Application Specific Programmable Processors for Reconfigurable Self-Powered Devices

Total Page:16

File Type:pdf, Size:1020Kb

Application Specific Programmable Processors for Reconfigurable Self-Powered Devices C651etukansi.kesken.fm Page 1 Monday, March 26, 2018 2:24 PM C 651 OULU 2018 C 651 UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATISUNIVERSITATIS OULUENSISOULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTAACTA TECHNICATECHNICACC Teemu Nyländen Teemu Nyländen Teemu University Lecturer Tuomo Glumoff APPLICATION SPECIFIC University Lecturer Santeri Palviainen PROGRAMMABLE Postdoctoral research fellow Sanna Taskila PROCESSORS FOR RECONFIGURABLE Professor Olli Vuolteenaho SELF-POWERED DEVICES University Lecturer Veli-Matti Ulvinen Planning Director Pertti Tikkanen Professor Jari Juga University Lecturer Anu Soikkeli Professor Olli Vuolteenaho UNIVERSITY OF OULU GRADUATE SCHOOL; UNIVERSITY OF OULU, FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING Publications Editor Kirsti Nurkkala ISBN 978-952-62-1874-8 (Paperback) ISBN 978-952-62-1875-5 (PDF) ISSN 0355-3213 (Print) ISSN 1796-2226 (Online) ACTA UNIVERSITATIS OULUENSIS C Technica 651 TEEMU NYLÄNDEN APPLICATION SPECIFIC PROGRAMMABLE PROCESSORS FOR RECONFIGURABLE SELF-POWERED DEVICES Academic dissertation to be presented, with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu, for public defence in the Wetteri auditorium (IT115), Linnanmaa, on 7 May 2018, at 12 noon UNIVERSITY OF OULU, OULU 2018 Copyright © 2018 Acta Univ. Oul. C 651, 2018 Supervised by Professor Olli Silvén Reviewed by Professor Leonel Sousa Doctor John McAllister ISBN 978-952-62-1874-8 (Paperback) ISBN 978-952-62-1875-5 (PDF) ISSN 0355-3213 (Printed) ISSN 1796-2226 (Online) Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2018 Nyländen, Teemu, Application specific programmable processors for reconfigurable self-powered devices. University of Oulu Graduate School; University of Oulu, Faculty of Information Technology and Electrical Engineering Acta Univ. Oul. C 651, 2018 University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland Abstract The current Internet of Things solutions for simple measurement and monitoring tasks are evolving into ubiquitous sensor networks that are constantly observing both our well being and the conditions of our living environment. The oncoming omnipresent wireless infrastructure is expected to feature artificial intelligence capabilities that can interpret human actions, gestures and even needs. All of this will require processing power on a par with and energy efficiency far beyond that of the current mobile devices. The current Internet of Things devices rely mostly on commercial low power off-the-shelf micro-controllers. Optimized solely for low power, while paying little attention to computing performance, the present solutions are far from achieving the energy efficiency, let alone, the compute capability requirements of the future Internet of Things solutions. Since this domain is application specific by nature, the use of general purpose processors for signal processing tasks is counterintuitive. Instead, dedicated accelerator based solutions are more likely to be able to meet these strict demands. This thesis proposes one potential solution for achieving the necessary low energy, as well as the flexibility and performance requirements of the Internet of Things domain in a cost effective manner using reconfigurable heterogeneous processing solutions. A novel graphics processing unit-style accelerator for the Internet of Things application domain is presented. Since the accelerator can be reconfigured, it can be used for most applications of the Internet of Things domain, as well as other application domains. The solution is assessed using two computer vision applications, and is demonstrated to achieve an excellent combination of performance and energy efficiency. The accelerator is designed using an efficient and rapid co-design flow of software and hardware, featuring ease of development characteristics close to commercial off-the-shelf solutions, which also enables cost- efficient design flow. Keywords: application specific processing, energy efficient computing, general purpose computing on graphics processing units, internet of things, reconfigurable architectures Nyländen, Teemu, Sovelluskohtaiset ohjelmoitavat prosessorit uudelleen- konfiguroitaviin energiaomavaraisiin laitteisiin. Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta Acta Univ. Oul. C 651, 2018 Oulun yliopisto, PL 8000, 90014 Oulun yliopisto Tiivistelmä Esineiden internet tulee muuttamaan tulevaisuudessa elinympäristömme täysin. Se tulee mah- dollistamaan interaktiiviset ympäristöt nykyisten passiivisten ympäristöjen sijaan. Lisäksi elin- ympäristömme tulee reagoimaan tekoihimme ja puheeseemme sekä myös tunteisiimme. Tämä kaikkialla läsnä olevan langaton infrastruktuuri tulee vaatimaan ennennäkemätöntä laskentate- hokkuutta yhdistettynä äärimmäiseen energiatehokkuuteen. Nykyiset esineiden internet ratkaisut nojaavat lähes täysin kaupallisiin "suoraan hyllyltä" saa- taviin yleiskäyttöisiin mikrokontrollereihin. Ne ovat kuitenkin optimoituja pelkästään matalan tehonkulutuksen näkökulmasta, eivätkä niinkään energiatehokkuuden, saati tulevaisuuden esi- neiden internetin vaatiman laskentatehon suhteen. Kuitenkin esineiden internet on lähtökohtai- sesti sovelluskohtaista laskentaa vaativa, joten yleiskäyttöisten prosessoreiden käyttö signaalin- käsittelytehtäviin on epäloogista. Sen sijaan sovelluskohtaisten kiihdyttimien käyttö laskentaan, todennäköisesti mahdollistaisi tavoitellun vaatimustason saavuttamiseen. Tämä väitöskirja esittelee yhden mahdollisen ratkaisun matalan energian kulutuksen, korkean suorituskyvyn ja joustavuuden yhdenaikaiseen saavuttamiseen kustannustehokkaalla tavalla, käyttäen uudelleenkonfiguroitavia heterogeenisiä prosessoriratkaisuja. Työssä esitellään uusi grafiikkaprosessori-tyylinen uudelleen konfiguroitava kiihdytin esineiden internet sovellusalu- eelle, jota pystytään hyödyntämään useimpien laskentatehoa vaativien sovellusten kanssa. Ehdotetun kiihdyttimen ominaisuuksia arvioidaan kahta konenäkösovellusta esimerkkinä käyttäen ja osoitetaan sen saavuttavan loistavan yhdistelmän energia tehokkuutta ja suoritusky- kyä. Kiihdytin suunnitellaan käyttäen tehokasta ja nopeaa ohjelmiston ja laitteiston yhteissuun- nitteluketjua, jolla voidaan saavuttaa lähestulkoon kaupallisten "suoraan hyllyltä" saatavien pro- sessoreiden kehitystyön helppous, joka puolestaan mahdollistaa kustannustehokkaan kehitys- ja suunnittelutyön. Asiasanat: energiatehokas laskenta, esineiden internet, sovelluskohtainen prosessointi, uudelleenkonfiguroitavat arkkitehtuurit, yleiskäyttöinen grafiikkaprosessori To my family 8 Preface The research work for this thesis was conducted in the Center for Machine Vision and Signal Analysis (CMVS) at the University of Oulu, between 2010 and 2017. These years were extremely educational, both scientifically and personally. First of all, I would like to thank Professor Olli Silvén for supervising this thesis. Besides co-authoring all of my publications, I am deeply grateful for him for his invaluable guidance, support and encouragement during the research work. Working with him has been extremely interesting and motivating. I would also like to thank Dr. Jari Hannuksela for hiring me to CMVS in the first place and giving me a change to work in such an inspiring environment. Docent Jani Boutellier deserves huge thanks for all the invaluable advices during the work. He always had the time for discussions and advices when needed. I thank all the co-authors of my publications, Dr. Janne Janhunen, Karri Nikunen, Ilkka Hautala and Heikki Kultala. Their cooperation helped to improve the quality of this thesis. I would also like to thank Dr. Miguel Bordallo López for the all the fruitful discussions, particularly regarding GPGPU. I am grateful for the reviewers of this thesis, Professor Leonel Sousa and Dr. John McAllister, for their constructive feedback. The corrections and additions made based on their comments helped to improve the scientific content of this thesis. The main funding partners concerning this thesis have been the Finnish Metals and Engineering Competence Cluster Ltd (FIMECC) and Finnish Funding Agency for Innovation (Tekes). Both foundations are highly appreciated for supporting energy efficient computing research. I was also fortunate to receive personal grants from several Finnish funding organizations: Nokia Foundation, Walter Ahlström Foundation, Riitta and Jorma J. Takanen Foundation, Ulla Tuominen Foundation and Tauno Tönning Foundation. All these funders are highly appreciated. Furthermore, my warmest thoughts go to Dr. Ville Niemelä, Kalle Kaisto and Tuomo Hänninen. The coffee breaks with the discussions fully lacking any scientific content, were a perfect counterweight for the scientific work. I would also like to thank Dr. Kai Loo for the discussions and peer support during this thesis. 9 Finally, my parents, my sister Paula and my fiancé Elina for your invaluable support and encouragement, and especially for enduring my absentmindedness during the past couple of years. Oulu, March 14, 2017 Teemu Nyländen 10 Abbreviations AI artificial intelligence API application programming interface AR augmented reality ASIC application specific integrated circuit ASP application specific processor CGRA coarse grained reconfigurable array COTS commercial off-the-shelf CPU central processing unit DVFS dynamic voltage and frequency scaling DLP data level parallelism EPI energy per instruction etc. et cetera FFT fast fourier transform FPGA
