Index Note: Page numbers in italics refer to biofilms, 42, 64, 65 Dickinsonia, 81, 84* Figures; those in bold to Tables; Page bioirrigation, 36 echinoderms see echinoderms numbers with an asterisk (eg 24*) indicate biostratinomy, 36, 36 Grypania, 81, 84* color representation. bioturbation, 52, 64 microbial mat-dominated seafloors, 83 early Cambrian Chengjiang biota, mollusc evolution, 86, 88, 89*,91 AAT see average annual temperature China, 42, 43, 84, 87 organism size, increase in, 81–2, 84* (AAT) ichnodiversity, 210, 212 trilobites, 81 reworked remains, 36, 36 wrinkle structure distribution, 83, 86 Acanthostega, 139 and trace fossils see trace fossils and Cambrorhytium, 84, 87 Acropora bioturbation CAMP see Central Atlantic Magmatic A. cervicornis, 202, 203–4 bivalves Province (CAMP) A. palmata, 202, 203–4 chemosymbiotic lucinid, 25, 26, 105 carbon cycle, 4, 5*, 131, 175 actualism, 14, 24, 76 end-Permian mass extinction, 177, 183, Carboniferous forests, 15*, 16, 139–41, agrichnia, 52, 53 190* 142*, 142–3 agronomic revolution, 83, 85 Lower Miocene Ugly Hill seep Carbon-Oxygen-Phosphorus-Sulfur- Albertosaurus libratus, 144, 144 deposit, 124, 125* Evolution (COPSE) model, amber, 46 microborings, 58–9 14,16 ammonites rudist, 117, 121, 123 Caririchnium, 59, 61 habitats of, 134, 134 tellinacean, 162, 170 catastrophism, 14 planispiral ammonoids, paleoecology of, bonebeds Cenozoic mammal trackways, 63 134, 135* biotic mechanisms, 141, 144 Cenozoic reefs, 122*, 123 shapes and hypothetical life modes, 134, definition, 141 Central Atlantic Magmatic Province 136 dinosaur bones see dinosaurs (CAMP), 208*, 210 angiosperms, 29, 147–8, 150 formation of, 144 Centrosaurus, 144, 144 Anomalocaris,81–2 paleoecological evidence, 141 cephalopods, 2, 58, 99, 133, 133 Anomoepus, 59, 61 physical mechanisms, 141 Ceratopsipes, 59, 61 archaeocyaths, 116, 118*, 169 Brontopodus, 59, 60 Charniodiscus spinosus, 45, 46* Archaeopteryx, 39, 42, 146, 149 Burgessochaeta, 86, 88* cheilostome bryozoans, 159, 162, 169 Archean Strelley Pool Formation, 76, 77* Burgess Shale infauna, 86, 88* chemosymbiotic bacteria, 25, 26, 104 asteroid, 10, 14, 175 Choia, 84, 87 Asteroxylon, 139, 140 calcite compensation depth (CCD), 130, Chondrites, 57, 57* Atlantic cod, 202, 203–4 131 chronometric scale, 11*,12 Auca Mahuevo, in Patagonia, 144–6, 147, Cambrian explosion, 10, 42, 81–2, 86, 157 chronostratigraphic timescale, 11*,12 148 Cambrian Fauna Claraia, 177, 190*, 191, 195 autecology, 17 agronomic revolution, 83, 85 ClimateLeafAnalysisMultivariateProgram Avalon Assemblage, White Sea, 81, 82 Anomalocaris,81–2 (CLAMP), 27 average annual temperature (AAT), 26COPYRIGHTED,27 atmospheric oxygen levels, increases MATERIALCloudina, 81, 83 Axel Heiberg Island, Arctic Canada, 150, in, 82, 84* coal, 5, 16, 140, 142* 151 average ichnofabric index, 82–3, 85 coccolithophores, 128, 130, 131, 170 bioturbated seafloors, 83 cold seep deposits, 124, 125* bacterial sealing, 42, 42, 44, 44 Burgess Shale infauna, 86, 88* Collembolon, 140 Bambachian megaguilds, 157, 165, 199 Cambrian substrate revolution, 83, 87 conical stromatolites, 67, 69*, 77 bedding plane bioturbation index, 57, 58 Chengjiang biota, in China, 84, 87 conodonts, 29, 