Peroxin3, a Newly Identified Regulator of Melanocyte Development and Melanosome Biogenesis in Zebrafish Danio Rerio

Total Page:16

File Type:pdf, Size:1020Kb

Peroxin3, a Newly Identified Regulator of Melanocyte Development and Melanosome Biogenesis in Zebrafish Danio Rerio Peroxin3, a newly identified regulator of melanocyte development and melanosome biogenesis in zebrafish Danio rerio Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Mirco Brondolin aus San Dona’ di Piave - Italien Bonn 2016 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter Prof. Dr. rer. nat. Michael Hoch 2. Gutachter Prof. Dr. phil. nat. Christoph Thiele Tag der Promotion: 20. März 2017 Erscheinungsjahr: 2017 Per aspera sic itur ad astra “Through hardships to the stars” (Lucius Annaeus Seneca, Hercules furens, act II, v. 437 Table of contents I Table of contents 1 Introduction ...........................................................................................................................1 1.1 Peroxisomes.................................................................................................................. 1 1.1.1 Peroxisome structure and features........................................................................1 1.1.2 Peroxisomal metabolic activity ..............................................................................2 1.1.3 Peroxisome biogenesis...........................................................................................7 1.1.4 Pex3, key component of peroxisome biogenesis................................................ 11 1.1.5 Peroxisome related pathologies ......................................................................... 13 1.2 Zebrafish (Danio rerio) ................................................................................................ 16 1.2.1 Zebrafish in biomedical research ........................................................................ 16 1.2.2 Zebrafish genome features ................................................................................. 17 1.2.3 Zebrafish life cycle............................................................................................... 18 1.2.4 Advantages of zebrafish as biomedical model.................................................... 20 1.2.5 Gene manipulation in zebrafish .......................................................................... 21 1.2.6 Study of metabolic disorders in zebrafish........................................................... 26 1.2.7 Development of therapeutical approaches ........................................................ 27 1.3 Neural crest and its derived tissues ............................................................................ 28 1.3.1 Neural crest during embryogenesis .................................................................... 28 1.3.2 Pigment cell populations..................................................................................... 30 1.3.3 Pigmentation pattern formation in zebrafish ..................................................... 30 1.3.4 Melanocytes........................................................................................................ 33 1.3.5 Melanosomes...................................................................................................... 34 2 Aim of this thesis................................................................................................................. 39 3 Materials and Methods....................................................................................................... 41 3.1 Materials ..................................................................................................................... 41 3.1.1 Common materials.............................................................................................. 41 3.1.2 Equipment........................................................................................................... 41 3.1.3 Standards, Kits and Enzymes............................................................................... 42 3.1.4 Buffers and solutions .......................................................................................... 43 3.1.5 Fish lines.............................................................................................................. 45 3.1.6 Standard fish food............................................................................................... 45 3.1.7 Oligonucleotides ................................................................................................. 46 3.1.8 Antisense Morpholino Oligonucleotides (AMOs) ............................................... 47 3.1.9 Vectors ................................................................................................................ 48 3.1.10 Antibodies ........................................................................................................... 48 3.1.11 Micrororganisms ................................................................................................. 49 II Table of contents 3.1.12 Cell lines............................................................................................................... 49 3.1.13 Bacterial culture media ....................................................................................... 49 3.1.14 Cell culture media................................................................................................ 49 3.1.15 Softwares............................................................................................................. 49 3.2 Methods ...................................................................................................................... 50 3.2.1 Fish work ............................................................................................................. 50 3.2.2 Histology.............................................................................................................. 53 3.2.3 Molecular work ................................................................................................... 54 3.2.4 Biochemical work ................................................................................................ 