropod trackways, 59, Edmontosaurus, 59, 61 Eumorphotis, 177, 191 62* edrioasteroids evolutionary paleoecology social behavior, 59, 62* early and Middle Cambrian, 89, 92 benthic suspension-feeding organisms, tracks and trackways, 146, 148 evolution of, 88, 90* tiering history, 3, 4 Index 219

Phanerozoic marine evolutionary faunas House Range in Utah, 105, 107 obrution, 41–2, 43* see Phanerozoic marine humpback whale breeding, Ecuador, 137, stagnation, 40–1 evolutionary faunas 137 traps, 46–7 Phanerozoic vertebrate and plant hydrothermal vent deposits, 124, 126, 126 volcanic eruptions see volcanic species, 29,30 hyperthermal events eruptions predation traces, 57 CAMP, areal distribution of, 208*, 210 large igneous provinces (LIPs), 170, 172, Treatise on Invertebrate carbonate deposition, reduction of, 210, 172*, 175 Paleontology, 30 211–2* Lepidocarus, 140 exaerobic biofacies, 104–5 coral and coral reef gap, duration Lingularia, 177, 191 exceptional fossil preservation see of, 209–10, 210* Linnaean nomenclature, 52 lagerstätten end-Permian mass extinction, 208 locally weighted regression (LOESS), 15,16 extracellular polymeric substance ichnodiversity, 210, 212 Louisella, 86, 88* (EPS), 64, 68 insect damage types, PETM, 207, 208 Lower Cambrian reefs, 116, 119 organic-walled green algal Lower Devonian Rhynie chert, 46, 139, 140 fishing, 7, 8, 202, 203–4 phytoplankton, 210, 213 low-oxygen environments Florissant lagerstätten fossils, 45, 47 Pangea, 208, 208*, 210 biofacies schemes, 104, 106, 109, 110 fodinichnia, 52, 53 Triassic– mass extinction, 208*, burrow size, 101, 105 fossil-lagerstätten see lagerstätten 209*, 210 Elrathia, 105, 107 functional morphology hypoxic system, 4, 6 Jurassic Posidonia Shale, 105, 108, 109 ichthyosaurs, 20–1 seawater oxygen content with morphodynamics, 21, 23, 24 ichnofabric index, 99, 100, 101, 177, 187 depth, 101, 104 plesiosaurs, 21, 22* Cambrian and , trace fossil model, 109, 111, 112 pterosaurs, 20, 21* bioturbation, 82–3, 85 scallops, 18, 20, 20 deep-sea ichnofabric, 56, 56 Yanornis, 21, 23* ichnofabric index 6, 56, 56 macrofossils, pelagic ecosystems Funisia dorothea, 81, 81 ichnogram, 57, 58 ammonites see ammonites Skolithos and Ophiomorpha, 56, 56 belemnites, 135, 136, 137 gastropods, 2, 58, 124, 154, 159, 160, 191 Upper Cretaceous chalk, 56–7, 57* humpback whale breeding, 137, 137 GEOCARB III model, 15,16 vertical sequence analysis, 57, 58 marine reptiles, 133, 133 GEOCARBSULF model, 14,16 ichnofacies mammals, 63, 206, 207–8 geological timescale, 1, 13* marine, 53–5, 55* marine environments Cambrian explosion, 10 in terrestrial environments, 59, 59 categorization of, 17, 18 chronometric scale, 11*,12 ichnogram, 57, 58 preservation see preservation, chronostratigraphic timescale, 11*,12 ichthyosaurs, 20–1, 133 taphonomy EARTHTIME project, 12 Ichthyostega, 139 shifting baselines in, 202, 203–4 historical timescale, 10 insects, 34, 146, 207, 208 trace fossils and bioturbation see trace methods for Phanerozoic, 12, 12* Intergovernmental Panel on Climate fossils and bioturbation Steno’slawsofsuperposition,12 Change (IPCC), 8, 8* marine reptiles Gigantoraptor erlianensis, 144, 145* isocrinid crinoids, 159, 168 Jurassic Posidonia Shale, 41 global warming, 4, 5, 207, 208 pelagic