Public Private Partnership for Desertification Control in Inner Mongolia Zhongju Meng • Xiaohong Dang • Yong Gao

Total Page:16

File Type:pdf, Size:1020Kb

Public Private Partnership for Desertification Control in Inner Mongolia Zhongju Meng • Xiaohong Dang • Yong Gao Zhongju Meng · Xiaohong Dang Yong Gao Public Private Partnership for Deserti cation Control in Inner Mongolia Public Private Partnership for Desertification Control in Inner Mongolia Zhongju Meng • Xiaohong Dang • Yong Gao Public Private Partnership for Desertification Control in Inner Mongolia Zhongju Meng Xiaohong Dang Desert Control Science and Engineering Desert Control Science and Engineering Inner Mongolia Agricultural University Inner Mongolia Agricultural University Hohhot, Nei Mongol, China Hohhot, Nei Mongol, China Yong Gao Desert Control Science and Engineering Inner Mongolia Agricultural University Hohhot, Nei Mongol, China ISBN 978-981-13-7498-2 ISBN 978-981-13-7499-9 (eBook) https://doi.org/10.1007/978-981-13-7499-9 © Science Press & Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Foreword The achievements are funded by the Science and Technology Major projects of Inner Mongolia (2018058); National Natural Science Foundation of China (51769019). Judging from the actual situation in our country, preventing land degradation and innovating land management activities to promote sustainable development belong to the category of public works. Public-private partnerships have broad application and development prospects in this field. Inner Mongolia is one of the most degraded provinces in China. After unremitting efforts, China has made some achievements. With the deepening of public participation and ecological construction, private enterprises’ investment in land degradation management has made up for the short- age of government investment. Public-private partnerships to combat land degrada- tion were first developed in the region. It has produced ecological, social, and economic benefits. In order to better promote the development of ecological con- struction and strengthen the control of land degradation, this subject has systemati- cally studied the public-private partnership to prevent and control land degradation in Inner Mongolia Autonomous Region through field research and case analysis. The purpose of this study is to explore public-private partnerships that can help prevent land degradation and expand investments in sustainable land management. Professor, Department of Desert Control Science Zhongju Meng and Engineering, Inner Mongolia Agricultural University, Hohhot, China, Email: [email protected] Associate professor, Department of Desert Control Xiaohong Dang Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China, Email: [email protected] Professor, Department of Desert Control Science Yong Gao and Engineering, Inner Mongolia Agricultural University, Hohhot, China, Email: [email protected] v Contents 1 Introduction ���������������������������������������������������������������������������������������������� 1 1.1 Research Background ���������������������������������������������������������������������� 1 1.1.1 International Background ����������������������������������������������������� 1 1.1.2 Domestic Background ���������������������������������������������������������� 2 1.2 Summary of Research ���������������������������������������������������������������������� 5 1.2.1 “PPP” Mode Connotation ���������������������������������������������������� 5 1.2.2 Characteristics and Functions of Public-Private Partnerships �������������������������������������������������������������������������� 14 1.2.3 Services of Public-Private Partnerships �������������������������������� 18 1.2.4 Introduction and Implementation of Public-Private Partnerships �������������������������������������������������������������������������� 19 1.2.5 The Importance of Public-Private Partnerships and the Necessity of Research ���������������������������������������������� 21 1.2.6 Implementation Problems Faced by PPP Mode �������������������� 25 1.2.7 Suggestions on Perfecting the Financing Mode of Public-Private Partnership in China ���������������������������������� 31 1.2.8 Theoretical Research on Public-Private Partnership Model ������������������������������������������������������������������������������������ 38 1.2.9 Analysis of Factors Affecting the Performance of Nine Public-­Private Partnerships �������������������������������������� 49 1.2.10 Research on Key Factors of Successful Public-Private Partnerships �������������������������������������������������������������������������� 61 1.2.11 The Important Role of the Government in the PPP Mode ������������������������������������������������������������������ 67 1.2.12 The PPP Model Establishes the Necessary Incentive Mechanism in the Concession Agreement ���������������������������� 68 1.2.13 Research Status and Practice of PPP Model Abroad ������������ 71 1.2.14 Research Status and Practice of PPP Mode in China ���������� 77 1.2.15 Problems Exposed in