58 3.2.5 Microbiological work........................................................................................... 59 3.2.6 Bioinformatics ..................................................................................................... 59 3.2.7 Statistics............................................................................................................... 60 4 Results ................................................................................................................................. 61 4.1 Identification of the zebrafish homolog of the human PEX3...................................... 61 4.2 Pex3 gene structural analysi........................................................................................ 64 4.3 Prediction of pex3 functional domains ....................................................................... 66 4.4 pex3 expression in zebrafish ....................................................................................... 69 4.5 Pex3 morphants do not show abnormal development .............................................. 74 4.6 Generation and validation of a pex3 loss of function zebrafish model ...................... 75 4.6.1 TALENs-guided mutation generation .................................................................. 76 4.6.2 CRISPR/Cas9-guided mutation generation.......................................................... 78 4.6.3 Commercial ENU-induced mutagenesis alleles................................................... 79 4.6.4 Establishing High Resolution Melting Analysis (HRMA) to validate mutant alleles80 4.7 In pex3 mutants peroxisomal and mitochondrial metabolism is impaired, resulting in increased oxidative stress ....................................................................................................... 84 4.7.1 In pex3CRISPR/ZMP zebrafish peroxisomal metabolism is impaired ......................... 84 4.8 Pex3 mutation affects neural crest-derived tissues developmen............................... 93 4.8.1 Pex3 mutation affects proper melanophores migration and development ....... 93 5 Discussion.......................................................................................................................... 123 5.1 In zebrafish developing embryos, pex3 is expressed also in developing sensory organs, gill filaments and melanophores .............................................................................. 124 5.2 Pex3 mutant alleles are responsible for mild forms of Peroxisomal Biogenesis Disorders ............................................................................................................................... 126 5.3 Metabolic differences between zebrafish and human account for dissimilarities in phenotypes............................................................................................................................ 127 5.4 pex3 facilitates peroxisome interaction with other organelles ................................ 128 5.5 Melanosomes and melanin synthesis are affected by cellular metabolism ............. 130 5.6 pex3 is targeted also to melanosomes and exert its function on their membrane.. 132 Table of contents III 5.7 pex3 influences melanin synthesis sensing mechanism in melanophores............... 133 5.8 Defective pex3 localization impairs proliferation and migration of specific cell populations ..........................................................................................................................
Recommended publications
  • Queryor: a Comprehensive Web Platform for Genetic Variant Analysis
    Bertoldi et al. BMC Bioinformatics (2017) 18:225 DOI 10.1186/s12859-017-1654-4 SOFTWARE Open Access QueryOR: a comprehensive web platform for genetic variant analysis and prioritization Loris Bertoldi1, Claudio Forcato1, Nicola Vitulo1,5, Giovanni Birolo1, Fabio De Pascale1, Erika Feltrin1, Riccardo Schiavon2, Franca Anglani3, Susanna Negrisolo4, Alessandra Zanetti4, Francesca D’Avanzo4, Rosella Tomanin4, Georgine Faulkner2, Alessandro Vezzi2 and Giorgio Valle1,2* Abstract Background: Whole genome and exome sequencing are contributing to the extraordinary progress in the study of human genetic variants. In this fast developing field, appropriate and easily accessible tools are required to facilitate data analysis. Results: Here we describe QueryOR, a web platform suitable for searching among known candidate genes as well as for finding novel gene-disease associations. QueryOR combines several innovative features that make it comprehensive, flexible and easy to use. Instead of being designed on specific datasets, it works on a general XML schema specifying formats and criteria of each data source. Thanks to this flexibility, new criteria can be easily added for future expansion. Currently, up to 70 user-selectable criteria are available, including a wide range of gene and variant features. Moreover, rather than progressively discarding variants taking one criterion at a time, the prioritization is achieved by a global positive selection process that considers all transcript isoforms, thus producing reliable results. QueryOR is easy to use and its intuitive interface allows to handle different kinds of inheritance as well as features related to sharing variants in different patients. QueryOR is suitable for investigating single patients, families or cohorts. Conclusions: QueryOR is a comprehensive and flexible web platform eligible for an easy user-driven variant prioritization.
    [Show full text]
  • Multiple Pathways for Protein Transport to Peroxisomes
    Review Multiple Pathways for Protein Transport to Peroxisomes P.K. Kim 1,2 and E.H. Hettema 3 1 - Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8 2 - Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8 3 - Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire S10 2TN, United Kingdom Correspondence to E.H. Hettema: [email protected] http://dx.doi.org/10.1016/j.jmb.2015.02.005 Edited by S. High Abstract Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Introduction dependent on consumption of energy in the form of ATP. Several aspects of peroxisomal protein transport Peroxisomes are organelles found in almost all distinguish it from other translocation systems. For eukaryotic cells. They are bounded by a single example, peroxisomal proteins can fold, acquire membrane and are usually spherical.
