Healthy Foods Full of Fruits and Vegetables Is Another Hiroshima Vegetables Principle Vegetables of Principle Fruits of Hiroshima Specialty

Total Page:16

File Type:pdf, Size:1020Kb

Healthy Foods Full of Fruits and Vegetables Is Another Hiroshima Vegetables Principle Vegetables of Principle Fruits of Hiroshima Specialty Global Hiroshima specialties [Fruits and vegetables] Made in HIROSHIMA (unit/t) (unit/t) What are ? Production volume of Production volume of Healthy foods full of fruits and vegetables is another Hiroshima vegetables principle vegetables of principle fruits of Hiroshima specialty. Hiroshima is a producer of good-luck foods such as wakegi (Welsh onion) and Hiroshima Prefecture Hiroshima Prefecture kuwai (Chinese Arrowhead) used in traditional festival cuisines, and is also one of Wakegi No. 1 No. 1 (Welsh onion) 1,428 in Japan Lemon 4,291 in Japan the top domestic producers of autumn-sowed potatoes. Large-sized asparagus and What is ? Kuwai No. 2 No. 1 Hiroshima fruit bell peppers are shipped as Hiroshima specialties, and also actively cultivated is (Chinese Arrowhead) 207 in Japan Navel orange 3,227 in Japan No. 6 No. 2 Citrus fruits cultivated in the island areas of Seto Inland Hiroshima-na, a leafy Konnyaku potato 425 in Japan Hassaku orange 7,051 in Japan vegetable used for No. 7 No. 3 Sea is famous all over Japan, boasting an impressive Snow peas 729 in Japan Dekopon orange 3,926 in Japan production volume. On the other hand, cold-area crops Hiroshima-na pickles, and No. 4 such as apples can be cultivated in the mountain areas. a new type of cabbage that Tomato 8,160 Kiyomi orange 1,078 in Japan No. 6 Hiroshima has the perfect environment for a wide is great for okoyomiyaki. Spring onion 5,900 Fig 676 in Japan variety of fruits. Hiroshima possesses outstanding Wakegi of Hiroshima is popular No. 6 Spinach 4,590 Iyokan orange 540 in Japan expertise in the cultivation of other fruits as well, such not only among the general public, but also among top-class Japanese restaurants No. 7 as gs, grapes and pears, which have also become Daikon radish 15,800 Mandarin orange 40,700 in Japan accepted as local specialties. Japan’ s original landscape “Tanada” Cucumber 4,020 Grape 3,970 Asparagus 798 Japanese pear 2,890 The climate is great for citrus cultivation Tanada are series of terraced rice paddies Potato 7,030 Apple 1,600 From lemons to apples, Hiroshima produces an positioned in a stair-like manner along a steep slope. Although they are not very agriculturally Eggplant 3,100 <Reference: Statistical Yearbook of Ministry of Agriculture, abundance of agricultural products. ecient, Tanada are environmentally friendly, Forestry and Fisheries (2008/2009)> Cabbage 7,950 Hiroshima is home to a variety of climates, from the moderate with good drainage that prevents disasters such Garland Setouchi climate in the south to the northern Chugoku as ooding and landslides, and also preserves the chrysanthemum 898 Mountain Area that has snowy winters. e geographical Overseas opinion ecosystem. ey are also used as venues for the advantages of each area, including the coastal atlands and opportunity to experience old agricultural highland areas, as well as their unique climatic conditions are The visual beauty of unique fruit varieties and utilized in conducting a wide variety of cultivation, creating a methods, such as rice planting and harvesting. healthy processed products are attracting attention from overseas! diverse range of agricultural products. In Hiroshima, the tanada of Ini is designated as In Tanada, crops with high added-value are one of the best 100 tanada of Japan. often produced Hiroshimapref. Fruit Growers Cooperative Association Hirata Farm Co., Ltd. ITOKU FOODS CO., LTD. Manda Fermentation Co., Ltd. URL http://www.fruit-morning.com/ URL http://www.marumero.com/ URL http://itokufood.info/ URL http://www.manda.co.jp/ Supports health and beauty from inside the body: powdered Vegetable-fermented food made by naturally fermenting more than Sweet and tender new variety developed from Hyuganatsu Orange Yuzu miso, raved about by the world’s top-class chef Mr. Kiyomi Mikuni. lemon & ginger drink. 