Curr. Issues Mol. Biol. 42: 409-454. caister.com/cimb Multipartite Genome of Lyme Disease Borrelia: Structure, Variation and Prophages Ira Schwartz1*, Gabriele Margos2, Sherwood R. Casjens3, Wei-Gang Qiu4 and Christian H. Eggers5 1Department of Microbiology and Immunology, New York Medical College, Valhalla, NY USA, 2National Reference Centre for Borrelia and Bavarian Health and Food Safety Authority, Oberschleissheim, Germany, 3Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT USA, 4Department of Biological Sciences, Hunter College of the City University of New York, New York, NY USA 5Department of Biomedical Sciences, Quinnipiac University, Hamden, CT, USA *Corresponding author:
[email protected] DOI: https://doi.org/10.21775/cimb.042.409 Abstract pathogenicity have been deduced, and comparative All members of the Borrelia genus that have been whole genome analyses promise future progress in examined harbour a linear chromosome that is about this arena. 900 kbp in length, as well as a plethora of both linear and circular plasmids in the 5-220 kbp size range. Introduction Genome sequences for 27 Lyme disease Borrelia The genus Borrelia forms a deeply separated lineage isolates have been determined since the elucidation within the Spirochaetes branch of the bacterial tree of of the B. burgdorferi B31 genome sequence in 1997. life (Paster et al., 1991). The organisms are The chromosomes, which carry the vast majority of genomically unique and not closely related to any the housekeeping genes, appear to be very constant other bacteria, including the other Spirochaetes. in gene content and organization across all Lyme Borrelia burgdorferi and Borrelia hermsii are disease Borrelia species.