A New Docodont Mammal from the Late Jurassic of the Junggar Basin in Northwest China

Total Page:16

File Type:pdf, Size:1020Kb

A New Docodont Mammal from the Late Jurassic of the Junggar Basin in Northwest China A new docodont mammal from the Late Jurassic of the Junggar Basin in Northwest China HANS−ULRICH PFRETZSCHNER, THOMAS MARTIN, MICHAEL W. MAISCH, ANDREAS T. MATZKE, and GE SUN Pfretzschner, H.−U., Martin, T., Maisch, M.W., Matzke, A.T., and Sun, G. 2005. A new docodont mammal from the Late Jurassic of the Junggar Basin in Northwest China. Acta Palaeontologica Polonica 50 (4): 799–808. Fieldwork in the early Late Jurassic (Oxfordian) Qigu Formation of the Junggar Basin in Northwest China (Xinjiang Au− tonomous Region) produced teeth and mandibular fragments of a new docodont. The new taxon has a large “pseudo− talonid” on the lower molars, and by retention of crest b−g exhibits closer affinities to Simpsonodon and Krusatodon from the Middle Jurassic of Europe than to the other known Asian docodonts Tashkumyrodon, Tegotherium,andSibirotherium. It differs from the Haldanodon–Docodon−lineage by the “pseudotalonid” and large cusps b and g. A PAUP analysis based on lower molar characters produced a single most parsimonious tree with two main clades. One clade comprises Docodon, Haldanodon, and Borealestes, and the other Dsungarodon, Simpsonodon, and Krusatodon plus the Asian tegotheriids. Analysis of the molar occlusal relationships using epoxy casts mounted on a micromanipulator revealed a four−phase chewing cycle with transverse component. The molars of the new docodont exhibit a well developed grinding function be− sides cutting and shearing, probably indicating an omnivorous or even herbivorous diet. A grinding and crushing function is also present in the molars of Simpsonodon, Krusatodon, and the Asian tegotheriids, whereas Borealestes, Haldanodon, and Docodon retain the plesiomorphic molar pattern with mainly piercing and cutting function. Key words: Docodonta, Dsungarodon, occlusion, Jurassic, Qigu Formation, Junggar Basin. Hans−Ulrich Pfretzschner [hans−ulrich.pfretzschner@uni−tuebingen.de] and Michael W. Maisch [michael.maisch@ uni−tuebingen.de], Institut für Geowissenschaften, Universität Tübingen, Sigwartstraße 10, 72076 Tübingen, Germany; Thomas Martin [[email protected]], Forschungsinstitut Senckenberg, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Andreas T. Matzke [[email protected]], Department of Paleobiology, Smithonian Institution, National Museum of Natural History, PO Box 37012 MRC 121, Washington, D.C. 20013−7012, USA; Ge Sun [[email protected]], Research Center of Paleontology, Jilin University, 6, Xi−Minzhu Street, Changchun 130026, China. Introduction Martin and Averianov (2004) based on a lower molar from the Middle Jurassic Balabansai Svita near Tashkumyr in A long time docodonts were regarded as a small group of Kyrgyzstan. Here we present dental remains of a new Late Mesozoic mammals restricted to the Jurassic of Europe and Jurassic docodont which were collected in 2001 at Liu− North America (e.g., Simpson 1928, 1929; Kühne and huanggou in the valley of the Toutunhe river southwest of Krusat 1972; Kron 1979; Krusat 1980; Kermack et al. 1987; Urumqi during field work of the Sino−German cooperation Lillegraven and Krusat, 1991). The first Asian docodont re− between the Jilin University (Changchun) and the Eberhard− ported was Tegotherium gubini from the Late Jurassic of Karls−Universität (Tübingen). Shar Teg in Mongolia, that originally was described as an un− The Junggar Basin is one of the largest sedimentary bas− usual symmetrodont (Tatarinov 1994). Nessov et al. (1994) ins in Xinjiang Autonomous Region and contains a continu− announced a badly damaged possible upper docodont molar ous succession from the Permian to the Late Cretaceous that from the Middle Jurassic Balabansai Formation of Kalma− is largely covered by Cenozoic sediments. In the center