ecosystems, 133, 133 Glossopteris, 38* marsupials, 206, 207–8 Jurassic Posidonia Shale, 41, 105, 108, 109, Grallator, 59, 60 mass 110 great Ordovician biodiversification event biodiversity crises, 175 (GOBE), 154, 157 causes, 175 Grypania, 81, 84* kelp forests, 7, 8, 202, 203–4 ecological crises, 175 keystone species, 17 ecological-severity rankings, 184, 199 Hallucigenia, 84, 87 , 80, 80, 82,88 end of Cretaceous see end-Cretaceous helicoplacoids mass extinction early and Middle Cambrian, 89, 92 lagerstätten end of the Permian see end-Permian evolution of, 88, 90* concentration lagerstätten, 40 mass extinction Phanerozoic-style soft substrates, 89, conservation lagerstätten, 40, 42,47 Neritan and Cretan oceans, 170, 172, 91* definition, 39–40 172* Proterozoic-style substrates, 89, 91* early metazoan animals, 40 paleoecological levels, definition and Heterocrania, 139, 140 Ediacara biota organisms see Ediacara signals, 183–4, 199 Holy Cross Mountains, 129, 132 biota fossils reefs, 169 hot springs, 46, 140 microbial sealing, 42, 44, 44 taxonomic-severity rankings, 184, 199 220 Index

Megalosauripus, 59, 60 , 86, 88, 89* paleoenvironmental reconstruction, 23–4, Mermia ichnofacies, 59 OMZ see oxygen minimum zone (OMZ) 31 Mesozoic marine reptiles oolites, 74 new discoveries, 24 ichthyosaurs, 20–1 Ophiomorpha ichnofabrics, 52, 56, 56 reef carbonates, 24–5 plesiosaurs, 21, 22* orbital tuning, 12, 12* Tepee Buttes, 25,25–6 Mesozoic Marine Revolution, 157–9, 167 Ordovician food web, 98, 99 Pangea, 208, 208* Metasequoia forests, 148, 150, 151 ornithischian dinosaurs, 59, 61 Parabrontopodus, 59, 60 microbial fabrics, 116, 117, 120* Otozoum narrow-gauge, 59, 60 pelagic ecosystems microbially induced sedimentary structures Otozoum wide-gauge, 59, 60 ammonites see ammonites (MISS) Ottoia, 86, 88* belemnites, 135, 136, 137 baffling and trapping, 72, 72 overfishing, anthropogenic effects of, 7,8 coccolithophores, 128, 130, 131 binding, 72, 72 oxygen minimum zone (OMZ), 177, 186 conodonts, 128, 129 biostabilization, 71, 72 oysters, 202, 203–4 humpback whale breeding, 137, 137 growth, 71–2, 72 integrated studies, 131, 131–3 modern shoreline environments, 72, 73 marine reptiles, 133, 133 from Nhlazatse Section, South Paleocene–Eocene Thermal Maximum Pennsylvanian coal swamp forest, 140, 142* Africa, 77, 78* (PETM), 207, 208 Permian assemblage, 38, 38* wrinkle structures see wrinkle paleoclimate, 31 PETM see Paleocene–Eocene Thermal structures CLAMP, 27 Maximum (PETM) microbial mat, 42, 44, 44 foraminifera shells, 18O and 16O, 27, petroleum industry, 3 microbial sealing, 42, 44, 44 27,29 petroleum seep, 47 microbial structures smooth-margined leaves, AAT, 26,27 Phanerozoic level-bottom marine biofilms, 64, 65 stomatal index, 26–7 environments metazoans, 74 paleoecology cluster analysis, 97,97–8 MISS see microbially induced atmospheric carbon dioxide deeper subtidal environments, 101, 102, sedimentary structures (MISS) concentration, changes in, 8, 8* 103 oolites, 74 benthic suspension-feeding organisms, food web, 98, 98 stromatolites see stromatolites tiering history, 3, 4 fossil assemblages, 97 microborings, 58–9 carbon cycle, 4, 5* living and fossil biota, 95, 96 microfossils, pelagic ecosystems characteristic skeletonized