128, 129 belemnite battlefields, 135, 136, 137 Cloudina, 81, 83 conservation paleobiology, 4 Paleoecology: Past, Present and Future, First Edition. David J. Bottjer. © 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd. 218 Index conservation paleoecology, 4 Diplodocus, 59, 60 Phanerozoic-style soft substrates, 89, ancient hyperthermal events see domal stromatolites, 64, 65 91* hyperthermal events domichnia, 52, 53 Proterozoic-style substrates, 89, 91* exotic species, migrations of, 206, 207–8 Doushantuo Formation, China, 78–9, 79 end-Cretaceous mass extinction, 175 marine ecosystems, shifting baselines dragonflies, 15*,16 cyclostome and cheilostome in, 202, 203–4 colonies, 183, 197 nonanalog pollen assemblages, 204, early animals extraterrestrial impact, 182 204–5*, 207 cladistic methodology, 78 pelagic communities, recovery variability overfishing, effects of, 7, 8, 202, 203–4 Ediacara biota fossils see Ediacara biota of, 183, 198 Coprinisphaera ichnofacies, 59 fossils end-Permian mass extinction, 117, 156 crabs, 153, 154 phylum, crown and stem group, 78 age relationships, 177, 184 Cretan ocean, 170, 172, 172* sponges, Doushantuo ammonoids and conodonts, 180, 182, crinoids microfossils, 78–9, 79 196 Lower Mississippian Maynes Creek early Cambrian Chengjiang biota, in anachronistic facies, 176, 181 Formation, 41, 43* China, 42, 43, 84, 87 benthic paleocommunities, 177, 190* onshore–offshore evolutionary Early Cretaceous Jehol Biota, 21, 23* biotic crisis, 175 pattern, 159, 168 EARTHTIME project, 12 bivalves, 177, 183, 190* Crumillospongia, 84, 87 echinoderms, 91 bryozoans, 180, 194* cryptobiotic crust, 64, 139 early and Middle Cambrian, 89, 92 carbon isotopes, Nanpanjiang cubic spline curve fitting, 12, 12* evolution of, 88–9, 90* Basin, 175, 177 Late Cambrian through Early Triassic habitable Zone, 180, 194 Darwin, 1 Carboniferous, 89, 92 ecological recovery model, 180, 195 dead zones, 4, 6*,8 Phanerozoic-style soft substrates, 89, foraminifera, size reduction of, 177, 192 death masks, 44, 44 91* geometric mean size, benthic deep-sea ichnofabric, 56, 56 Proterozoic-style substrates, 89, 91* invertebrates, 177, 191 deep time stylophorans, 89–90, 92 ichnofabric index, 177, 187 geological timescale see geological ecologic reef, 115, 116 low oxygen conditions, 177, 187 timescale ecology metazoan reef building, restriction Phanerozoic marine evolutionary faunas autecology, 17 of, 177, 182 see Phanerozoic marine definition, 17 microbialite-dominated reef evolutionary faunas Earth’s environments, categorization abundance, 176, 179 radioactivity, 10 of, 17, 18 ocean acidification, 177, 182, 185 radiometric age dating, 10 functional morphology see functional oxygen minimum zone, 177, 186 degraded reefs, 115, 116 morphology sea surface temperature, 175, 178, 179 deposit-feeding, 19* keystone species, 17 self-mobile and nonmobile detrended correspondence analysis marine food web, 17, 19* organisms, 177, 187 (DCA), 97 and paleoecology see paleoecology Siberian trap eruptions, 175, 176 Devonian freshwater ecosystems, 139 Ediacara biota fossils, 91 sponges, 177, 184 diatoms, 46, 47, 172, 203–4 Avalon Assemblage, 81, 82 stenolaemate bryozoans, 177, 188* Dickinsonia, 44, 44, 