Recommended publications
  • Hoja De Datos De Familes Del Procesador Intel(R) Core(TM) De 10A Generación, Vol.1
    10a generación de familias de procesadores Intel® Core™ Ficha técnica, Volumen 1 de 2 Compatible con la 10a generación de la familia de procesadores Intel® Core™, procesadores Intel® Pentium®, procesadores Intel® Celeron® para plataformas U/Y, anteriormente conocidos como Ice Lake. Agosto de 2019 Revisión 001 Número del Documento: 341077-001 Líneas legales y descargos de responsabilidad Esta información es una combinación de una traducción hecha por humanos y de la traducción automática por computadora del contenido original para su conveniencia. Este contenido se ofrece únicamente como información general y no debe ser considerada como completa o precisa. No puede utilizar ni facilitar el uso de este documento en relación con ninguna infracción u otro análisis legal relacionado con los productos Intel descritos en este documento. Usted acepta conceder a Intel una licencia no exclusiva y libre de regalías a cualquier reclamación de patente redactada posteriormente que incluya el objeto divulgado en este documento. Este documento no concede ninguna licencia (expresa o implícita, por impedimento o de otro tipo) a ningún derecho de propiedad intelectual. Las características y beneficios de las tecnologías Intel dependen de la configuración del sistema y pueden requerir la activación de hardware, software o servicio habilitado. El desempeño varía según la configuración del sistema. Ningún equipo puede ser absolutamente seguro. Consulte al fabricante de su sistema o su distribuidor minorista u obtenga más información en intel.la. Las tecnologías Intel pueden requerir la activación de hardware habilitado, software específico o servicios. Consulte con el fabricante o distribuidor del sistema. Los productos descritos pueden contener defectos de diseño o errores conocidos como erratas que pueden hacer que el producto se desvíe de las especificaciones publicadas.
    [Show full text]
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • A Superscalar Out-Of-Order X86 Soft Processor for FPGA
    A Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel
    [Show full text]
  • SIMD Extensions
    SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel.
    [Show full text]
  • Recent International Trade Commission Representations
    Recent International Trade Commission Representations Certain Mobile Electronic Devices and Radio Frequency and Processing Components Thereof (II), Inv. No. 337-TA-1093 (ITC 2019). Quinn Emanuel was lead counsel for Qualcomm in a patent infringement action against Apple in the International Trade Commission. Qualcomm alleged that Apple engaged in the unlawful importation and sale of iPhones that infringe one or more claims of five Qualcomm patents covering key technologies that enable important features and function in the iPhones. After a seven day hearing, Administrative Law Judge McNamara issued an Initial Determination finding for Qualcomm on all issues related to claim 1 of U.S. Patent 8,063,674 related to an improved “Power on Control” circuit. ALJ McNamara recommended that the Commission issue a limited exclusion order with respect to the accused iPhone devices. Although the case settled shortly after AJ McNamara recommended the exclusion order, the order would have resulted in the exclusion of all iPhones and iPads without Qualcomm baseband processors from being imported into the United States. Certain Magnetic Tape Cartridges and Components Thereof Inv. No. 337-TA-1058 (ITC 2019): We represented Sony in a multifront battle against Fujifilm arising from Fujifilm’s anticompetitive conduct seeking to exclude Sony from the Linear Tape-Open magnetic tape market. LTO tape products are used to store large quantities of data by companies in a wide range of industries, including health care, education, finance and banking. Sony filed a complaint in the ITC seeking an exclusion order of Fujifilm’s products based on its infringement of three Sony patents covering various aspects of magnetic data storage technology.