of the kerchin in Kyrgyzstan which could not be determined at the basin the sedimentary infill approaches 16,000 m of which specific or generic level. Prasad and Manhas (2001) assigned about 6,000 m represent fluvio−lacustrine Mesozoic depos− an upper premolar and a fragmentary lower molar from the its. The locality at Liuhuanggou, 40 km southwest of the city supposedly Lower–Middle Jurassic Kota Formation of India of Urumqi and west of the Toutunhe river, is highly fossili− to docodonts of Laurasian affinity (“Haldanodon grade”). ferous in several levels in the Toutunhe and Lower Qigu For− Maschenko et al. (2003) described three incomplete denta− mations. The Toutunhe Formation is dated as Callovian and ries of an Early Cretaceous docodont, Sibirotherium rossicus the Qigu Formation, which is at the locality 731 m thick, as from the Shestakovo locality in Western Siberia. The first Oxfordian, based on spores and palynomorphs (Ashraf et al. unquestioned docodont from Central Asia was reported by 2004). About 470 m above the Toutunhe/Qigu boundary a Acta Palaeontol. Pol. 50 (4): 799–808, 2005 http://app.pan.pl/acta50/app50−799.pdf 800 ACTA PALAEONTOLOGICA POLONICA 50 (4), 2005 bonebed was discovered during field work in 2000. This rowska et al. (2004), which is equivalent to the Mammalia− bonebed has yielded numerous mainly isolated bones and formes of Rowe (1988) and McKenna and Bell (1997). teeth of hybodontid sharks, actinopterygians, temnospon− Institutional abbreviations.—The holotype and referred spec− dyles, turtles, crocodiles, dinosaurs and mammals (hara− imens are deposited in the Sino−German Project collection myids and docodonts) that appeared in lenses in a series of (SGP/2001/21–26), currently housed at the Institute for Geos− greenish siltstones and fine sandstones (Maisch et al. 2001, ciences (IFG), University of Tübingen, Germany. The collec− 2003, 2004; Martin and Pfretzschner 2003). The docodont tion remains property of the People’s Republic of China and remains are described in this study. will be transferred to a public Chinese collection after the sci− entific studies are finished. The final repository will be an− Material and methods nounced in an internationally accessible journal. Other abbreviations.—L, length; W, width; asterisk * indi− About 20 to 30 kg of sediment from the bonebed were cates preserved length or width in incomplete specimens. screenwashed at a mesh size of 0.5 mm and the remaining concentrate was picked under a stereomicroscope. For bio− mechanical experiments epoxy casts of the docodont teeth Systematic palaeontology were made using CAF 3 (Rhône−Poulenc) for moulding and Araldit M and hardener HY 956 for casting. Subsequently Mammalia Linnaeus, 1758 the teeth were mounted on SEM−stubs with acetone−soluble Docodonta Kretzoi, 1946 conductive mount and sputtered with gold for SEM study. The cast of the upper molar was mounted on a metal axis that Docodontidae Simpson, 1929 could be rotated freely, whereas the cast of the lower molar Genus Dsungarodon nov. Pfretzschner and Martin was mounted on a Narishige micromanipulator which al− Derivation of the name: Named after the Junggar Basin (formerly lowed precise positioning of the tooth in all three dimensions Dsungar) and @*@v, stem of @*@bH (Greek) tooth. Dsungarodon (mas− of space. This arrangement was used to study all stages of the culine), tooth from the Junggar Basin. occlusal relationships during the chewing cycle under a Type species: Dsungarodon zuoi sp. nov. stereomicroscope. From each stage a digital photograph was Diagnosis.