• What I Hope to Convey to You Is That Rare Earths Are Uniquely Required for High Performance Magnets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Additional Teacher Background Chapter 4 Lesson 3, P. 295
Additional Teacher Background Chapter 4 Lesson 3, p. 295 What determines the shape of the standard periodic table? One common question about the periodic table is why it has its distinctive shape. There are actu- ally many different ways to represent the periodic table including circular, spiral, and 3-D. But in most cases, it is shown as a basically horizontal chart with the elements making up a certain num- ber of rows and columns. In this view, the table is not a symmetrical rectangular chart but seems to have steps or pieces missing. The key to understanding the shape of the periodic table is to recognize that the characteristics of the atoms themselves and their relationships to one another determine the shape and patterns of the table. ©2011 American Chemical Society Middle School Chemistry Unit 303 A helpful starting point for explaining the shape of the periodic table is to look closely at the structure of the atoms themselves. You can see some important characteristics of atoms by look- ing at the chart of energy level diagrams. Remember that an energy level is a region around an atom’s nucleus that can hold a certain number of electrons. The chart shows the number of energy levels for each element as concentric shaded rings. It also shows the number of protons (atomic number) for each element under the element’s name. The electrons, which equal the number of protons, are shown as dots within the energy levels. The relationship between atomic number, energy levels, and the way electrons fill these levels determines the shape of the standard periodic table. -
Design of Bioreactors for Mesenchymal Stem Cell Tissue Engineering
Design of Bioreactors for Mesenchymal Stem Cell Tissue Engineering Pankaj Godara A Thesis Submitted for the Degree of Doctor of Philosophy at the University of New South Wales Faculty of Engineering Graduate School of Biomedical Engineering 2010 Originality Statement ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substan- tial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowl- edgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed ...................................................... Date ...................................................... Copyright Statement ‘I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University li- braries in all forms of media, now or hereafter known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the abstract of my thesis in Dissertations Abstract International (this is applicable to doctoral theses only). -
Production of Yttrium Aluminum Silicate Microspheres by Gelation of an Aqueous Solution Containing Yttrium and Aluminum Ions in Silicone Oil
Volume 12, No 2 International Journal of Radiation Research, April 2014 Production of yttrium aluminum silicate microspheres by gelation of an aqueous solution containing yttrium and aluminum ions in silicone oil M.R. Ghahramani*, A.A. Garibov, T.N. Agayev Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Baku, Azerbaijan ABSTRACT Background: Radioacve yrium glass microspheres are used for liver cancer treatment. These yrium aluminum silicate microspheres are synthesized from yrium, aluminum and silicone oxides by melng. There are two known processes used to transform irregular shaped glass parcles into ► Original article microspheres, these ‘spheroidizaon by flame’ and ‘spheroidizaon by gravitaonal fall in a tubular furnace’. Materials and Methods: Yrium aluminum silicate microspheres with the approximate size of 20‐50 µm were obtained when an aqueous soluon of YCl3 and AlCl3 was added to tetraethyl orthosilicate (TEOS) and pumped in to silicone oil and srred constantly the * Corresponding author: temperature of 80˚C. The resulng spherical shapes were then invesgated Dr. M.R. Ghahramani, for crystallizaon, chemical bonds, composion and distribuon of elements Fax: +99 41 25398318 by scanning electron microscopy (SEM), X‐ray diffracon (XRD), Fourier E‐mail: transform infrared spectroscopy (FTIR), carbon/sulfur analysis, X‐ray [email protected] photoelectron spectroscopy (XPS) and SEM/EDS analysis. Results: The parcles produced by the above‐menoned method were regular and nearly Received: July 2013 spherical in shape. The results of topographical analysis of a cross‐secon Accepted: Oct. 2013 showed that form of the microspheres had formed a ‘boiled egg’ structure. This method has an advantage over other methods in that the process does Int. -