    [Show full text]
  • ISS 2016 Bootcamp: Intel Omni-Path Architecture
    Intel® Scalable System Framework A Configurable Design Philosophy Extensible to a Wide Range of Workloads Small Clusters Through Supercomputers Compute Memory/Storage Compute and Data-Centric Computing Fabric Software Standards-Based Programmability Intel Silicon On-Premise and Cloud-Based Photonics Intel® Xeon® Processors Intel® Solutions for Lustre* Intel® Omni-Path Architecture HPC System Software Stack Intel® Xeon Phi™ Processors Intel® SSDs Intel® True Scale Fabric Intel® Software Tools Intel® Xeon Phi™ Coprocessors Intel® Optane™ Technology Intel® Ethernet Intel® Cluster Ready Program Intel® Server Boards and Platforms 3D XPoint™ Technology Intel® Silicon Photonics Intel® Visualization Toolkit 1 YANG YANGUO May 2016 Intel Confidential Agenda Quick Overview: HPC Fabrics What is Intel® 100Gb Omni-Path Architecture(OPA)? Why is Intel 100Gb OPA Summary Intel® Solutions Summit 2016 Intel Confidential 3 Intel Confidential What is Different Between Networks and Fabrics? Network: Universal interconnect designed to HPC Fabric: Optimized interconnect allows allow any-and-all systems to communicate many nodes to perform as a single system Intel® Omni-Path Architecture or Infiniband Key NETWORK (Ethernet) Attributes: Key FABRIC Attributes: . Flexibility for any application . Targeted for specific applications . Designed for universal communication . Optimized for performance and efficiency . Extensible configuration . Engineered topologies . Multi-vendor components . Single-vendor solutions Intel® Solutions Summit 2016 Intel Confidential 5 Fabric: InfiniBand* and OPA InfiniBand/OPA is a multi-lane, high-speed serial interconnect (Copper or Fiber) . Typically presented as a 4x solution . Speeds: 40Gb/s (M & Intel QDR), 56Gb/s (M FDR), 100Gb/s (EDR & Intel OPA) High bandwidth, low latency HPC interconnect for commodity servers . Ethernet switch latency is typically measured in μs, but InfiniBand/OPA is in nanoseconds .
    [Show full text]
  • Intel® Quartus® Prime Design Suite Version 18.1 Update Release Notes
    Intel® Quartus® Prime Design Suite Version 18.1 Update Release Notes Updated for Intel® Quartus® Prime Design Suite: 18.1.1 Standard Edition Subscribe RN-01080-18.1.1.0 | 2019.04.17 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Intel® Quartus® Prime Design Suite Version 18.1 Update Release Notes........................ 3 2. Issues Addressed in Update 1......................................................................................... 4 2.1. Intel Quartus Prime Pro Edition Software.................................................................. 4 2.2. Intel Quartus Prime Standard Edition Software.......................................................... 7 2.3. IP and IP Cores..................................................................................................... 8 2.4. DSP Builder for Intel FPGAs...................................................................................12 2.5. Intel High Level Synthesis Compiler........................................................................12 2.6. Intel FPGA SDK for OpenCL*................................................................................. 13 3. Issues Addressed in Update 2....................................................................................... 15 3.1. Intel Quartus Prime Pro Edition Software.................................................................15 3.2. IP and IP Cores................................................................................................... 15 3.3. Intel FPGA SDK for OpenCL..................................................................................
    [Show full text]
  • Game Audio Via Openal
    Game Audio via OpenAL Summary In the Graphics For Games module, you learnt how to use OpenGL to create complex graphical scenes, improving your programming skills along the way, and learning about data structures such as scene graphs. In this workshop, you'll see how to add sounds to your game worlds using the OpenAL sound library. New Concepts Sound in games, OpenAL, PCM audio, binary file formats, FourCC codes, WAV files, limited resource management Introduction Audio has played an important part in gaming almost as long as there have been games to play - even Pong back in 1972 had simple sound effects. We've moved a long way from then; the 80s brought dedicated audio hardware such as the Commodore 64's SID chip that could play 3 simultaneous syn- thesised sounds, and later the Amiga brought the ability to play audio samples to the home gaming market. In modern gaming hardware, we can expect to hear many simultaneous sounds and music tracks, often in surround sound. Game developers now employ dedicated sound engineers that will carefully adjust the sounds in each game release to create an immersive aural experience - making sure that each individual sound is uniquely identifiable and correctly equalised, and that every music track suits the situation they will be played in. At the heart of a game's audio experience is the code that plays back the game sounds, and cal- culates which speakers they should use - the sound system. Although we can't hope to compete with the complex sound systems of AAA games, we should still be able to make a robust, simple system for the addition of sound in our 3D games, and that's what this workshop will assist you in creating.