53 ingredients Hiroshima Haruka Yuzumiso Lemon ginger 4P Manda Koso Fruit is left on the tree over winter Yuzu miso allows you to enjoy the Ginger relieves constipation, poor Seasonal ingredients full of vital until early February, then unique acidity and fragrance of circulation and swelling. Safe, energy such as brown sugar, fruits, harvested. It is stored until fully yuzu all throughout the year. With high-quality ginger produced in root vegetables, cereals, seaweeds, matured before shipment. In the theme of “one more side-dish,” Kochi Prefecture and the taste and beans, and sesames are carefully contrast to the bright yellow rind, seedless yuzu called Tadanishiki avor of “green lemon” produced selected. Additive free without heat its acidity is very mild with produced in Miyoshi, Hiroshima on Iwagi Island are packed into treatment, this product is completed honey-like sweetness. Its was used to commercialize the this drink. Brisk and fresh drink, after maturing for approximately popularity, which started locally, taste loved in the local region. with taste of lemon accented by three years three months. Great spread rapidly. Leave out the Dishes come alive just by tossing ginger. Drink hot or iced. Also a source of vitamins, minerals, amino center when cutting so it'll be easy yuzu miso with vegetables or using great addition to black tea. acids, and more, supporting people’s health in more than 29 countries to eat, without seeds. it to garnish meat. worldwide. Product name: Hiroshima Haruka Product name: Yuzumiso Product name: Lemon ginger 4P Product name: Manda Koso Product description: Haruka Product description: Yuzu miso Product description: Powdered soft drink Product description: Manda Koso Main ingredients: Haruka Main ingredients: Yuzu, rice miso, sugar, mirin-like avoring (mizuame (starch Main ingredients: Sugar, lemon (produced in Ehime Prefecture), ginger Main ingredients: 53 vegetable ingredients, including brown sugar, fruits, Net content: 5 kg syrup), rice, brewed avoring of rice malt, brewed vinegar), avoring (amino (produced in Kochi Prefecture), oligosaccharide, honey, vitamin C, fragrances root vegetables, cereals, seaweeds, beans, and sesames Domestic suggested retail price: 4,000 yen (tax included) acid, etc.), acidulant Net content: 80 g Net content: 145 g Case size: 35.0 cm (L) x 24.5 cm (W) x 16.5 cm (H) *Some ingredients contain soy Domestic suggested retail price: 315 yen (tax included) (when going through Domestic suggested retail price: 11,655 yen (tax included) (when going Weight/quantity (per case): 5.5 kg/Approx. 22 of 2L-size, and approx. 27 of Net content: 200 g domestic trade rm) through domestic trade rm) L-size Domestic suggested retail price: 530 yen (tax included) (when going through Case size: 22.5 cm (length) x 40.0 cm (width) x 45.0 cm (height) Case size: 26.5 cm (L) x 35.5 cm (W) x 50.5 cm (H) Possible shipment period: Late March to mid April domestic trade rm) Weight/quantity (per case): 6.74 kg/10 x 6 packets Weight/quantity (per case): 17.2 kg/48 bottles Minimum lot: To be negotiated Case size: 30.0 cm (length) x 47.0 cm (width) x 10.0 cm (height) Possible shipment period: Year-round Possible shipment period: Depends on terms and conditions Storage: Room temperature Weight/quantity (per case): 17 kg/48 jars Minimum lot: 1 case (free shipping for 3 cases or more in consolidated cargo) Minimum lot: Depends on terms and conditions Best before: - Possible shipment period: Year-round Minimum lot: 1 case Storage: Room temperature Storage: Cool dark place or refrigerated Best before: 3 years JAN Code: - Storage: Room temperature Best before: 1 year Best before: 1 year JAN Code: 4909882122137 Exporting countries/regions: Taiwan, Hong Kong, Singapore JAN Code: 4935261010412 JAN Code: 4970107110062 Exporting countries/regions: France, Sudan, Germany, Taiwan, South Korea, Exporting countries/regions: None Exporting countries/regions: None etc. Corporate Data Corporate Data Corporate Data Corporate Data Year of establishment: 1948 Investment: 377.5 million yen Year of establishment: 1984 Capital: 5 million yen Year of establishment: 1963 Capital: 10 million yen Year of establishment: 1987 Capital: 80 million yen Number of employees: 65 Number of employees: 21 Number of employees: 28 Number of employees: 123 Address: 1-2-17 Naka-machi, Tadanoumi, Takehara City, Hiroshima 729-2316, Japan Address: 1740-3 Ueda-machi, Miyoshi-shi, Hiroshima 728-0624, Japan Address: 491 Kimonden, Kinosho-cho, Onomichi-shi, Hiroshima 722-0232, Japan Address: 5800-95 Shigei-cho, Innoshima, Onomichi City, Hiroshima 722-2192, Japan TEL: +81(846)26-0011 FAX: +81(846)26-0092 TEL: +81(824)69-2346 FAX: +81(824)69-2246 TEL: +81(848)48-1650 FAX: +81(848)48-1664 Tel: +81 (845) 24-3561 Fax: +81 (845) 24-2311 E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] 17 18 Copyright (C) 2011 JETRO. All rights reserved. Copyright (C) 2011 JETRO. All rights reserved. Global Hiroshima specialties [Fruits and vegetables] Made in HIROSHIMA (unit/t) (unit/t) What are ? Production volume of Production volume of Healthy foods full of fruits and vegetables is another Hiroshima vegetables principle vegetables of principle fruits of Hiroshima specialty. Hiroshima is a producer of good-luck foods such as wakegi (Welsh onion) and Hiroshima Prefecture Hiroshima Prefecture kuwai (Chinese Arrowhead) used in traditional festival cuisines, and is also one of Wakegi No. 1 No. 1 (Welsh onion) 1,428 in Japan Lemon 4,291 in Japan the top domestic producers of autumn-sowed potatoes. Large-sized asparagus and What is ? Kuwai No. 2 No. 1 Hiroshima fruit bell peppers are shipped as Hiroshima specialties, and also actively cultivated is (Chinese Arrowhead) 207 in Japan Navel orange 3,227 in Japan No. 6 No. 2 Citrus fruits cultivated in the island areas of Seto Inland Hiroshima-na, a leafy Konnyaku potato 425 in Japan Hassaku orange 7,051 in Japan vegetable used for No.
Recommended publications
  • Reaction of Tangerines Genotypes to Elsinoe Fawcettiiunder
    Reaction of tangerines genotypes to Elsinoe fawcettii under natural infection conditions Crop Breeding and Applied Biotechnology 11: 77-81, 2011 Brazilian Society of Plant Breeding. Printed in Brazil Reaction of tangerines genotypes to Elsinoe fawcettii under natural infection conditions Marcelo Claro de Souza1*, Eduardo Sanches Stuchi2 and Antonio de Goes3 Received 11 February 2010 Accepted 30 September 2010 ABSTRACT - A citrus scab disease, caused by Elsinoe fawcettii, is currently found in all citrus areas throughout Brazil. That being, given the importance of this casual agent, the behavior of tangerines and hybrids influenced by this pathogen was evaluated under natural infection conditions. This study was performed with plants around 15 years old without irrigation; 100 fruits of three plants were collected during harvest season, using a grade scale varying from 0 (absence of symptoms) to 6 (severe symptoms) the level of disease severity was determined. Among the cultivars, citrus scab resistance was observed in Citrus deliciosa, C. tangerina, C. nobilis; a mandarin hybrid (C. nobilis x C. deliciosa) and a satsuma hybrid (C. unshiu x C. sinensis). Among the other genotypes, symptoms were observed with levels of severity ranging from 1 to 3, indicating moderate resistance. Key words: Citrus scab, citrus crop, resistant varieties. INTRODUCTION In Brazil, E. fawcettii is responsible for citrus scab. The disease is widespread in many humid, citrus-cultivating In many citrus production areas around the world, areas around the world and decreases fruit values on the Elsinoe fawcettii is one of the main fungi diseases found. fresh-fruit market (Feichtenberger et al. 1986). In young It attacks a wide variety of citrus species and cultivars, plants or under severe infection, it may cause significant resulting in scab disease on leaves, twigs, and fruits (Timmer fruit drop.