Pine Creek Headwaters Hemlock Plan: Thermal Refuge Prioritization
PINE CREEK HEADWATERS HEMLOCK PLAN: THERMAL REFUGE PRIORITIZATION Plant a Tree, Shade a Trout Plant a Tree, Shade a Trout Plant a Tree, Shade a Trout Pine Creek Watershed Council 118 Main Street PlantPineWellsboro Creek, PA a 16901 Tree,Watershed 570Shade- 723Council-8251 a Trout 118 Main Street WellsboroPine Creek, PA 16901 Watershed570- 723Council-8251 Pine118 Main Creek Street Watershed Council Wellsboro, PA 16901 570-723-8251 118 Main Street 1 2 Acknowledgements: This plan was financed in part through a grant from the Coldwater Heritage Partnership on behalf of the PA Department of Conservation and Natural Resources (Environmental Stewardship Fund), the PA Fish and Boat Commission, the Foundation for Pennsylvania Watersheds and the PA Council of Trout Unlimited. This project was spearheaded by the Pine Creek Watershed Council’s Water and Biological Committee consisting of a collaboration of several agencies, non-profit organizations, and local community members. The Committee consists of the following individuals/organizations: Kimberlie Gridley, Tioga County Planning, committee co-chair and editor Jared Dickerson, Potter County Conservation District, committee co-chair and field lead Steve Hoover, PA DCNR BOF Sarah Johnson, PA DCNR BOF Chris Firestone, PADCNR BOF Erica Tomlinson, Tioga County Conservation District Eric Kosek, Tioga County Conservation District Will Hunt, Potter County Planning and GIS Jim Weaver, PCWC Chair Art Antal, Trout Unlimited Jere White, Trout Unlimited Greg Hornsby, Retired, Forester Others that offered support -
04-04-.13 J:!Q~Er Cumberland River B"! ~------1200-04-04-.14 Barren River Watershed
Department of State For Department of State Use Only Division of Publications 312 Rosa L. Parks Avenue, 8th Floor Snodgrass!TN Tower Sequence Number: oLJ , C)Lj ~ 13 Nashville, TN 37243 Rule ID(s): q =l{) Phone: 615-741-2650 c;'Yic -s'y Fax: 615-741-5133 File Date: L/)3 /13 Email: [email protected] Effective Date: --:J /J, /13 I ·~---- Rulemaking Hearing Rule(s) Filing Form Rulemaking Hearing Rules are rules filed after and as a result of a rulemaking hearing. T.C.A. § 4-5-205 ~A_9ency/B0ard/CO"'fu~~~+~f~~W1t~i~~~~~¥0nserv~tic>n_:_::-__:_- l----~--~----- contact Per~~!l: G~~9C>ry-Q~nton_______ ~-~--=--=~-~--~·-- ----· Address: I 6t Floor, L&C Annex 401 Church Street 1 Nashville, Tennessee ----Zip: I-37243=-1534·--~------~- ------------~-------Phone:- [ (615) 532-0699_____ ~-~-~~---- ·--------~----~~-~- ,__ ---- -H~Ijic\il: JGre991'Y:oel'lton©tn:oov_ Revision Type {check all that apply): X Amendment New Repeal Rule{s) Revised (ALL chapters and rules contained in filing must be listed here. If needed, copy and paste additional tables to accommodate multiple chapters. Please enter only ONE Rule Number/Rule Title per row) ----------·~----~---- Chapter Number [ Chapter Title -·-"--~---- ·----------------------· 126o=-o4-0-3--~--TGeneral Water Qualit~ Criteria --- Rule Number Rule Title _1200-Q_4.:93-_:Q!___~~ Tennessee Water Quality_g_gntrol Bpard ____ --~---~- 1200-04-03-.02 General Considerations -- 1200-04-03-.03 Criteria For Water Uses --- 1200-04-03-.04 Definitions -------- -----~~--~~-----------------~---------------------- -
ELECTRONEGATIVITY D Qkq F=