—Upper molar characters: (1) cusp X hook shaped taken and 25 to 47 images of one chewing cycle were com− and recurved buccally; (2) basin developed between cusps bined to a movie sequence at the computer (available on the A−C−Y−X; (3) cusps A and C high and slender and consider− APP website at http://app.pan.pl/acta50/app50−799SM.htm). ably higher than cusps X and Y; (4) buccal crests forming a Although the cusp homology of docodont molar teeth with cutting edge; (5) lingual portion mesial to the A−X−crest is re− that of other mammals has not yet been established, we follow duced; (6) distal margin C−Y of the lingual portion of the tooth the terminology proposed by Butler (1988, 1997) for practical not deeply indented; (7) strong ectoflexus; (8) outline of the reason and because we think that this homology is likely to be tooth crown triangular. correct (Fig. 1). The purely descriptive cusp terminology of Lower molar primitive (–) and derived (+) characters: (1) Kermack et al. (1987) and Sigogneau−Russell (2001, 2003) is cusp e and f reduced (+); (2) crest b−e well developed (–); (3) more unbiased but has proven rather cumbersome for the mor− crest b−e protruding to the mesial end of the tooth (+); (4) phological descriptions. The docodont wear facet terminology crest e−g missing (–); (5) crest b−g well developed (–); (6) en− is after Jenkins (1969). We follow the stem−based definition of larged anterior basin (pseudotalonid) (+); (7) cusp g en− Mammalia, proposed by Luo et al. (2002) and Kielan−Jawo− larged, similar in height to cusp c (+); (8) region distal to cusps a and c reduced (+). distal Differential diagnosis.—The upper molar of the new taxon mesial lingual differs from those of Haldanodon exspectatus by the follow− ing characters: (1) cusp X hook−shaped and recurved buccally; lingual (2) basin developed between cusps A−C−Y−X; (3) cusps A and C high and slender; (4) buccal crests forming a cutting edge; (5) lingual portion mesial to the A−X−crest reduced; (6) distal margin C−Y of the lingual portion of the tooth not deeply indented; (7) strong ectoflexus. Dsungarodon differs from Simpsonodon oxfordensis by the following upper molar char− acters: (1) buccal cusps A and C much more slender and con− siderably higher than cusps X and Y; (2) lingual part of the tooth more narrow and more constricted; (3) outline of the Fig. 1. Restoration of right lower (A) and upper (B) molar of the new tooth crown more triangular. docodont with designation of cusps (occlusal view). Reconstructed broken At the lower molars, the new taxon differs from Tego− areas are shaded. Cusp designation follows Butler (1988). therium, Sibirotherium,andTashkumyrodon by exclusion of PFRETZSCHNER ET AL.—NEW JURASSIC DOCODONT FROM CHINA 801 1mm Fig.
Recommended publications
  • Reptile-Like Physiology in Early Jurassic Stem-Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Reptile-like physiology in Early Jurassic stem-mammals Authors: Elis Newham1*, Pamela G. Gill2,3*, Philippa Brewer3, Michael J. Benton2, Vincent Fernandez4,5, Neil J. Gostling6, David Haberthür7, Jukka Jernvall8, Tuomas Kankanpää9, Aki 5 Kallonen10, Charles Navarro2, Alexandra Pacureanu5, Berit Zeller-Plumhoff11, Kelly Richards12, Kate Robson-Brown13, Philipp Schneider14, Heikki Suhonen10, Paul Tafforeau5, Katherine Williams14, & Ian J. Corfe8*. Affiliations: 10 1School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. 2School of Earth Sciences, University of Bristol, Bristol, UK. 3Earth Science Department, The Natural History Museum, London, UK. 4Core Research Laboratories, The Natural History Museum, London, UK. 5European Synchrotron Radiation Facility, Grenoble, France. 15 6School of Biological Sciences, University of Southampton, Southampton, UK. 7Institute of Anatomy, University of Bern, Bern, Switzerland. 8Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 9Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland. 10Department of Physics, University of Helsinki, Helsinki, Finland. 20 11Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung GmbH Germany. 12Oxford University Museum of Natural History, Oxford, OX1 3PW, UK. 1 bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13Department of Anthropology and Archaeology, University of Bristol, Bristol, UK. 14Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