marine low-oxygen environments see coccolithophores, 128, 130, 131 fossils, 1, 2 low-oxygen environments conodonts, 128, 129 conservation paleobiology, 4 nearshore sandstones, 99, 100 Miocene Monterey Formation of conservation paleoecology see Ordovician paleocommunity California, 109, 112 conservation paleoecology assemblage, 98, 99 MISS see microbially induced sedimentary dead zones, 4, 6* PCA and DCA, 97 structures (MISS) deep time see deep time rock/unlithified sediment, 95, 97 Mistaken Point Formation, 45, 46* definition, 1 brachiopod assemblages, 98 mobile animals, 146–7, 149 evolutionary paleoecology see transportation processes, 97 molluscs evolutionary paleoecology Phanerozoic marine evolutionary faunas and Cambrian substrate revolution, 86, fossil groups, environmental distribution aperture-modified gastropods, 153, 154 88, 89*,91 of, 1, 3 Bambachian megaguilds, ecospace scallops, 18, 20, 20 global warming/hyperthermal, 4 utilization, 157, 165 morphodynamics, 21, 23, 24 microfossils, 3 benthic assemblages, ecological mud mounds, 115, 116, 171, 179 ocean acidification, 4, 6* dominance in, 156, 161–2 ocean heat content, 4, 5 bioerosion, 153 Nama Assemblage, 81, 82 overfishing, anthropogenic effects of, 7, bioturbating organisms, 153 Nanpanjiang Basin, China, 175, 177, 179* 8 Bush cube, ecospace utilization, 31, 31, naturalism, 14 paleoclimate see paleoclimate 157, 166* Neoproterozoic macrofossils, 76 paleocommunities, study of, 3 calcium carbonate skeletons, 169–70 Neritan ocean, 170, 172, 172* paleoenvironmental reconstruction, Cambrian and Ordovician Niobrara Formation of Colorado, 109, 112 models for see paleoenvironmental assemblages, 154, 156* Noonday Dolomite, 67–8, 70* reconstruction carbonate skeletons, GOBE, 154, 157 Nymphalucina occidentalis, 25,25–6 pelagic ecosystems see pelagic cheilostome bryozoans, 159, 162, 169 ecosystems encrusting communities, 162 ocean acidification, 4, 6*, 177, 182, 185, 210 petroleum industry, 3 hard substrate nonreef ocean heat content, 4, 5 taphonomy see taphonomy communities, 162 Index 221

inarticulate brachiopods, 154, 155 preservation, taphonomy Upper Triassic reef, 117, 121* isocrinid crinoids, onshore–offshore bioirrigation, 36 zooxanthellate scleractinian, 25 evolutionary pattern, 159, 168 biological destruction, 34 Rhynia, 140 Mesozoic Marine Revolution, 157–9, bioturbation and biostratinomy, 36, 36 rudist bivalves, 117, 121, 123 167 chemical destruction, 34–5 microbial reefs and mounds, 169, 171* death in unusual circumstances, 34 Middle Triassic shell beds, 156–7, 164 delayed burial, 34 saurischian dinosaurs, 59, 60 Neritan and Cretan oceans, mass diagenetic (rock-forming) processes, 34 scaled composite standard analyses, extinctions, 170, 172, 172* exceptional preservation see lagerstätten 12, 12* Paleozoic Fauna, 154, 156, 159 infaunal and epifaunal organisms, 34 scallops, 18, 20, 20 Phanerozoic biodiversity curve, 30, 30 marine macrofauna, Phanerozoic Scanning electron microscope (SEM) phytoplankton, Mesozoic evolution frequency, 36, 37 analysis, 179 of, 172, 173* mechanical destruction, 34 scleractinian corals, 210, 210* reef-building animals, evolution organic remains, 34, 35 Scoyenia ichnofacies, 59 of, 168–9, 171* reworked remains, 36 sea surface