Public-Private Partnership Reform ���������������������������������������������������������������������������������� 82 vii viii Contents 1.2.16 Analysis on the Causes of Practical Problems of Public-­Private Partnerships ���������������������������������������������� 83 1.2.17 Establishing a Legal Framework to Promote the Healthy Development of Public-Private Partnerships �������������������������������������������������������������������������� 85 1.2.18 Research Review and Enlightenment of PPP Model’s Development Path in China ������������������������������������ 89 1.2.19 The Concept of Joint Participation of All Actors in PPP Projects ���������������������������������������������������������������������� 90 1.2.20 SuDiscussion on the Application of Public-Private Cooperation Mode in Ecological Project Financing ������������ 91 2 Research Contents and Methods ������������������������������������������������������������ 97 2.1 Research Content ������������������������������������������������������������������������������ 97 2.1.1 Theory of PPP Model ����������������������������������������������������������� 97 2.1.2 The Current Situation and Evaluation of Public-Private Partnerships in the Whole Region ������������ 97 2.1.3 Research on Typical Pilot Public-Private Partnerships �������� 98 2.1.4 Methods of Establishing Public-Private Partnerships ���������� 98 2.2 Research Methods ���������������������������������������������������������������������������� 99 2.3 Technology Roadmap (Fig. 2.1) ������������������������������������������������������ 100 3 Land Degradation ������������������������������������������������������������������������������������ 101 3.1 Nature and Degree of Land Degradation ������������������������������������������ 101 3.1.1 Definition of Land Degradation �������������������������������������������� 101 3.1.2 Types of Land Degradation in the Inner Mongolia Autonomous Region ������������������������������������������������������������ 102 3.1.3 Historical Trends and Past Assessments ������������������������������ 103 3.1.4 Status ������������������������������������������������������������������������������������ 105 3.1.5 Land Degradation Types and Relative Importance of Ecosystems ���������������������������������������������������������������������� 106 3.1.6 Sensitive Areas for Land Degradation and Distribution in Ecosystems �������������������������������������������� 110 3.1.7 Distribution and Characteristics of Potential Geological Hazards �������������������������������������������������������������� 112 3.2 Reasons of Land Degradation ���������������������������������������������������������� 114 3.2.1 Natural Factors ���������������������������������������������������������������������� 114 3.2.2 Direct Causes ������������������������������������������������������������������������ 115 3.2.3 Underlying Reasons �������������������������������������������������������������� 116 3.3 Consequences of Land Degradation ������������������������������������������������ 118 3.3.1 Environmental Impacts in the Past and Present �������������������� 118 3.3.2 Economic Losses in the Past and Present ���������������������������� 118 3.3.3 Impacts of Social Welfare in the Past and Present ���������������� 119 3.3.4 Importance Assessment ��������������������������������������������������������
Recommended publications
  • Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China
    sustainability Article Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China Wenfeng Chi 1,2, Jing Jia 1,2, Tao Pan 3,4,5,* , Liang Jin 1,2 and Xiulian Bai 1,2 1 College of resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China; [email protected] (W.C.); [email protected] (J.J.); [email protected] (L.J.); [email protected] (X.B.) 2 Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China 3 College of Geography and Tourism, Qufu Normal University, Shandong, Rizhao 276826, China 4 Department of Geography, Ghent University, 9000 Ghent, Belgium 5 Land Research Center of Qufu Normal University, Shandong, Rizhao 276826, China * Correspondence: [email protected]; Tel.: +86-1834-604-6488 Received: 19 July 2020; Accepted: 18 August 2020; Published: 21 August 2020 Abstract: Green space in intra-urban regions plays a significant role in improving the human habitat environment and regulating the ecosystem service in the Inner Mongolian Plateau of China, the environmental barrier region of North China. However, a lack of multi-scale studies on intra-urban green space limits our knowledge of human settlement environments in this region. In this study, a synergistic methodology, including the main process of linear spectral decomposition, vegetation-soil-impervious surface area model, and artificial digital technology, was established to generate a multi-scale of green space (i.e., 15-m resolution intra-urban green components and 0.5-m resolution park region) and investigate multi-scale green space characteristics as well as its ecological service in 12 central cities of the Inner Mongolian Plateau.