ELECTRONEGATIVITY The electronegativity of an atom is the attracting power that the nucleus has for it’s own outer electrons and those of it’s neighbours i.e. how badly it wants electrons. An atom’s electronegativity is determined by Coulomb’s Law, which states, “ the size of the force is proportional to the size of the charges and inversely proportional to the square of the distance between them”. In symbols it is represented as: kq q F = 1 2 d 2 where: F = force (N) k = constant (dependent on the medium through which the force is acting) e.g. air q1 = charge on an electron (C) q2 = core charge (C) = no. of protons an outer electron sees = no. of protons – no. of inner shell electrons = main Group Number d = distance of electron from the nucleus (m) Examples of how to calculate the core charge: Sodium – Atomic number 11 Electron configuration 2.8.1 Core charge = 11 (no. of p+s) – 10 (no. of inner e-s) +1 (Group i) Chlorine – Atomic number 17 Electron configuration 2.8.7 Core charge = 17 (no. of p+s) – 10 (no. of inner e-s) +7 (Group vii) J:\Sciclunm\Resources\Year 11 Chemistry\Semester1\Notes\Atoms & The Periodic Table\Electronegativity.doc Neon holds onto its own electrons with a core charge of +8, but it can’t hold any more electrons in that shell. If it was to form bonds, the electron must go into the next shell where the core charge is zero. Group viii elements do not form any compounds under normal conditions and are therefore given no electronegativity values. -
2018 Pennsylvania Summary of Fishing Regulations and Laws PERMITS, MULTI-YEAR LICENSES, BUTTONS
2018PENNSYLVANIA FISHING SUMMARY Summary of Fishing Regulations and Laws 2018 Fishing License BUTTON WHAT’s NeW FOR 2018 l Addition to Panfish Enhancement Waters–page 15 l Changes to Misc. Regulations–page 16 l Changes to Stocked Trout Waters–pages 22-29 www.PaBestFishing.com Multi-Year Fishing Licenses–page 5 18 Southeastern Regular Opening Day 2 TROUT OPENERS Counties March 31 AND April 14 for Trout Statewide www.GoneFishingPa.com Use the following contacts for answers to your questions or better yet, go onlinePFBC to the LOCATION PFBC S/TABLE OF CONTENTS website (www.fishandboat.com) for a wealth of information about fishing and boating. THANK YOU FOR MORE INFORMATION: for the purchase STATE HEADQUARTERS CENTRE REGION OFFICE FISHING LICENSES: 1601 Elmerton Avenue 595 East Rolling Ridge Drive Phone: (877) 707-4085 of your fishing P.O. Box 67000 Bellefonte, PA 16823 Harrisburg, PA 17106-7000 Phone: (814) 359-5110 BOAT REGISTRATION/TITLING: license! Phone: (866) 262-8734 Phone: (717) 705-7800 Hours: 8:00 a.m. – 4:00 p.m. The mission of the Pennsylvania Hours: 8:00 a.m. – 4:00 p.m. Monday through Friday PUBLICATIONS: Fish and Boat Commission is to Monday through Friday BOATING SAFETY Phone: (717) 705-7835 protect, conserve, and enhance the PFBC WEBSITE: Commonwealth’s aquatic resources EDUCATION COURSES FOLLOW US: www.fishandboat.com Phone: (888) 723-4741 and provide fishing and boating www.fishandboat.com/socialmedia opportunities. REGION OFFICES: LAW ENFORCEMENT/EDUCATION Contents Contact Law Enforcement for information about regulations and fishing and boating opportunities. Contact Education for information about fishing and boating programs and boating safety education. -
Periodic Table of the Elements Notes
Periodic Table of the Elements Notes Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals (left side of the table) Nonmetals (right side of the table) Metalloids (touching the zig zag line) Basic Organization by: Atomic structure Atomic number Chemical and Physical Properties Uses of the Periodic Table Useful in predicting: chemical behavior of the elements trends properties of the elements Atomic Structure Review: Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus). Energy Levels Review: Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms Energy Levels & Valence Electrons Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only) The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons Using the Table to Identify Valence Electrons Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18. Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons. -
Periodic Table 1 Periodic Table
Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. -
Wild Trout Waters (Natural Reproduction) - September 2021