    [Show full text]
  • Width Measured at the Level of Anterior Squamosal/Parietal Suture
    Fig. 5. (A) Scaling of brain vault size (width measured at the level of anterior squamosal/parietal suture) relative to skull size (measured at the distance between the left versus right temporomandibular joints). This shows that allometry of small size of Hadrocodium, by itself, is not sufficient to account for its very large braincase. Had-rocodium's brain vault is larger (wider) than expected for the crown-group mammals with similar skull width from the allometrical regression. By contrast, all contemporaneous mammaliaforms (triangles: Sinoconodon, Morganucodon, and Haldanodon) with the postdentary trough and meckelian groove have smaller (narrower) brain vaults than those living mammal taxa (and Hadrocodium) of comparable skull size. The brain vault is narrower in nonmammaliaform cynodonts (squares: Chaliminia, Massetoganthus, Probelesodon, Probainognathus, and Yunnanodon) than in mammaliaform stem taxa and much narrower than expected for crown group mammals of similar size. The allometric equation (natural logarithmic scale) for the brain vault width (Y) to the skull width at the level of TMJ (X) for species in the mammalian crown groups (circles: 37 living and 8 fossil species): Y =0.98X -0.31 (R2 – 0.715). Data from cynodonts, mammaliaforms, and Hadrocodium are added second arily for comparison with the regression of extant and fossil species of mammalian crown group. (B) Estimated body-size distributions of mammaliaform insectivores in the Early Jurassic Lufeng fauna [following method of Gingerich (50)]. The estimated 2-g body mass of Hadrocodium is in strong contrast to its contemporary mammaliaforms of the Late Triassic and Early Jurassic, such as Sinconodon (from ~13 to ~517 g, based on skull length from 22 to 62 mm) and Morganucodon (from 27 to 89 g, based on skull length from 27 to 38 mm).
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • Mammals from the Mesozoic of Mongolia
    Mammals from the Mesozoic of Mongolia Introduction and Simpson (1926) dcscrihed these as placental (eutherian) insectivores. 'l'he deltathcroids originally Mongolia produces one of the world's most extraordi- included with the insectivores, more recently have narily preserved assemblages of hlesozoic ma~nmals. t)een assigned to the Metatheria (Kielan-Jaworowska Unlike fossils at most Mesozoic sites, Inany of these and Nesov, 1990). For ahout 40 years these were the remains are skulls, and in some cases these are asso- only Mesozoic ~nanimalsknown from Mongolia. ciated with postcranial skeletons. Ry contrast, 'I'he next discoveries in Mongolia were made by the Mesozoic mammals at well-known sites in North Polish-Mongolian Palaeontological Expeditions America and other continents have produced less (1963-1971) initially led by Naydin Dovchin, then by complete material, usually incomplete jaws with den- Rinchen Barsbold on the Mongolian side, and Zofia titions, or isolated teeth. In addition to the rich Kielan-Jaworowska on the Polish side, Kazi~nierz samples of skulls and skeletons representing Late Koualski led the expedition in 1964. Late Cretaceous Cretaceous mam~nals,certain localities in Mongolia ma~nmalswere collected in three Gohi Desert regions: are also known for less well preserved, but important, Bayan Zag (Djadokhta Formation), Nenlegt and remains of Early Cretaceous mammals. The mammals Khulsan in the Nemegt Valley (Baruungoyot from hoth Early and Late Cretaceous intervals have Formation), and llcrmiin 'ISav, south-\vest of the increased our understanding of diversification and Neniegt Valley, in the Red beds of Hermiin 'rsav, morphologic variation in archaic mammals. which have heen regarded as a stratigraphic ecluivalent Potentially this new information has hearing on the of the Baruungoyot Formation (Gradzinslti r't crl., phylogenetic relationships among major branches of 1977).