    [Show full text]
  • The Cartographic Steppe: Mapping Environment and Ethnicity in Japan's Imperial Borderlands
    The Cartographic Steppe: Mapping Environment and Ethnicity in Japan's Imperial Borderlands The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Christmas, Sakura. 2016. The Cartographic Steppe: Mapping Environment and Ethnicity in Japan's Imperial Borderlands. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33840708 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Cartographic Steppe: Mapping Environment and Ethnicity in Japan’s Imperial Borderlands A dissertation presented by Sakura Marcelle Christmas to The Department of History in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of History Harvard University Cambridge, Massachusetts August 2016 © 2016 Sakura Marcelle Christmas All rights reserved. Dissertation Advisor: Ian Jared Miller Sakura Marcelle Christmas The Cartographic Steppe: Mapping Environment and Ethnicity in Japan’s Imperial Borderlands ABSTRACT This dissertation traces one of the origins of the autonomous region system in the People’s Republic of China to the Japanese imperial project by focusing on Inner Mongolia in the 1930s. Here, Japanese technocrats demarcated the borderlands through categories of ethnicity and livelihood. At the center of this endeavor was the perceived problem of nomadic decline: the loss of the region’s deep history of transhumance to Chinese agricultural expansion and capitalist extraction.
    [Show full text]
  • The Mongolian Local Knowledge on Plants Recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and Its ScientiC Value
    The Mongolian Local Knowledge on Plants Recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and Its Scientic Value Guixi Liu ( [email protected] ) IMNU: Inner Mongolia Normal University https://orcid.org/0000-0003-3354-2714 Wurheng Wurheng IMNU: Inner Mongolia Normal University Khasbagan Khasbagan IMNU: Inner Mongolia Normal University Yanying Zhang IMNU: Inner Mongolia Normal University Shirong Guo IMNU: Inner Mongolia Normal University Research Keywords: P. K. Kozlov, Expedition Record, Local Knowledge on plants, Mongolian Folk, Ethnobotany, Botanical History Posted Date: December 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-133605/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License The Mongolian local knowledge on plants recorded in Mongolia and Amdo and the Dead City of Khara-Khoto and its scientific value Guixi Liu1*, Wurheng2, Khasbagan1,2,3*, Yanying Zhang1 and Shirong Guo1 1 Institute for the History of Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China. E-mail: [email protected], [email protected] 2 College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China. 3 Key Laboratory Breeding Base for Biodiversity Conservation and Sustainable Use of Colleges and Universities in Inner Mongolia Autonomous Region, China. * the corresponding author 1 Abstract Background: There is a plentiful amount of local knowledge on plants hidden in the literature of foreign exploration to China in modern history. Mongolia and Amdo and the Dead City of Khara- Khoto (MAKK) is an expedition record on the sixth scientific expedition to northwestern China (1907-1909) initiated by P.
    [Show full text]
  • Coal Liquefaction Policy in China: Expla Ining the Policy Reversal Since 2006
    LABORATORY ON INTERNATIONAL LAW AND REGULATION ILAR Working Paper #12 October 2011 COAL LIQUEFACTION POLICY IN CHINA: EXPLA INING THE POLICY REVERSAL SINCE 2006 FANG RONG AND DAVID G. VICTOR Note: This is an earlier version of a paper in Energy Policy, vol. 39, pp. 8175–8184. About the Laboratory on International Law and Regulation (ILAR) The Laboratory on International Law and Regulation (ILAR) is an international, interdisciplinary laboratory that explores when and why international laws actually work. Among scholars, this question has triggered a lively debate that ILAR is engaging with better theories and evidence. ILAR research examines a wide array of issues from environment and energy to human rights, trade and security issues. The ILAR team looks at these issues from the international perspective and also through comparisons across countries. The Laboratory is part of School of International Relations and Pacific Studies at University of California, San Diego. ILAR gratefully acknowledges anchor funding from the nonpartisan Electric Power Research Institute, BP, plc, the Norwegian Research Foundation and from UC San Diego‘s School of International Relations and Pacific Studies. About ILAR’s Research on Governance of Water, Land and Energy In 2009 the Laboratory on International Law & Regulation (ILAR) has launched a worldwide study on the governance of land, water and energy. The effort arose at a time when the expansion of biofuels, heavy oil and shale gas as well as perennial challenges such as assuring supply of cooling water for power plants have put a spotlight on the energy industry‘s land and water footprints. ILAR‘s research, pursued through a series of case studies, has aimed to understand why some societies have proved highly capable of anticipating and managing stresses on land and water resources that are linked to the energy system while others have faltered.