Pennsylvania Wild Trout Waters (Natural Reproduction) - September 2021 Length County of Mouth Water Trib To Wild Trout Limits Lower Limit Lat Lower Limit Lon (miles) Adams Birch Run Long Pine Run Reservoir Headwaters to Mouth 39.950279 -77.444443 3.82 Adams Hayes Run East Branch Antietam Creek Headwaters to Mouth 39.815808 -77.458243 2.18 Adams Hosack Run Conococheague Creek Headwaters to Mouth 39.914780 -77.467522 2.90 Adams Knob Run Birch Run Headwaters to Mouth 39.950970 -77.444183 1.82 Adams Latimore Creek Bermudian Creek Headwaters to Mouth 40.003613 -77.061386 7.00 Adams Little Marsh Creek Marsh Creek Headwaters dnst to T-315 39.842220 -77.372780 3.80 Adams Long Pine Run Conococheague Creek Headwaters to Long Pine Run Reservoir 39.942501 -77.455559 2.13 Adams Marsh Creek Out of State Headwaters dnst to SR0030 39.853802 -77.288300 11.12 Adams McDowells Run Carbaugh Run Headwaters to Mouth 39.876610 -77.448990 1.03 Adams Opossum Creek Conewago Creek Headwaters to Mouth 39.931667 -77.185555 12.10 Adams Stillhouse Run Conococheague Creek Headwaters to Mouth 39.915470 -77.467575 1.28 Adams Toms Creek Out of State Headwaters to Miney Branch 39.736532 -77.369041 8.95 Adams UNT to Little Marsh Creek (RM 4.86) Little Marsh Creek Headwaters to Orchard Road 39.876125 -77.384117 1.31 Allegheny Allegheny River Ohio River Headwater dnst to conf Reed Run 41.751389 -78.107498 21.80 Allegheny Kilbuck Run Ohio River Headwaters to UNT at RM 1.25 40.516388 -80.131668 5.17 Allegheny Little Sewickley Creek Ohio River Headwaters to Mouth 40.554253 -80.206802 -
Ionic Interactions in Lanthanide Halides
Ionic Interactions in Lanthanide Halides Z. Akdeniz, Z. Çiçek, and M. P. Tosia Department of Physics, University of Istanbul, Istanbul, Turkey and Abdus Salam International Centre for Theoretical Physics, 1-34014 Trieste, Italy a INFM and Classe di Scienze, Scuola Normale Superiore, 1-56126 Pisa, Italy Reprint requests to Prof. M. P. T.; Fax: +39-050-563513; E-mail: [email protected] Z. Naturforsch. 55 a, 861-866 (2000); received September 27, 2000 We determine a model of the ionic interactions in RX3 compounds (where R is a metal in the rare-earth series from La to Lu and X = CI, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is patterned after earlier work on Aluminium trichloride [Z. Akdeniz and M. P. Tosi, Z. Naturforsch. 54a, 180 (1999)], but includes as an essential element the electric polarizability of the trivalent metal ion to account for a pyramidal shape of RX3 molecules. From data referring mostly to trihalides of elements at the ends and in the middle of the rare-earth series (/. e. LaX3, GdX3 and LuX3), we propose systematic variations for the effective valence, ionic radius and electric polarizability of the metal ions across the series. As a first application of our results we predict the structure of the Dy2Cl6 and Dy2Br6 molecular dimers and demonstrate by comparison with electron diffraction data that lanthanide-ion polarizability plays a quantitative role also in this state of tetrahedral-like coordination. Key words: Ionic Clusters; Molten Salts. -
24. SOLUTION CHEMISTRY of the LANTHANIDE ELEMENTS Gregory
.24. SOLUTION CHEMISTRY OF THE LANTHANIDE ELEMENTS Gregory R. Choppin Department of Chemistry Florida State University Tallahassee, Florida 32306,U.S.A. ABSTRACT Complexes of the lanthanide elements provide insight into the factors which are important in ionically bonded systems. The enthalpy and entropy terms of complexation are a measure of the role of hydration effects while the free energy measures the metal-ligand interaction. The role of ligand basicity in the nature of the complex as an inner sphere or a solvent- separated outer sphere species is reviewed. An equation which has been used successfully to calculate stability constants which agree with experimental values is described and shown to be useful in establishing models for lanthanide complexing. The stability of complexes as a function of canonical structure of organic ligands and of ligand ring size is discussed. A study of charge polarization in conjugated organic ligands complexed by lanthanide cations is described. .25. SOLUTION CHEMISTRY OF THE LANTHANIDE ELEMENTS I. INTRODUCTION The development of separation methods using ion exchange resins has provided chemists with large quantities of very pure individual lanthanide elements. As a result, in the last 30 years research in lanthanide chemistry has been relatively intensive and has led to a rather satisfactory understanding of the chemical behavior of these elements as well as to the growing utilization of them in a variety of technological applications. A central feature of lanthanide chemistry is the strongly ionic character of the bonding between lanthanide cations and other atoms. As a result of this ionicity, they can be classified as "hard" (strongly acidic) cations.