    [Show full text]
  • Region Based Gene Expression Via Reanalysis of Publicly Available Microarray Data Sets
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2018 Region based gene expression via reanalysis of publicly available microarray data sets. Ernur Saka University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Bioinformatics Commons, Computational Biology Commons, and the Other Computer Sciences Commons Recommended Citation Saka, Ernur, "Region based gene expression via reanalysis of publicly available microarray data sets." (2018). Electronic Theses and Dissertations. Paper 2902. https://doi.org/10.18297/etd/2902 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. REGION BASED GENE EXPRESSION VIA REANALYSIS OF PUBLICLY AVAILABLE MICROARRAY DATA SETS By Ernur Saka B.S. (CEng), University of Dokuz Eylul, Turkey, 2008 M.S., University of Louisville, USA, 2011 A Dissertation Submitted To the J. B. Speed School of Engineering in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science and Engineering Department of Computer Engineering and Computer Science University of Louisville Louisville, Kentucky May 2018 Copyright 2018 by Ernur Saka All rights reserved REGION BASED GENE EXPRESSION VIA REANALYSIS OF PUBLICLY AVAILABLE MICROARRAY DATA SETS By Ernur Saka B.S. (CEng), University of Dokuz Eylul, Turkey, 2008 M.S., University of Louisville, USA, 2011 A Dissertation Approved On April 20, 2018 by the following Committee __________________________________ Dissertation Director Dr.
    [Show full text]
  • Characterization of the Macrophage Transcriptome in Glomerulonephritis-Susceptible and -Resistant Rat Strains
    Genes and Immunity (2011) 12, 78–89 & 2011 Macmillan Publishers Limited All rights reserved 1466-4879/11 www.nature.com/gene ORIGINAL ARTICLE Characterization of the macrophage transcriptome in glomerulonephritis-susceptible and -resistant rat strains K Maratou1, J Behmoaras2, C Fewings1, P Srivastava1, Z D’Souza1, J Smith3, L Game4, T Cook2 and T Aitman1 1Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London, UK; 2Centre for Complement and Inflammation Research, Imperial College London, London, UK; 3Renal Section, Imperial College London, London, UK and 4Genomics Laboratory, MRC Clinical Sciences Centre, London, UK Crescentic glomerulonephritis (CRGN) is a major cause of rapidly progressive renal failure for which the underlying genetic basis is unknown. Wistar–Kyoto (WKY) rats show marked susceptibility to CRGN, whereas Lewis rats are resistant. Glomerular injury and crescent formation are macrophage dependent and mainly explained by seven quantitative trait loci (Crgn1–7). Here, we used microarray analysis in basal and lipopolysaccharide (LPS)-stimulated macrophages to identify genes that reside on pathways predisposing WKY rats to CRGN. We detected 97 novel positional candidates for the uncharacterized Crgn3–7. We identified 10 additional secondary effector genes with profound differences in expression between the two strains (45-fold change, o1% false discovery rate) for basal and LPS-stimulated macrophages. Moreover, we identified eight genes with differentially expressed alternatively spliced isoforms, by using an in-depth analysis at the probe level that allowed us to discard false positives owing to polymorphisms between the two rat strains. Pathway analysis identified several common linked pathways, enriched for differentially expressed genes, which affect macrophage activation.
    [Show full text]
  • Rapid Affinity Purification of Intracellular Organelles Using a Twin Strep Tag Jian Xiong1,2,*, Jingquan He1,*, Wendy P
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs235390. doi:10.1242/jcs.235390 TOOLS AND RESOURCES Rapid affinity purification of intracellular organelles using a twin strep tag Jian Xiong1,2,*, Jingquan He1,*, Wendy P. Xie1, Ezekiel Hinojosa1, Chandra Shekar R. Ambati3, Nagireddy Putluri3,4, Hyun-Eui Kim1,2, Michael X. Zhu1,2,‡ and Guangwei Du1,2,‡ ABSTRACT complex 1 (mTORC1) is recruited to and activated on the lysosomal Cells are internally organized into compartmentalized organelles that surface by sensing the abundance of nutrients in the lumen, such as execute specialized functions. To understand the functions of amino acids and cholesterol (Castellano et al., 2017; Zoncu et al., individual organelles and their regulations, it is critical to resolve the 2011). Similarly, mitochondria can also function as a signaling compositions of individual organelles, which relies on a rapid and organelle (Chandel, 2014). For example, cytochrome c released from efficient isolation method for specific organellar populations. Here, we the mitochondria initiates cell death (Bhola and Letai, 2016; Burke, introduce a robust affinity purification method for rapid isolation of 2017; Liu et al., 1996). Another example is AKAP family proteins, intracellular organelles (e.g. lysosomes, mitochondria and which anchor and regulate the activities of protein kinase A and other peroxisomes) by taking advantage of the extraordinarily high affinity signaling enzymes on the outer membrane of mitochondria (Chandel, between the twin strep tag and streptavidin variants. With this 2014; Esseltine and Scott, 2013). method, we can isolate desired organelles with high purity and yield in With rapid technical advancements, profiling the global levels of 3 min from the post-nuclear supernatant of mammalian cells or less RNA, protein, lipids and metabolites has become common in than 8 min for the whole purification process.