    [Show full text]
  • Octavio Mateus
    Foster, J.R. and Lucas, S. G., eds., 2006, Paleontology and Geology of the Upper Jurassic Morrison Formation. New Mexico Museum of Natural History and Science Bulletin 36. 223 LATE JURASSIC DINOSAURS FROM THE MORRISON FORMATION (USA), THE LOURINHÃ AND ALCOBAÇA FORMATIONS (PORTUGAL), AND THE TENDAGURU BEDS (TANZANIA): A COMPARISON OCTÁVIO MATEUS Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal. Phone: +351.261 413 995; Fax: +351.261 423 887; Email: [email protected]; and Centro de Estudos Geológicos, FCT, Universidade Nova de Lisboa, Lisbon, Portugal Abstract—The Lourinhã and Alcobaça formations (in Portugal), Morrison Formation (in North America) and Tendaguru Beds (in Tanzania) are compared. These three Late Jurassic areas, dated as Kimmeridgian to Tithonian are similar paleoenvironmentally and faunally. Four dinosaur genera are shared between Portugal and the Morrison (Allosaurus, Torvosaurus, Ceratosaurus and Apatosaurus), as well as all non-avian dinosaur families. Episodic dis- persal occurred until at least the Late Jurassic. The Portuguese dinosaurs did not developed dwarfism and are as large as Morrison and Tendaguru dinosaurs. Resumo em português—São comparadas as Formações de Lourinhã e Alcobaça (em Portugal), Formação de Morrison (na América do Norte) e as Tendaguru Beds (na Tanzânia). Estas três áreas do Jurássico Superior (Kimmeridgiano/ Titoniano) têm muitas semelhanças relativamente aos paleoambientes. Quatro géneros de dinossauros são comuns a Portugal e Morrison (Allosaurus, Torvosaurus, Ceratosaurus e Apatosaurus), assim como todas as famílias de dinossauros não-avianos. Episódios migratórios ocorreram pelo menos até ao Jurássico Superior. Os dinossauros de Portugal não desenvolveram nanismo e eram tão grandes como os dinossauros de Morrison e Tendaguru.
    [Show full text]
  • Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal)
    Alexandre Renaud Daniel Guillaume Licenciatura em Biologia celular Mestrado em Sistemática, Evolução, e Paleobiodiversidade Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal) Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Miguel Moreno-Azanza, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Octávio Mateus, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Paulo Alexandre Rodrigues Roque Legoinha (FCT-UNL) Arguente: Doutor Hughes-Alexandres Blain (IPHES) Vogal: Doutor Miguel Moreno-Azanza (FCT-UNL) Júri: Dezembro 2018 MICROVERTEBRATES OF THE LOURINHÃ FORMATION (LATE JURASSIC, PORTUGAL) © Alexandre Renaud Daniel Guillaume, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ACKNOWLEDGMENTS First of all, I would like to dedicate this thesis to my late grandfather “Papi Joël”, who wanted to tie me to a tree when I first start my journey to paleontology six years ago, in Paris. And yet, he never failed to support me at any cost, even if he did not always understand what I was doing and why I was doing it. He is always in my mind. Merci papi ! This master thesis has been one-year long project during which one there were highs and lows.
    [Show full text]
  • A New Mammaliaform from the Early Jurassic and Evolution Of
    R EPORTS tary trough with a shelflike dorsal medial ridge, and all other nonmammalian mamma- A New Mammaliaform from the liaforms have a medial concavity on the man- dibular angle (8–14, 23), as in nonmamma- Early Jurassic and Evolution of liaform cynodonts (9, 14, 24–27). The post- dentary trough and the medial concavity on Mammalian Characteristics the mandibular angle respectively accommo- dated the prearticular/surangular and the re- Zhe-Xi Luo,1* Alfred W. Crompton,2 Ai-Lin Sun3 flected lamina of the angular (9, 25–27) that are the homologs to the mammalian middle A fossil from the Early Jurassic (Sinemurian, ϳ195 million years ago) represents ear bones (9, 14, 16–21, 23, 26). The absence a new lineage of mammaliaforms, the extinct groups more closely related to of these structures indicates that the postden- the living mammals than to nonmammaliaform cynodonts. It has an enlarged tary bones (“middle ear ossicles”) must have cranial cavity, but no postdentary trough on the mandible, indicating separation been separated from the mandible (Fig. 3). of the middle ear bones from the mandible. This extends the earliest record of Hadrocodium lacks the primitive meckelian these crucial mammalian features by some 45 million years and suggests that sulcus of the mandible typical of all nonmam- separation of the middle ear bones from the mandible and the expanded brain maliaform cynodonts (24–27), stem groups vault could be correlated. It shows that several key mammalian evolutionary of mammaliaforms (8, 9, 14, 23, 26, 27), innovations in the ear region, the temporomandibular joint, and the brain vault triconodontids (28, 29), and nontribosphenic evolved incrementally through mammaliaform evolution and long before the therian mammals (30).