temperatures (SST), 175, Sepkoski curve, 28,30 sediment–waterinterface, 35–6 178–9* shelf-depth paleogene benthic shells, TAZ, 35, 36, 37 sediment–water interface (SWI), communities, 156, 160 terrestrial plants, 38, 38*, 39*, 40 35–6, 36 shell beds, Lower and Middle vertebrate fossils, 38–9, 41 Selkirkia, 86, 88* Ordovician, 154, 156, 158 priapulid worms, 86, 88* shell beds, 123–4* shell bed thickness trends, 156, 163 principal component analysis (PCA), 97 Lower and Middle Ordovician, 154, 156, shell-crushing behavior, 153, 154 Promyalina, 177, 190, 191 158 tellinacean bivalves, 162, 170 proportional zone scaling, 12, 12* Middle Triassic shell beds, 156–7, 164 trilobites, 154, 155, 156* Protocarus, 140 thickness trends, 156, 163 Phanerozoic sedimentary rocks, 1, 3 Protoceratops, 144, 146 shells photosynthetically active radiation pterosaurs, 15, 20, 21*, 59, 146 bite marks on, 58 (PAR), 86 calcium carbonate skeletons, TAZ, 35, Phyllotheca, 38* Quetzalcoatlus northropi, 20, 21* 36, 37 plants, preservation of, 38, 38*, 39*, 40 chemical destruction, 35 Pleistocene La Brea Tar Pits, 47, 144 radiocyaths, 116, 119 foraminifera, 18O and 16O, 27, 27,29 plesiosaurs, 21, 22*, 133, 133 radiometric age dating, 10 mechanical destruction, 34 pollen assemblages, 38, 204, 204–5*, 207 rangeomorphs, 45, 46*, 82 shifting baselines, in marine Polycotylus latippinus, 21, 22* red phytoplankton, 172, 173* ecosystems, 202, 203–4 Pompeii, 45 reefs shipworms, 59 Post-Paleozoic nearshore sandstones, 99, archaeocyaths, 116, 118* Siberian traps, 175, 176 101 carbonate rocks, 114 Sigillaria, 141, 142* Post-Paleozoic terrestrial ecosystems Cenozoic reefs, 122*, 123 Sigri Pyroclastic Formation, 39* angiosperms, 147–8, 150 degraded reefs, 115, 116 silicification, fossil forests, 38, 39* bonebeds see bonebeds ecologic reef, 115, 116 Silurian brachiopod assemblages, 98 Metasequoia forests, 148, 150, 151 end-Permian mass extinction, 117 Silurian reef, 116, 119 mobile animals, 146–7, 149 environmental parameters, 121*, 123 skeletal reefs, 115–17, 117* stromatolite reefs, 116, 118* fabric, 115–17 Skolithos ichnofabrics, 56, 56 Precambrian to phanerozoic paleoecology facies, 114, 115* Skolithos ichnofacies, 59, 99, 101, 101 Cambrian Fauna see Cambrian Fauna Late Triassic, 117, 120* small shelly fauna, 81, 83 early evolution see early animals lower Cambrian reefs, 116, 119 soft tissue preservation see lagerstätten MISS, 77, 78* mud mounds, 115, 116 South Dakota, 46–7 stromatolite morphologies, 76, 77* overfishing, effects of, 7, 8, 202, 203–4 sponges predation radiocyaths, 116 Doushantuo phosphatized aperture-modified gastropods, 153, 154 reef eclipse interval, 182 microfossils, 78–9, 79 encrusting communities, 162 shallow-water environments, 114, 115* , 88* hard substrate nonreef skeletal, 115–16, 117* Sporormiella, 204–5* communities, 162 stratigraphic reefs, 114–15, 116 Spriggina, 80, 80 Mesozoic Marine Revolution, 157–9, stromatolite microbial reefs, 116, 118* Stegosaurus, 59, 61 162, 167 stromatoporoid reefs, 116, 119 stomatal index, 26–7 shell-crushing behavior, 153, 154 Upper Cretaceous rudist stratigraphic reefs, 114–15, 116 traces, 57–8 aggradation, 117, 121 stromatolite microbial reefs, 116, 118* 222 Index stromatolites, 176, 181 