80, 80, 81, 84* biogenic sedimentary structure, 44, 45 stromatolites, 176, 181 Dinomischus, 84, 87, 88 Dickinsonia, 44, 44 temporal recovery, regional patterns dinosaurs from Ediacara Hills, South Australia, 80, of, 180, 193 Auca Mahuevo, in Patagonia, 144–6, 80 tetrapods, marine reptiles, and fish, 147, 148 frond-shaped organisms, 80 restriction of, 180, 193* Dinosaur Park Formation, 144, 144 Funisia dorothea, 81, 81 wrinkle structures, 176, 180* end of Cretaceous, 175 microbial mats, 42, 44, 44 eocrinoids environmental and ecological Mistaken Point Formation, 45, 46* early and Middle Cambrian, 89, 92 scenarios, 146 Nama Assemblage, 81, 82 evolution of, 88–9, 90* Gigantoraptor erlianensis, 144, 145* shoreline and shelf environments, 79, Phanerozoic-style soft substrates, 89, ornithischia, trackways of, 59, 61 79–80 91* Protoceratops nest in Mongolia, 144, 146 White Sea Assemblage, 81, 82 Proterozoic-style substrates, 89, 91* saurischians, trackways of, 59, 60 Ediacara Hills, South Australia, 80, 80 estuaries, 7, 8, 202, 203–4 sauropod and theropod trackways, 59, Edmontosaurus, 59, 61 Eumorphotis, 177, 191 62* edrioasteroids evolutionary paleoecology social behavior, 59, 62* early and Middle Cambrian, 89, 92 benthic suspension-feeding organisms, tracks and trackways, 146, 148 evolution of, 88, 90* tiering history, 3, 4 Index 219 Phanerozoic marine evolutionary faunas House Range in Utah, 105, 107 obrution, 41–2, 43* see Phanerozoic marine humpback whale breeding, Ecuador, 137, stagnation, 40–1 evolutionary faunas 137 traps, 46–7 Phanerozoic vertebrate and plant hydrothermal vent deposits, 124, 126, 126 volcanic eruptions see volcanic species, 29,30 hyperthermal events eruptions predation traces, 57 CAMP, areal distribution of, 208*, 210 large igneous provinces (LIPs), 170, 172, Treatise on Invertebrate carbonate deposition, reduction of, 210, 172*, 175 Paleontology, 30 211–2* Lepidocarus, 140 exaerobic biofacies, 104–5 coral and coral reef gap, duration Lingularia, 177, 191 exceptional fossil preservation see of, 209–10, 210* Linnaean nomenclature, 52 lagerstätten end-Permian mass extinction, 208 locally weighted regression (LOESS), 15,16 extracellular polymeric substance ichnodiversity, 210, 212 Louisella, 86, 88* (EPS), 64, 68 insect damage types, PETM, 207, 208 Lower Cambrian reefs, 116, 119 organic-walled green algal Lower Devonian Rhynie chert, 46, 139, 140 fishing, 7, 8, 202, 203–4 phytoplankton, 210, 213 low-oxygen environments Florissant lagerstätten fossils, 45, 47 Pangea, 208, 208*, 210 biofacies schemes, 104, 106, 109, 110 fodinichnia, 52, 53 Triassic–Jurassic mass extinction, 208*, burrow size, 101, 105 fossil-lagerstätten see lagerstätten 209*, 210 Elrathia, 105, 107 functional morphology hypoxic system, 4, 6 Jurassic Posidonia Shale, 105, 108, 109 ichthyosaurs, 20–1 seawater oxygen content with morphodynamics, 21, 23, 24 ichnofabric index, 99, 100, 101, 177, 187 depth, 101, 104 plesiosaurs, 21, 22* Cambrian and Ordovician, trace fossil model, 109, 111, 112 pterosaurs, 20, 21* bioturbation, 82–3, 85 scallops, 18, 20, 20 deep-sea ichnofabric, 56, 56 Yanornis, 21, 23* ichnofabric
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages6 Page
-
File Size-