    [Show full text]
  • Foraging Shifts and Visual Pre Adaptation in Ecologically Diverse Bats
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340654059 Foraging shifts and visual preadaptation in ecologically diverse bats Article in Molecular Ecology · April 2020 DOI: 10.1111/mec.15445 CITATIONS READS 0 153 9 authors, including: Kalina T. J. Davies Laurel R Yohe Queen Mary, University of London Yale University 40 PUBLICATIONS 254 CITATIONS 24 PUBLICATIONS 93 CITATIONS SEE PROFILE SEE PROFILE Edgardo M. Rengifo Elizabeth R Dumont University of São Paulo University of California, Merced 13 PUBLICATIONS 28 CITATIONS 115 PUBLICATIONS 3,143 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Ecology of the Greater horseshoe bat View project BAT 1K View project All content following this page was uploaded by Liliana M. Davalos on 14 May 2020. The user has requested enhancement of the downloaded file. Received: 17 October 2019 | Revised: 28 February 2020 | Accepted: 31 March 2020 DOI: 10.1111/mec.15445 ORIGINAL ARTICLE Foraging shifts and visual pre adaptation in ecologically diverse bats Kalina T. J. Davies1 | Laurel R. Yohe2,3 | Jesus Almonte4 | Miluska K. R. Sánchez5 | Edgardo M. Rengifo6,7 | Elizabeth R. Dumont8 | Karen E. Sears9 | Liliana M. Dávalos2,10 | Stephen J. Rossiter1 1School of Biological and Chemical Sciences, Queen Mary University of London, London, UK 2Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, USA 3Department of Geology & Geophysics, Yale University,
    [Show full text]
  • The Human PEX3 Gene Encoding a Peroxisomal Assembly Protein: Genomic Organization, Positional Mapping, and Mutation Analysis in Candidate Phenotypes
    Biochemical and Biophysical Research Communications 268, 704–710 (2000) doi:10.1006/bbrc.2000.2193, available online at http://www.idealibrary.com on The Human PEX3 Gene Encoding a Peroxisomal Assembly Protein: Genomic Organization, Positional Mapping, and Mutation Analysis in Candidate Phenotypes Ania C. Muntau,* Andreas Holzinger,* Peter U. Mayerhofer,* Jutta Ga¨rtner,† Adelbert A. Roscher,*,1 and Stefan Kammerer*,2 *Dr. von Hauner Children’s Hospital, Laboratory of Molecular Biology, Ludwig-Maximilians-University, Lindwurmstrasse 4, 80337 Munich, Germany; and †Department of Pediatrics, Heinrich Heine University Du¨ sseldorf, Moorenstrasse 5, 40225 Du¨ sseldorf, Germany Received January 6, 2000 Peroxisomes are single-membrane-bound organelles In yeasts, the peroxin Pex3p was identified as a perox- present in all eukaryotic cells other than mature eryth- isomal integral membrane protein that presumably rocytes (1). A large variety of metabolic pathways in- plays a role in the early steps of peroxisomal assembly. cluding the production and degradation of hydrogen In humans, defects of peroxins cause peroxisomal bio- peroxide, and many reactions that involve lipids have genesis disorders such as Zellweger syndrome. We pre- been assigned to the peroxisome (2). The biogenesis of viously reported data on the human PEX3 cDNA and its functional peroxisomes including peroxisome prolifer- protein, which in addition to the peroxisomal targeting ation, membrane biogenesis and peroxisomal matrix sequence contains a putative endoplasmic reticulum protein import, requires the interaction of numerous targeting signal. Here we report the genomic organiza- proteins, designated peroxins, which are encoded by tion, sequencing of the putative promoter region, chro- mosomal localization, and physical mapping of the hu- PEX genes (3).