    [Show full text]
  • Mesozoic: the Dark Age for Mammals!
    Ed’s Simplified History of the Mammals Note progression from Pelycosaurs (1) to Therapsids and Cynodonts (2) in Triassic. Stem mammals appeared in Late Triassic and Early Jurassic (3). Relationships among the Middle Jurassic forms (4) are controversial (see handout). Therian clade, identified by the tribosphenic molar (5), emerged at the end of the Jurassic, Early Cretaceous. A slightly more detailed version… in case you like something that looks more slick From Pough et al. 2009. Vertebrate Life, 8th ed. Pelycosaurs Dominated the late Permian, gave rise to therapsids Therapsids Rapid radiation in late Permian, around 270 MYA Still “mammal-like reptiles” The mass extinction at the end of the Permian was the greatest loss of diversity ever with >80% of all known genera and about 90% of all species going extinct, both terrestrial and marine. Cynodonts Late Permian to mid Triassic Last remaining group of therapsids, survived mass extinction at the end of the Permian. Persisted well Only 1 lineage of into Triassic and developed cynodonts survived many features associated through the late Triassic, with mammals. and this group became ancestors of mammals. Mesozoic: the Dark Age for Mammals! multituberculate Morganucodon, one of the earliest mammals (What else was happening in the Late Triassic and Jurassic Hadrocodium that may have contributed to mammals becoming small and Most were very small with nocturnal?) conservative morphology ...but new fossil finds indicate more diversity than we thought Repenomanus Still, largest known mammal during Mesozic Most were shrew to is no larger than a mouse sized, for 125 woodchuck million years! Some Mesozoic events and mammals you should know 1.
    [Show full text]
  • Brief Report Vol
    Brief report Vol. 46, No. 3, pp. 427-430, Warszawa 2001 Docodont nature of Cyrtlatherium, an upper Bathonian mammal from England DENISE SIGOGNEAU-RUSSELL The upper Bathonian Kirtlington mammal bed of England is one of the rare Middle Jurassic sites in the world to have yielded mammalian remains and undoubtedly the richest. A few taxa have so far been described, among which the genus Cyrtlatherium Freeman, 1979, assigned by its author to the Kuehneotheriidae and subsequently included in the Symmetrodonta. In this note I argue that Cyrtlathen'um represents a docodont of which it is possibly a milk premolar. In 1979, Freeman created the genus Cyrtlatherium on one complete right lower cheek tooth and two fragmentary ones from the Kirtlington mammal bed in Oxfordshire. His brief description was en- tirely done with reference to the lower molar of Kuehneotherium, without further justification of its systematic placement. His accompanying comments concern only the situation of Kuehneotherium among the Theria. The genus has since been regarded as a member of Symmetrodonta and was classi- fied as such in McKenna & Bell (1997). Reexamination of the holotype led to the conclusion that the tooth pertains in fact to the Docodonta, of which it presents all the main characteristics. Given the contradictions in the literature concerning the homologies of docodont molar cusps (see Butler 1997 and Sigogneau-Russell & Godefroit 1997 for the most recent proposals), and pending a further study, I follow Kermack et al. (1987: p. 4) in naming 'the cusps ... strictly according to their position in the teeth'. In accordance with this method, however, and differently from Kermack et al.