    [Show full text]
  • Continuing Crackdown in Inner Mongolia
    CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch New York $$$ Washington $$$ Los Angeles $$$ London Copyright 8 March 1992 by Human Rights Watch All rights reserved. Printed in the United States of America. ISBN 1-56432-059-6 Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch/Asia was established in 1985 to monitor and promote the observance of internationally recognized human rights in Asia. Sidney Jones is the executive director; Mike Jendrzejczyk is the Washington director; Robin Munro is the Hong Kong director; Therese Caouette, Patricia Gossman and Jeannine Guthrie are research associates; Cathy Yai-Wen Lee and Grace Oboma-Layat are associates; Mickey Spiegel is a research consultant. Jack Greenberg is the chair of the advisory committee and Orville Schell is vice chair. HUMAN RIGHTS WATCH Human Rights Watch conducts regular, systematic investigations of human rights abuses in some seventy countries around the world. It addresses the human rights practices of governments of all political stripes, of all geopolitical alignments, and of all ethnic and religious persuasions. In internal wars it documents violations by both governments and rebel groups. Human Rights Watch defends freedom of thought and expression, due process and equal protection of the law; it documents and denounces murders, disappearances, torture, arbitrary imprisonment, exile, censorship and other abuses of internationally recognized human rights. Human Rights Watch began in 1978 with the founding of its Helsinki division. Today, it includes five divisions covering Africa, the Americas, Asia, the Middle East, as well as the signatories of the Helsinki accords.
    [Show full text]
  • Estimating the Impact of Land Cover Change on Soil Erosion Using Remote Sensing and GIS Data by USLE Model and Scenario Design
    Hindawi Scientific Programming Volume 2021, Article ID 6633428, 10 pages https://doi.org/10.1155/2021/6633428 Research Article Estimating the Impact of Land Cover Change on Soil Erosion Using Remote Sensing and GIS Data by USLE Model and Scenario Design Anmin Fu,1 Yulin Cai ,2 Tao Sun,1 and Feng Li1 1Academy of Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, China 2College of Geodesy and Geomatics, Shandong University of Sciences and Technology, Qingdao, Shandong 266590, China Correspondence should be addressed to Yulin Cai; [email protected] Received 29 December 2020; Revised 22 January 2021; Accepted 29 January 2021; Published 9 February 2021 Academic Editor: Habib Ullah Khan Copyright © 2021 Anmin Fu et al. (is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Great efforts have been made to curb soil erosion and restore the natural environment to Inner Mongolia in China. (e purpose of this study is to evaluate the impact of returning farmland to the forest on soil erosion on a regional scale. Considering that rainfall erosivity also has an important impact on soil erosion, the effect of land use and land cover change (LUCC) on soil erosion was evaluated through scenario construction. Firstly, the universal soil loss equation (USLE) model was used to evaluate the actual soil erosion (2001 and 2010). Secondly, two scenarios (scenario 1 and scenario 2) were constructed by assuming that the land cover and rainfall-runoff erosivity are fixed, respectively, and soil erosion under different scenarios was estimated.
    [Show full text]
  • Hemiptera: Cercopoidea) from the Middle to Upper Jurassic Deposits in Northeastern China
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 127–133, 2018 http://www.eje.cz doi: 10.14411/eje.2018.011 ORIGINAL ARTICLE New fossil genus and species of Sinoalidae (Hemiptera: Cercopoidea) from the Middle to Upper Jurassic deposits in northeastern China YAN-ZHE FU 1, 2 and DI-YING HUANG 1, * 1 University of Science and Technology of China, Hefei 230026, P.R. China; e-mails: [email protected], [email protected] 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences Nanjing, 210008, P.R. China Key words. Hemiptera, Cercopoidea, Sinoalidae, Stictocercopis wuhuaensis, new genus, new species, fossil, Middle to Upper Jurassic, China, Daohugou, Yanliao biota Abstract. A new fossil genus and species of Sinoalidae, Stictocercopis wuhuaensis gen. et sp. n., from the Middle to Upper Juras- sic Haifanggou Formation at Daohugou, Inner Mongolia, northeastern China is described, illustrated and its systematic position discussed, on the basis of four complete well-preserved specimens. The new genus distinctly differs from other sinoalids in having relatively complex wing venation and tegmen spots. The intra-specifi c variation in venation is also discussed. The new discovery increases the palaeodiversity of sinoalids in the early assemblage of the Yanliao biota from the Daohugou beds. ZooBank Article LSID: 7F2553EE-E341-43F9-BBB0-526FD518B9AE INTRODUCTION Russia, Australia, Central Asia, Southeast Asia and China The hemipteran superfamily Cercopoidea Leach, 1815 (Evans, 1956; Shcherbakov & Popov, 2002; Wang & is the second largest superfamily in the Cicadomorpha, Zhang, 2009). A small family of the Cercopoidea, named comprising approximately 3000 described species (Ha- Sinoalidae, established based on fossils from the mid- milton, 2001; Dietrich, 2002).