    [Show full text]
  • Granulation in Florida Citrus
    Literature Cited harvest modulate the severity of postharvest peel pitting in citrus. J. Amer. Soc. Hort. Sci. (In press). Agusti, M., V. Almela, M. Juan, F. Alferez, F. R. Tadeo, and L. Zacarias. 2001. Lafuente, M. T. and J. M. Sala. 2002. Abscisic acid and the influence of ethyl- Histological and physiological characterization of rind breakdown of Na- ene, humidity and temperature on the incidence of postharvest rindstain- velate sweet orange. Ann. Bot. 88:422-451. ing of Navelina oranges (Citrus sinensis L. Osbeck) fruits. Postharvest Biol. Alferez, F., M. Agusti, and L. Zacarias. 2003. Postharvest rind staining in Na- Technol. 25:49-57. vel oranges is aggravated by changes in storage relative humidity: effect Petracek, P. D., L. Montalvo, H. Dou, and C. Davis. 1998. Postharvest pitting on respiration, ethylene production and water potential. Postharvest Bi- of ‘Fallglo’ tangerine. J. Amer. Soc. Hort. Sci. 123: 130-135. ol. Technol. 28:143-152. Petracek, P. D., W. F. Wardowsky, and G. E. Brown. 1995. Pitting of grapefruit Alferez, F. and J. Burns. 2004. Postharvest peel pitting at non-chilling temper- that resembles chilling injury. HortScience 30:1422-1426. atures in grapefruit is promoted by changes from low to high relative hu- Shomer, I. and Y. Erner. 1989. The nature of oleocellosis in citrus fruits. Bot. midity during storage. Postharvest Biol. Technol. 32:79-87. Gazette 50:281-288. Alferez, F., L. Zacarias, and J. Burns. 2004. Cumulative hours of low relative humidity before storage at high relative humidity and relative humidity at Proc. Fla. State Hort. Soc. 117:358-361.
    [Show full text]
  • Section 3417. Mexican Fruit Fly Interior Quarantine
    Section 3417. Mexican Fruit Fly Interior Quarantine A quarantine is established against the following pest, its hosts and possible carriers: A. Pest. Mexican fruit fly (Anastrepha ludens) B. Area Under Quarantine. 1. An area shall be designed as under quarantine when survey results indicate an infestation is present, the Department has defined the infested area and the local California County Agricultural Commissioner(s) is notified and requests the quarantine area be established. The Department shall also provide electronic and/or written notification of the area designation(s) to other California County Agricultural Commissioners and other interested or affected parties and post the area description to its website at: https://www.cdfa.ca.gov/plant/mexfly/regulation.html. An interested party may also go to the above website and elect to receive automatic notifications of any changes in the regulated or quarantine areas through the list serve option. 2. If an area is not undergoing the sterile insect technique, an infestation is present when eggs, a larva, a pupa, a mated female or five or more male or unmated female Mexican fruit fly adults are detected within three miles of each other and within one life cycle. In an area undergoing sterile insect technique the criteria for an infestation are the same except a single mated female does not constitute an infestation but counts towards an adult for five or more. 3. The initial area under quarantine shall be a minimum of 4.5 mile radius surrounding the qualifying detections being used as an epicenter. Commercial host properties shall not be split by the quarantine boundary line and the boundary line shall be expanded beyond the 4.5 miles as necessary to encompass such host material in its entirety.