    [Show full text]
  • Science Journals
    RESEARCH | REPORT PALEONTOLOGY the hyoid apparatus in monotremes and placen- tals, and in a modified condition in marsupials (for details, see the supplementary materials) New Jurassic mammaliaform (16–18). Based on the distinctly mammal-like morphol- sheds light on early evolution ogy of the hyoid elements of Microdocodon,we can now identify hyoid elements of several other mammaliaforms (16)(figs.S4toS9).TheJurassic of mammal-like hyoid bones haramiyidan Vilevolodon has preserved basihyal 1,2 3 4 and ceratohyal bones (fig. S6 and movie S2) (19). Chang-Fu Zhou *, Bhart-Anjan S. Bhullar *, April I. Neander , The Cretaceous eutriconodontan Yanoconodon 5† 4† Thomas Martin , Zhe-Xi Luo also has preserved hyoid elements (fig. S6) (20). Computed tomography (CT) scanning has re- We report a new Jurassic docodontan mammaliaform found in China that is preserved vealed the basihyal, thyrohyals, ceratohyals, and with the hyoid bones. Its basihyal, ceratohyal, epihyal, and thyrohyal bones have mobile epihyals of the trechnotherian Maotherium and joints and are arranged in a saddle-shaped configuration, as in the mobile linkage the multituberculate Sinobaatar of the Cretaceous of the hyoid apparatus of extant mammals. These are fundamentally different from (figs. S7 and S8 and movie S2) (16). Addition- the simple hyoid rods of nonmammaliaform cynodonts, which were likely associated ally, Sinobaatar has preserved stylohyal bones with a wide, nonmuscularized throat, as seen in extant reptiles. The hyoid apparatus (fig. S7), which is similar to the Cretaceous multi- provides a framework for the larynx and for the constricted, muscularized esophagus, tuberculate Kryptobaatar (21). We interpret this crucial for transport and powered swallowing of the masticated food and liquid in extant to mean that multituberculates have an integro- Downloaded from mammals.
    [Show full text]
  • Terra Nostra 2018, 1; Mte13
    IMPRINT TERRA NOSTRA – Schriften der GeoUnion Alfred-Wegener-Stiftung Publisher Verlag GeoUnion Alfred-Wegener-Stiftung c/o Universität Potsdam, Institut für Erd- und Umweltwissenschaften Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany Tel.: +49 (0)331-977-5789, Fax: +49 (0)331-977-5700 E-Mail: [email protected] Editorial office Dr. Christof Ellger Schriftleitung GeoUnion Alfred-Wegener-Stiftung c/o Universität Potsdam, Institut für Erd- und Umweltwissenschaften Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany Tel.: +49 (0)331-977-5789, Fax: +49 (0)331-977-5700 E-Mail: [email protected] Vol. 2018/1 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota (MTE13) Heft 2018/1 Abstracts Editors Thomas Martin, Rico Schellhorn & Julia A. Schultz Herausgeber Steinmann-Institut für Geologie, Mineralogie und Paläontologie Rheinische Friedrich-Wilhelms-Universität Bonn Nussallee 8, 53115 Bonn, Germany Editorial staff Rico Schellhorn & Julia A. Schultz Redaktion Steinmann-Institut für Geologie, Mineralogie und Paläontologie Rheinische Friedrich-Wilhelms-Universität Bonn Nussallee 8, 53115 Bonn, Germany Printed by www.viaprinto.de Druck Copyright and responsibility for the scientific content of the contributions lie with the authors. Copyright und Verantwortung für den wissenschaftlichen Inhalt der Beiträge liegen bei den Autoren. ISSN 0946-8978 GeoUnion Alfred-Wegener-Stiftung – Potsdam, Juni 2018 MTE13 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota Rheinische Friedrich-Wilhelms-Universität Bonn,
    [Show full text]
  • Molar Dentition of the Docodontan Haldanodon (Mammaliaformes) As Functional Analog to Tribosphenic Teeth
    Molar dentition of the docodontan Haldanodon (Mammaliaformes) as functional analog to tribosphenic teeth DISSERTATION zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von JANKA J. BRINKKÖTTER aus Berlin Bonn 2018 I Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Thomas Martin 2. Gutachter: Prof. Dr. P. Martin Sander Tag der Promotion: 14. Dezember 2018 Erscheinungsjahr: 2019 II List of abbreviations d – deciduous tooth M – upper molar m – lower molar P – upper premolar p – lower premolar m – mesial buc – buccal dex – dextral sin – sinistral L – length W – width fr. – fragment III List of contents Abstract .................................................................................................................................. 01 Kurzfassung ........................................................................................................................... 02 1 Aim of study ........................................................................................................................ 04 2 Introduction ........................................................................................................................ 06 2.1 Systematical position of the Docodonta ............................................................................ 06 2.2 Definitions of terms ..........................................................................................................
    [Show full text]