    [Show full text]
  • Two Splice Variants of Human PEX19 Exhibit Distinct Functions in Peroxisomal Assembly
    Biochemical and Biophysical Research Communications 291, 1180–1186 (2002) doi:10.1006/bbrc.2002.6568, available online at http://www.idealibrary.com on Two Splice Variants of Human PEX19 Exhibit Distinct Functions in Peroxisomal Assembly Peter U. Mayerhofer, Tanja Kattenfeld, Adelbert A. Roscher, and Ania C. Muntau1 Dr. v. Hauner Children’s Hospital, Department of Clinical Chemistry and Biochemical Genetics, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, D-80337 Munich, Germany Received January 31, 2002 cific biological functions of the different predicted do- PEX19 has been shown to play a central role in the mains of the PEX19 protein. © 2002 Elsevier Science (USA) early steps of peroxisomal membrane synthesis. Com- Key Words: peroxisome biogenesis disorders; splice putational database analysis of the PEX19 sequence variants; farnesylation; peroxin; PEX; ABC half trans- revealed three different conserved domains: D1 (aa porter; peroxisomal membrane proteins. 1–87), D2 (aa 88–272), and D3 (aa 273–299). However, these domains have not yet been linked to specific biological functions. We elected to functionally char- The biogenesis of peroxisomes (reviewed by 1–3) is a acterize the proteins derived from two naturally oc- curring PEX19 splice variants: PEX19⌬E2 lacking the complex process including the biosynthesis of the per- N-terminal domain D1 and PEX19⌬E8 lacking the do- oxisomal membrane, the targeting and insertion of per- main D3. Both interact with peroxisomal ABC trans- oxisomal membrane proteins (PMPs) into this mem- porters (ALDP, ALDRP, PMP70) and with full-length brane, and the import of peroxisomal matrix enzymes PEX3 as shown by in vitro protein interaction studies.
    [Show full text]
  • Gnomad Lof Supplement
    1 gnomAD supplement gnomAD supplement 1 Data processing 4 Alignment and read processing 4 Variant Calling 4 Coverage information 5 Data processing 5 Sample QC 7 Hard filters 7 Supplementary Table 1 | Sample counts before and after hard and release filters 8 Supplementary Table 2 | Counts by data type and hard filter 9 Platform imputation for exomes 9 Supplementary Table 3 | Exome platform assignments 10 Supplementary Table 4 | Confusion matrix for exome samples with Known platform labels 11 Relatedness filters 11 Supplementary Table 5 | Pair counts by degree of relatedness 12 Supplementary Table 6 | Sample counts by relatedness status 13 Population and subpopulation inference 13 Supplementary Figure 1 | Continental ancestry principal components. 14 Supplementary Table 7 | Population and subpopulation counts 16 Population- and platform-specific filters 16 Supplementary Table 8 | Summary of outliers per population and platform grouping 17 Finalizing samples in the gnomAD v2.1 release 18 Supplementary Table 9 | Sample counts by filtering stage 18 Supplementary Table 10 | Sample counts for genomes and exomes in gnomAD subsets 19 Variant QC 20 Hard filters 20 Random Forest model 20 Features 21 Supplementary Table 11 | Features used in final random forest model 21 Training 22 Supplementary Table 12 | Random forest training examples 22 Evaluation and threshold selection 22 Final variant counts 24 Supplementary Table 13 | Variant counts by filtering status 25 Comparison of whole-exome and whole-genome coverage in coding regions 25 Variant annotation 30 Frequency and context annotation 30 2 Functional annotation 31 Supplementary Table 14 | Variants observed by category in 125,748 exomes 32 Supplementary Figure 5 | Percent observed by methylation.