    [Show full text]
  • HODS of COMPUTING SEDIMENTATION in LAKES and RESERVOIRS a Contribution to the International Hydrological Programme, IHP - II Project A
    2 14. 8 5 M E HODS OF COMPUTING SEDIMENTATION IN LAKES AND RESERVOIRS A contribution to the International Hydrological Programme, IHP - II Project A. 2.6.1 Panel Stevan Bruk, Rapporteur Unesco, Paris lO:£/q.C?SSrf& llsn-. ^2>l Unesco, Paris ~-F::\r>Y J^TCRX'AT.'OfvAL REFERENCE C7.X~RF: ; aAAi. vAT::v.'v ;;;;r/ METHODS OF COMPUTING SEDIMENTATION IN LAKES AND RESERVOIRS A contribution to the International Hydrological Programme, I HP - II Project A. 2.6.1 Panel r- ••••' — - -,-•• „ _ Stevan Bruk, Rapporteur '; t^'^S-^' -^::V WA'r--R SUPPLY | A.\U b -.' -n„. ,,._.,, ,....•"""••" ' ^s Hague .SKI 3iS£ February 1985 The Yugoslav National Committee for the International Hydrological Programme contributed to the printing Of this book Unesco'1985 Printed by the Printing Department of the Jaroslav Cemi Institute for the Development of Water Resources P.O. Box 530,11000 Belgrade, Yugoslavia Preface Although the total amount of water on earth is generally assumed to have Remained virtually constant, the rapid growth of population, together with the extension of irrigated agriculture and industrial development, are stressing the quantity and quality aspects of the natural system. Because of the increasing problems, man has begun to realize that he can no longer follow a "use and discard" philosophy ~ either with water resources or any other natural resources. Asa result, the need for a consistent policy of rational management of water resources has become evident. Rational water management, however, should be founded upon a thorough understanding of water availability and movement. Thus, as a contribution to the solution of the worlds water problems, Unesco, in 1965, began the first world-wide programme of studies of the hydrological cycle - the International Hydrological Decade (IHD).
    [Show full text]
  • Inner Mongolia Autonomous Region Environment Improvement Project (Phase II)
    Environmental Assessment Report Summary Initial Environmental Examination Project Number: 40634 September 2008 Proposed Loan and Administration of Grant People’s Republic of China: Inner Mongolia Autonomous Region Environment Improvement Project (Phase II) Prepared by the Government of Inner Mongolia Autonomous Region (GIMAR) for the Asian Development Bank (ADB). The summary initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. SUMMARY INITIAL ENVIRONMENTAL EXAMINATION A. Introduction 1. This summary initial environmental examination (SIEE) presents the assessment of environmental issues relating to development of the Inner Mongolia Autonomous Region (IMAR) Environment Improvement Project II (the Project). The SIEE was prepared in accordance with the Environmental Assessment Guidelines (2003) and Environment Policy (2002) of the Asian Development Bank (ADB). The total cost of the Project is $398.0 million including the ADB loan of $150 million. The anticipated project implementation period is 4 years. The SIEE is based on 10 separate environmental impact assessment (EIA) reports prepared by five local EIA institutes in accordance with People’s Republic of China (PRC) regulations. B. Project Description 2. The Project consists of (i) eight district heating supply subprojects, (ii) one natural gas supply (NGS) subproject, and (iii) one comprehensive geothermal utilization (CGU) subproject.