    [Show full text]
  • Mutation in Citrus
    Mutation in Citrus MASAO NISHIURA Chief, 1st Laboratory of Fruit Tree, Okitsu Branch, Horticultural Research Station Most of the present commercial citrus varie­ concerning bud variations, and as a matter of ties cultivated in the world are said to have course. the more the Citrus variety is widely arisen through some kind of natural mutation. planted. the more variations are found in it. Methods of artificial vegetative propagation. In addition. certain chromosomal' changes such as grafting, cutting and layering. which were observed in some citrus. In this paper. are popularly used in fruit trees. facilitate the the bud variations found in Satsuma mandarin, conservation and accumulation of mutation. sweet orange, grapefruit. Natsudaidai and other particularly such a mutation followed by steril­ varieties will be mentioned in the main. ity. as it must be destined to be eliminated under sexual reproduction. Natural Gene Mutation Moreover. nucellar embryony- extra embryos. derived not from the egg cell but from somatic 1) Variation in Satsuma mandarin cells of the nucellus. are developed in the ovules Unshu-mikan or Satsuma mandarin replaced in most varieties of Citrus. and also in For­ the older varieties about 100 years ago, because tunella and Poncirus. This phenomenon is con­ of its early ripening character, superior quality sidered to have been of great advantage in and seedlessness. As Satsuma culture increas­ maintaining natural mutation. since early man­ ed, growers soon began to distinguish differences kind had no technique of vegetative propaga­ between Satsumas grown in various localities. tion. Pomological studies of the various Satsuma In ancient times. Citrus may have secured types by Dr.
    [Show full text]
  • Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
    Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang
    [Show full text]
  • Long Flexuous Threads Associated with Hassaku Dwarf Disease of Citrus Trees
    Title Long Flexuous Threads Associated with Hassaku Dwarf Disease of Citrus Trees Author(s) SHIKATA, Eishiro; SASAKI, Atsushi Citation Journal of the Faculty of Agriculture, Hokkaido University, 56(2), 219-224 Issue Date 1969-07 Doc URL http://hdl.handle.net/2115/12847 Type bulletin (article) File Information 56(2)_p219-224.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP LONG FLEXUOUS 'IHREADS ASSOCIATED WITH HASSAKU DWARF DISEASE OF CITRUS TREES Eishiro SHlKATA (Department of Botany, Faculty of Agriculture, Hokkaido University, Sapporo, Japan) and Atsushi SASAKI (Citrus Branch of Hiroshima Agriculture Experiment Station, Mihara, Hiroshima, Japan) Received March 7, 1969 INTRODUCTION A dwarf disease of Hassaku orange trees (Citrus hassaku HORT. et Y. TANAKA), first described by TANAKA et al. (1960) in Japan, was assumed to be caused by the citrus tristeza virus (SASAKI 1963, 64, 67, TANAKA and YAMADA 1964) on the basis of host range and symptomatology studies. CHEN, MIYAKAWA and MATSUI (1967) briefly reported that long threads of lO to 13 mp in diameter of variable length were found in the dip preparations and thus the causal virus of Hassaku dwarf may be identical with tristeza. As for the tristeza virus, electron microscopic studies by KIT A]lMA et al. (1964, 1965), SILVA et al. (1965), and PRICE et al. (1966) established its average length of 2000 mp and the intracellular accumulation in phloem cells of diseased lime plants. To confirm the causal virus of Hassaku dwarf, attempts were made to observe the virus morphology in ultrathin sections of diseased plants under an electron microscope.
    [Show full text]
  • Writing As Aesthetic in Modern and Contemporary Japanese-Language Literature
    At the Intersection of Script and Literature: Writing as Aesthetic in Modern and Contemporary Japanese-language Literature Christopher J Lowy A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2021 Reading Committee: Edward Mack, Chair Davinder Bhowmik Zev Handel Jeffrey Todd Knight Program Authorized to Offer Degree: Asian Languages and Literature ©Copyright 2021 Christopher J Lowy University of Washington Abstract At the Intersection of Script and Literature: Writing as Aesthetic in Modern and Contemporary Japanese-language Literature Christopher J Lowy Chair of the Supervisory Committee: Edward Mack Department of Asian Languages and Literature This dissertation examines the dynamic relationship between written language and literary fiction in modern and contemporary Japanese-language literature. I analyze how script and narration come together to function as a site of expression, and how they connect to questions of visuality, textuality, and materiality. Informed by work from the field of textual humanities, my project brings together new philological approaches to visual aspects of text in literature written in the Japanese script. Because research in English on the visual textuality of Japanese-language literature is scant, my work serves as a fundamental first-step in creating a new area of critical interest by establishing key terms and a general theoretical framework from which to approach the topic. Chapter One establishes the scope of my project and the vocabulary necessary for an analysis of script relative to narrative content; Chapter Two looks at one author’s relationship with written language; and Chapters Three and Four apply the concepts explored in Chapter One to a variety of modern and contemporary literary texts where script plays a central role.