    [Show full text]
  • Structural and Functional Roles of Ether Lipids John M
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 Structural and functional roles of ether lipids John M. Dean Irfan J. Lodhi Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Protein Cell 2018, 9(2):196–206 DOI 10.1007/s13238-017-0423-5 Protein & Cell REVIEW Structural and functional roles of ether lipids John M. Dean, Irfan J. Lodhi& Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA & Correspondence: [email protected] (I. J. Lodhi) Received March 15, 2017 Accepted April 25, 2017 ABSTRACT found in the brain, heart, spleen, and white blood cells, while Cell liver has scant amount of intracellular ether lipids (Braver- Ether lipids, such as plasmalogens, are peroxisome- & man and Moser, 2012). derived glycerophospholipids in which the hydrocarbon Plasmalogens are the most common form of ether lipids chain at the sn-1 position of the glycerol backbone is and are characterized by a cis double bond adjacent to the attached by an ether bond, as opposed to an ester bond ether linkage. Plasmalogens were serendipitously discov- in the more common diacyl phospholipids. This seem- ered in 1924 by Feulgen and Voit while staining tissue sec- ingly simple biochemical change has profound struc- Protein tions with a nuclear stain that reacts with aldehydes released tural and functional implications. Notably, the tendency by acid hydrolysis of DNA (Snyder, 1999). Because the acid of ether lipids to form non-lamellar inverted hexagonal treatment also resulted in breakdown of the vinyl ether bond structures in model membranes suggests that they have of plasmalogens to generate aldehydes, the researchers a role in facilitating membrane fusion processes.
    [Show full text]
  • Novel Skin Phenotypes Revealed by a Genome-Wide Mouse Reverse Genetic Screen
    ARTICLE Received 9 Jan 2014 | Accepted 4 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4540 OPEN Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen Kifayathullah Liakath-Ali1,2,3, Valerie E. Vancollie4, Emma Heath1, Damian P. Smedley4, Jeanne Estabel4, David Sunter4, Tia DiTommaso5,w, Jacqueline K. White4, Ramiro Ramirez-Solis4, Ian Smyth5, Karen P. Steel4,6 & Fiona M. Watt1 Permanent stop-and-shop large-scale mouse mutant resources provide an excellent platform to decipher tissue phenogenomics. Here we analyse skin from 538 knockout mouse mutants generated by the Sanger Institute Mouse Genetics Project. We optimize immunolabelling of tail epidermal wholemounts to allow systematic annotation of hair follicle, sebaceous gland and interfollicular epidermal abnormalities using ontology terms from the Mammalian Phenotype Ontology. Of the 50 mutants with an epidermal phenotype, 9 map to human genetic conditions with skin abnormalities. Some mutant genes are expressed in the skin, whereas others are not, indicating systemic effects. One phenotype is affected by diet and several are incompletely penetrant. In-depth analysis of three mutants, Krt76, Myo5a (a model of human Griscelli syndrome) and Mysm1, provides validation of the screen. Our study is the first large-scale genome-wide tissue phenotype screen from the International Knockout Mouse Consortium and provides an open access resource for the scientific community. 1 Centre for Stem Cells and Regenerative Medicine, King’s College London, Guy’s Hospital, London SE1 9RT, UK. 2 Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK. 3 Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
    [Show full text]
  • Discovering Candidate Imprinted Genes and Imprinting Control Regions in the Human Genome
    bioRxiv preprint doi: https://doi.org/10.1101/678151; this version posted June 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Discovering candidate imprinted genes and Imprinting Control Regions in the human genome Minou Bina Purdue University, Department of Chemistry 560 Oval Dr., West Lafayette, IN 47907 USA Contact: [email protected] ABSTRACT Genomic imprinting is a process thereby a subset of genes is expressed in a parent-of-origin specific manner. This evolutionary novelty is restricted to mammals and controlled by genomic DNA segments known as Imprinting Control Regions (ICRs). The known imprinted genes function in many important developmental and postnatal processes including organogenesis, neurogenesis, and fertility. Furthermore, defects in imprinted genes could cause severe diseases and abnormalities. Because of the importance of the ICRs to the regulation of parent-of-origin specific gene expression, I developed a genome-wide strategy for their localization. This strategy located clusters of the ZFBS-Morph overlaps along the entire human genome. Previously, I showed that in the mouse genome, clusters of 2 or more of these overlaps correctly located ~ 90% of the fully characterized ICRs and germline Differentially Methylated Regions (gDMRs). The ZFBS-Morph overlaps are composite-DNA-elements comprised of the ZFP57 binding site (ZFBS) overlapping a subset of the MLL1 morphemes. My strategy consists of creating plots to display the density of ZFBS-Morph overlaps along genomic DNA. Peaks in these plots pinpointed several of the known ICRs/gDMRs within relatively long genomic DNA sections and even along entire chromosomal DNA.
    [Show full text]