Biomaterials 2010 Doi:10.1016/j.biomaterials.2010.01.127 Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch Sabine Bechtle1, Theo Fett2, Gabriele Rizzi3, Stefan Habelitz4, Arndt Klocke5, Gerold A. Schneider1* 1Institute of Advanced Ceramics, Hamburg University of Technology, Denickestr. 15, D-21073 Hamburg, Germany 2Institute for Ceramics in Mechanical Engineering, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany 3Institute for Materials Research II, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany 4Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA 94143, USA 5Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA *corresponding author: Gerold A. Schneider,
[email protected] Abstract Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mechanism. Explanations range from the DEJ having a larger toughness than both enamel and dentin up to the assumption that not the DEJ itself causes crack arrest but the so-called mantle dentin, a thin material layer close to the DEJ that is somewhat softer than the bulk dentin. In this study we conducted 3-point bending experiments with bending bars consisting of the DEJ and surrounding enamel and dentin to investigate crack propagation and arrest within the DEJ region.