    [Show full text]
  • Artisan Award Winners 2021 Bronze
    ARTISAN AWARD WINNERS 2021 BRONZE The French Summer Marmalade A&E Gourmet The Fruit Caviar Marmalade A&E Gourmet The Victory Marmalade A&E Gourmet Spiced Orange Marmalade Administra S.R.O Lemon Marmalade Administra S.R.O Spiced Grapefruit Marmalade Administra S.R.O ARTISAN AWARD WINNERS 2021 BRONZE Cedrate Fruit Marmalade Administra S.R.O Cedrate Fruit Marmalade with Raspberry Administra S.R.O Seville Marmalade with Hendrick's Gin Administra S.R.O Three Citrus Marmalade Administra S.R.O Two Fruit Marmalade Administra S.R.O Calamondin Lilikoi Marmalade Akaka Falls Farm ARTISAN AWARD WINNERS 2021 BRONZE Orange Pomegranate Marmalade Akaka Falls Farm Orange Passion Hawaiian Pepper Smoked Pineapple Akaka Falls Farm Orange Passion Hawaiian Pepper Marmalade Akaka Falls Farm Tahitian Lime Hawaiian Pepper Marmalade Akaka Falls Farm Meyer Lemon Cardamom Cinnamon Marmalade Akaka Falls Farm Lemon Marmalade Aplicocco Toyama Jam Factory ARTISAN AWARD WINNERS 2021 BRONZE Seville Orange Marmalade - thick cut Atrium Co., Ltd Seville Orange Marmalade Barkby Bakehouse Pink Grapefruit and York Gin Marmalade Bessie's Yorkshire Preserves Blood Orange & Vanilla Bittersweet Quince & Sweet Orange Marmalade Bittersweet Four Fruit Marmalade Bittersweet ARTISAN AWARD WINNERS 2021 BRONZE Orange, Lemon & Ginger Marmalade Black Cat Preserves Sunrise Marmalade with Pink Grapefruit & Lemon Black Mountains Preserves Meyer Lemon Marmalade Blake Hill Preserves Fremont Marmalade Bonjour Taipei Kumquat with Cardamom Boulangerie Nuit et Jour Kumamo to Amanatsu Boulangerie
    [Show full text]
  • FEMA GRAS Assessment of Natural Flavor Complexes Citrus-Derived
    Food and Chemical Toxicology 124 (2019) 192–218 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox FEMA GRAS assessment of natural flavor complexes: Citrus-derived T flavoring ingredients Samuel M. Cohena, Gerhard Eisenbrandb, Shoji Fukushimac, Nigel J. Gooderhamd, F. Peter Guengeriche, Stephen S. Hechtf, Ivonne M.C.M. Rietjensg, Maria Bastakih, ∗ Jeanne M. Davidsenh, Christie L. Harmanh, Margaret McGowenh, Sean V. Taylori, a Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198- 3135, USA b Food Chemistry & Toxicology, Kühler Grund 48/1, 69126 Heidelberg, Germany c Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan d Dept. of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom e Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA f Masonic Cancer Center, Dept. of Laboratory Medicine and Pathology, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th St. SE, Minneapolis, MN, 55455, USA g Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands h Flavor and Extract Manufacturers Association, 1101 17th Street, NW Suite 700, Washington, DC, 20036, USA i Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, NW Suite 700, Washington, DC,20036,USA ARTICLE INFO ABSTRACT Keywords: In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation Citrus of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication isthe Natural flavor complex first in a series and summarizes the evaluation of54 Citrus-derived NFCs using the procedure outlined in Smith Botanical et al.