Carboniferous tropical rain Trizygia, 38* Archean Strelley Pool Formation, 76, forest, 139–41, 142*, 142–3 tube-forming stromatolite, 67–8, 69, 70* 77* Post-Paleozoic see Post-Paleozoic Tubiphytes, 182 calcium carbonate cements, 66, 68 terrestrial ecosystems Tyrannosaurus, 59, 60 columnar stromatolites, group of, 65, vascular plants, 139, 140, 140 66* vertebrates, 139, 141* uniformitarianism, 13–16* conical, 67, 69* terrestrial environments Unionites, 177, 190*, 191 domal stromatolites, 64, 65 categorization of, 17, 18 Upper Cretaceous rudist aggradation, 117, early Paleozoic marine carbonate exotic species, migrations of, 206, 207–8 121 rocks, 64 nonanalog pollen assemblages, 204, Upper Triassic reef, 117, 121* extracellular polymeric substance, 66, 68 204–5*, 207 macrobiology, 66, 67 trace fossils and bioturbation see trace Vauxia, 88* microbial body fossils, growth of, 67, 68 fossils and bioturbation vertical sequence analysis, 57, 58 microbial mats, growth of, 66–7, 68 Tetrapodosaurus, 59, 61 volcanic eruptions micro, meso and macro scale, 66, 67 textured organic surfaces, 64 Florissant lagerstätten fossils, 45–6, 47 physical environmental influences, 66, Thalassinoides, 57, 57* fossil forests, silicification of, 38, 39* 67 thrombolites, 64, 83, 119 hot springs, Yellowstone National Precambrian marine carbonate rocks, 64 tiering, 3, 4, 81, 82 Park, 45 tubular/tube-forming Tiktaalik, 139, 141* Lower Devonian Rhynie chert stromatolites, 67–8, 69, 70* time averaging lagerstätten, 46 stromatoporoid reefs, 116, 119 continental and benthic marine Pompeii, 45 stylophorans, 89–90, 92 settings, 49,50 Siberian traps, 175, 176 SWI see sediment–water interface (SWI) plant, vertebrate, and shelly invertebrate Sigri Pyroclastic Formation, 38, 39* fossils, 48, 48 silica-rich waters, diatoms, 46 Takakkawia, 84, 87 trace fossils and bioturbation taphofacies bedding plane bioturbation index, 57, 58 Western Interior ammonites, 134, 134 definition, 48 Cenozoic mammal trackways, 63 whale barnacles, 137 and time averaging, 48–50 dinosaurs, trackways of see dinosaurs White Sea Assemblage, 81, 82 taphonomically active zone (TAZ), 35, 36 distinct and indistinct biogenic Wiwaxia, 88, 89* taphonomy, 35 structures, 55 wrinkle structures, 64, 65 animal and plant species, number ichnofabrics see ichnofabric index formation and preservation, optimum of, 33–4 invertebrate behaviors, 52, 53 conditions for, 71, 71 definition, 33 Linnaean nomenclature, 52 of lower Cambrian, 68, 70*, 71, 83, 86 insects, 34 marine ichnofacies, 53–5, 55* lower intertidal and subtidal marine groups, 34 in marine pelagic/hemipelagic environments, 72, 73 phases, 33 mud, 52–3, 54 Lower Triassic, 176, 180* preservation see preservation, Mesozoic vertebrate trackways, 59, 63 morphologies, 72–3, 74 taphonomy microborings, 58–9 taphofacies and time averaging, 48–50 nonmarine ichnofacies, 59, 59 xenarthrans, 206, 207–8 tar, 47 predation traces, 57–8 Taxodioxylon, 39* Treatise on Invertebrate Paleontology, 30 Yanornis, 21, 23* tellinacean bivalves, 162, 170 tree ferns, 141, 142* Yellowstone National Park, United Tepee Buttes, 25,25–6 Tribrachidium, 80, 80 States, 46 terrestrial ecosystems Triceratops, 59, 61 arthropods, 139, 140 trilobites, 154, 155, 156* Zoophycos, 57, 57*