    [Show full text]
  • Intel® Industrial Iot Workshop Security for Industrial Platforms
    Intel® Industrial IoT workshop Security for industrial platforms Gopi K. Agrawal Security Architect IOTG Technical Sales & Marketing Intel Corporation Legal © 2018 Intel Corporation No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure.
    [Show full text]
  • Product Change Notification
    Product Change Notification Change Notification #: 116422 - 00 Change Title: For select Intel® SSD DC S4500 Series and Intel® SSD DC S4600 Series SKUs, PCN 116422-00, Product Discontinuance, End of Life Date of Publication: August 31, 2018 Key Characteristics of the Change: Product Discontinuance Forecasted Key Milestones: Last Product Discontinuance Order Date: December 31, 2018 Last Product Discontinuance Shipment Date: April 30, 2019 Description of Change to the Customer: Intel is announcing the End of Life timeline for the Intel® SSD DC S4500 Series and Intel® SSD DC S4600 Series SKUs listed in the products affected table list in the PCN announcement. The Intel® SSD DC S4500 Series and Intel® SSD DC S4600 Series products listed on the "Products Affected/Intel Ordering Codes" table below will be discontinued and unavailable for additional orders after the December 31, 2018. Effective April 30, 2019 Intel will stop shipping Intel® SSD DC S4500 Series and Intel® SSD DC S4600 Series hardware. Customer Impact of Change and Recommended Action: While Intel will make commercially reasonable efforts to support last time order quantities, it is recommended for customers to transition to the next generation of products - Intel® SSD D3-S4510 Series and D3-S4610 Series. Please contact your local Intel Field Sales representative if you have any further questions about this End of Life notice. Page 1 of 3 PCN #116422 - 00 Products Affected / Intel Ordering Codes: Product Name Product Code MM# Intel® SSD DC S4500 Series (240GB, 2.5in SATA 6Gb/s,
    [Show full text]
  • Demystifying Internet of Things Security Successful Iot Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M
    Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Chandler, AZ, USA Chandler, AZ, USA Ned Smith David M. Wheeler Beaverton, OR, USA Gilbert, AZ, USA ISBN-13 (pbk): 978-1-4842-2895-1 ISBN-13 (electronic): 978-1-4842-2896-8 https://doi.org/10.1007/978-1-4842-2896-8 Copyright © 2020 by The Editor(s) (if applicable) and The Author(s) This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material.
    [Show full text]
  • Product Change Notification
    Product Change Notification Change Notification #: 116497 - 00 Change Title: Select Intel® SSD 760p Series, Intel® SSD DC P4101 Series, Intel® SSD E 6100P Series, PCN 116497-00, Label, Label Update Date of Publication: September 25, 2018 Key Characteristics of the Change: Label Forecasted Key Milestones: Date Customer Must be Ready to Receive Post-Conversion Material: December 24, 2018 Description of Change to the Customer: The Intel® SSD 760p Series, Intel® SSD DC P4101 and Intel® SSD E 6100P Series SKUs listed in the Products Affected Table below will have the following label changes: 1. Outer Box: • Add extra information ("Model") and linear barcode on the label with no change to current box label format and location. Page 1 of 3 PCN #116497 - 00 2. White/Brown Box Label: • Add extra information and linear barcode on the label. Customer Impact of Change and Recommended Action: The change in labeling only affects the label. There is no form, fit, function or visible change to the products listed in the Products Affected/Intel Order Codes table. Please contact your local Intel Field Sales Representative if you have any further questions about these changes. Products Affected / Intel Ordering Codes: Marketing Name Product Code MM# Intel® SSD E 6100p Series (128GB, M.2 80mm PCIe 3.0 x4, 3D2, TLC) SSDPEKKR128G801 963756 Generic Single Pack Intel® SSD E 6100p Series (256GB, M.2 80mm PCIe 3.0 x4, 3D2, TLC) SSDPEKKR256G801 963758 Generic Single Pack Intel® SSD E 6100p Series (128GB, M.2 80mm PCIe 3.0 x4, 3D2, TLC) SSDPEKKR128G810 963759 Generic
    [Show full text]