    [Show full text]
  • Survey of Phenolic Compounds Produced in Citrus
    USDA ??:-Z7 S rveyof Phenolic United States Department of Agriculture C mpounds Produced IliIIiI Agricultural Research In Citrus Service Technical Bulletin Number 1856 December 1998 United States Department of Agriculture Survey of Phenolic Compounds Agricultural Produced in Citrus Research Service Mark Berhow, Brent Tisserat, Katherine Kanes, and Carl Vandercook Technical Bulletin Number 1856 December 1998 This research project was conducted at USDA, Agricultural Research Service, Fruit and Vegetable Chem­ istry laboratory, Pasadena, California, where Berhow was a research chemist, TIsserat was a research geneticist, Kanes was a research associate, and Vandercook, now retired, was a research chemist. Berhow and Tisserat now work at the USDA-ARS National Center for AgriCUltural Utilization Research, Peoria, Illinois, where Berhow is a research chemist and Tisserat is a research geneticist. Abstract Berhow, M., B. Tisserat, K. Kanes, and C. Vandercook. 1998. Survey of Mention of trade names or companies in this publication is solely for the Phenolic Compounds Produced in Citrus. U.S. Department ofAgriculture, purpose of providing specific information and does not imply recommenda­ Agricultural Research Service, Technical Bulletin No. 1856, 158 pp. tion or endorsement by the U. S. Department ofAgriculture over others not mentioned. A survey of phenolic compounds, especially flavanones and flavone and flavonol compounds, using high pressure liquid chromatography was While supplies last, single copies of this publication may be obtained at no performed in Rutaceae, subfamily Aurantioideae, representing 5 genera, cost from- 35 species, and 114 cultivars. The average number of peaks, or phenolic USDA, ARS, National Center for Agricultural Utilization Research compounds, occurring in citrus leaf, flavedo, albedo, and juice vesicles 1815 North University Street were 21, 17, 15, and 9.3, respectively.
    [Show full text]
  • Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
    Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Artocarpus heterophyllus Lam.: jackfruit, jack, jaca, árbol del pan, jaqueiro X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang cheng, yuzu X Citrus kabuchi hort. ex Tanaka: this is not a published name; could they mean Citrus kinokuni hort. ex Tanaka, kishu mikan? X Citrus limon (L.) Burm.
    [Show full text]
  • 'Nishiuchi Konatsu', a Bud Mutation of Hyuganatsu
    HORTSCIENCE 44(6):1547–1551. 2009. et al., 1990) have been successfully used to reduce the number of seeds in the fruit. Although some Hyuganatsu growers have Reproductive Characteristics adopted these techniques, it is desirable to develop a seedless cultivar for reducing costs for Self-compatibility and and labor. A bud mutation of Hyuganatsu, known as Seedlessness in ‘Nishiuchi Konatsu’, ‘Nishiuchi Konatsu’, was found 25 years ago in Kochi Prefecture. ‘Nishiuchi Konatsu’ bears fruit in an orchard of monoculture a Bud Mutation of Hyuganatsu and produces almost no seeds inside the fruit; thus, it is regarded as a favorable cultivar for (Citrus tamurana hort. ex Tanaka) introduction into Miyazaki Prefecture. 1 Kitajima et al. (2001) researched both pollen Chitose Honsho , Masami Kotsubo, Yuri Fukuda, and Yosui Hamabata tube growth and seed development of ‘Nish- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, iuchi Konatsu’, which was mainly used as a Miyazaki 889-2192, Japan seed parent. Tanioka et al. (2001) found an interesting phenomenon; a common variety of Yoshikazu Kurogi and Aya Nishiwaki Hyuganatsu showed a decrease in the number Field Science Center, Faculty of Agriculture, University of Miyazaki, 1-1 of seeds when pollinated with ‘Nishiuchi Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan Konatsu’ pollen. However, little basic infor- mation is available on the reproductive char- Takuya Tetsumura acteristics of ‘Nishiuchi Konatsu’, especially Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, as a pollenizer. In this study, to elucidate the Miyazaki 889-2192, Japan reproductive characteristics of ‘Nishiuchi Konatsu’, especially its pollen, a pollination Additional index words.
    [Show full text]