    [Show full text]
  • Environmental Action Plan Public Disclosure Authorized Public Disclosure Authorized
    E531 V 3 Inner Mongolia Highway Project, People 's Republic of China Public Disclosure Authorized Laoyemiao-Jining Section of the Planned National Artery Highway from Dandong to Lhasa Environmental Action Plan Public Disclosure Authorized Public Disclosure Authorized Inner Mongolia Autonomous Region Departnent of Communications Public Disclosure Authorized January, 2002 FWlE COPY Inner Mfongolia Highway Project, People 's Republic of China Laoyemiao-Jining Section of the Planned National Artery Highway from Dandong to Lhasa Environmental Action Plan Inner Mongolia Autonomous Region Department of Communications January, 2002 Inner Mongolia Highway Project, People 's Republic ofChina Laoyemiao-Jining Section of the Planned National Artery Highway from Dandong to Lhasa Environmental Action Plan Inner Mongolia Autonomous Region Departnent of Communications January, 2002 Preface In order to implement the mitigation measures proposed by "the Environmental Impact Assessment (EIS) of Laoyemiao-Jining Section of the Planned National Trunk Highway from Dandong to Lhasa, to minimize potentially significant adverse environmental impacts and enhance the overall quality of the project, we prepare the Environmental Action Plan (EAP) of the project according to the ETS of the Highway and environmental assessment guidance of the World Bank. CONTENT I Brief Description .. 1 1. Brief Description of the Project . 1.2 Brief Introduction to Environment along the Route .. 3 1.3 Major Environmentally Sensitive Spots . 5 1.4 Existing Environmental Quality .*--. 6 2 Environmental Impact Conclusion . 8 3 EnvironmentalMitigation Measures . .11 3.1 Mitigation Measures during Construction Phase . 11 3.2 Mitigation Measures during Operation Phase . .15 4 EnvironmentalAction Plan *-----... 17 4.1 EnvironmentalProtectionPlan .17 4.2 Environmental Monitoring Plan . .21 4.3 Estimated Cost for Environmental Protection .
    [Show full text]
  • Journal of Asian Earth Sciences 152 (2018) 52–68
    Journal of Asian Earth Sciences 152 (2018) 52–68 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Full length article Holocene evolution of the Liaohe Delta, a tide-dominated delta formed by T multiple rivers in Northeast China ⁎ Lei Hea,b, Chunting Xuec, Siyuan Yea,b, , Edward Allen Lawsd, Hongming Yuana, Shixiong Yanga, Xiaolei Due a Key Laboratory of Coastal Wetland Biogeosciences, China Geologic Survey, Qingdao, China b Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China c Department of Coastal Geology, Qingdao Institute of Marine Geology, Qingdao, China d College of the Coast & Environment, Department of Environmental Sciences, Louisiana State University, Baton Rouge, USA e Inspection & Test Center of Marine Geology, Ministry of Land and Resources, Qingdao, China ARTICLE INFO ABSTRACT Keywords: The Liaohe Delta in Northeast China is one of the ecologically important estuarine deltas in China. It has been Sedimentary evolution formed via the accumulation of sediment discharged by four rivers in the Liaohe Plain that enter Liaodong Bay. Climate changes Twenty-seven 30–40 m long cores recovered from the Liaohe Plain and Liaodong Bay were analyzed for sedi- Human impacts mentary characteristics, grain size, foraminifera species, and ages determined by accelerator mass spectrometry Holocene (AMS) 14C to document the stratigraphical sequence and the spatio-temporal evolution of the Liaohe Delta. Our Liaohe Delta results revealed that the sedimentary environments have evolved from fluvial, tidal flat/estuarine, to neritic and finally to a deltaic environment since the Late Pleistocene. The Holocene transgression arrived at the present coastline at ∼8500 cal a BP and flooded the maximum area of land at ∼7000 cal a BP.
    [Show full text]
  • 40634-013: Inner Mongolia Autonomous Region Environment
    Initial Environmental Examination April 2013 Loan Number 2658-PRC People’s Republic of China: Inner Mongolia Autonomous Region Environment Improvement Project (Phase II – Scope Change) Prepared by the Government of Inner Mongolia Autonomous Region for Asian Development Bank This is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. CURRENCY EQUIVALENTS (Inter-bank average exchange rate as of November 2012) Currency Unit - Yuan (CNY) CNY 1.00 = US$ 0.1587 USD 1.00 = 6.30 CNY For the purpose of calculations in this report, an exchange rate of $1.00 = 6.30 CNY has been used. ABBREVIATIONS ACM Asbestos-containing materials ADB Asian Development Bank AERMOD American Meteorological Society and the U.S. Environmental Protection Agency Regulatory Mod el AP Affected Person ASL Above sea level CEIA Consolidated Environmental Impact Assessment CFB Circulating Fluidized Bed CHP Combined Heat and Power CNY Chinese Yuan CSC Construction Supervision Company DCS Distributed Control System DI Design Institute EA Executing Agency EHS Environment, Health and Safety EIA Environmental Impact Assessment EMP Environmental Management Plan EMS Environmental Monitoring Station EMU Environmental Management Unit EPB Environmental Protection Bureau ESP Electrostatic precipitators FGD Flue Gas Desulfurization FSR Feasibility Study Report GDP Gross Domestic Product GHG Green House Gas GRM Grievance Redress Mechanism HES Heat Exchange Station HSP
    [Show full text]