Melting and Fining Processes in Industrial Glass Furnaces IMI-NFG

Total Page:16

File Type:pdf, Size:1020Kb

Melting and Fining Processes in Industrial Glass Furnaces IMI-NFG IMI-NFG Course on Processing in Glass Spring 2015 (available online www.lehigh.edu/imi) Lecture 2: Melting and Fining processes in industrial glass furnaces Mathieu Hubert, PhD CelSian Glass & Solar Eindhoven, The Netherlands [email protected] Introduction • In Lecture 1, the preparation of the batch has been described, from the selection of the raw materials to the charging of the batch in the furnace via the doghouse (or day-hopper) • The batch is introduced in the furnace at high temperature, and the energy provided to the batch is used to convert the batch into a glass melt • The batch-to-melt conversion implies a series of chemical reactions (decarbonation, dehydration, solid-state reactions, formation of low-melting eutectics, dissolutions) • This lecture will highlight these different reactions and processes, from the introduced batch to an homogeneous and bubble-free glass melt (before the forming processes) IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 2 Outline of this lecture 1. Melting of the batch From the batch to the melt Chemical reactions Sand dissolution 2. Fining of the melt Dissolved gases Fining mechanisms Removal of bubbles and seeds IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 3 Schematic of an industrial glass melting tank * This is a schematic representation, but many different furnace designs exist (more on that in Lecture 3) IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 4 Melting and fining in the furnace Batch blanket Melting and sand dissolution Primary Secondary fining fining (refining) IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 5 Melting and fining in the furnace Batch Batch input ≈ 1200 Kg 25°C Rough melt Batch melting ≈ 1001 Kg 1200°C Sand grain Seedy melt ≈ 1001 Kg dissolution 1400°C Clear melt Fining ≈ 1000 Kg 1500°C Refining and Conditioned melt 1000 Kg conditioning 1250°C Inspired from R. Conradt, Thermodynamics and Energy Demand for Batch-to-Melt Conversion, presented at the 6th ICG summer school, Montpellier, France, July 2014 IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 6 Melting and fining in the furnace Batch Batch input ≈ 1200 Kg 25°C Relatively fast (~ 1h) Rough melt - Batch melting ≈ 1001 Kg 1200°C Requires significant energy input Sand grain Seedy melt ≈ 1001 Kg dissolution 1400°C Longer process (~ 24h) Clear melt Fining ≈ 1000 Kg 1500°C - Requires significant lower energy input Refining and Conditioned melt 1000 Kg conditioning 1250°C Inspired from R. Conradt, Thermodynamics and Energy Demand for Batch-to-Melt Conversion, presented at the 6th ICG summer school, Montpellier, France, July 2014 IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 7 Batch melting-in • The melting-in process occurs mainly by reactions within the batch blanket forming liquid phases. • In the heated batch piles or blanket: The first aggressive melt phases are formed, which will strongly attack and largely dissolve the components that are difficult to dissolve, like quartz sand or feldspar/china clay particles. The melt phases thus formed flow from the batch blanket area into the glass melt. So the batch blanket becomes increasingly thinner Still some of the non-dissolved sand particles will arrive in the glass melt itself, where these particles will have to dissolve further by diffusion of SiO2 in the molten glass, away from the sand grain surface. IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 8 Melting process of the batch blanket combustion space heat transfer gas release reaction zone figure 1b glass melt layer temperature profile thick- glass ness normal batch level reaction zone glassmelt figure 1c flow heat transferred From Ungan and Viskanta, "Melting Behavior of Continuously Charged Loose Batch Blankets in Glass Melting Furnaces", Glastechische Berichte, 59 (10), 1986, pp. 279-291 IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 9 Detailed representation of batch melting process 1500 o C Layer glassmelt melts Dissolution loose batch sand grains sand grains gas melting melting reactions reactions carbonates (soda/lime) dissolution sand gas grains batch sand grains glass melt 1400 o C b. top of batch blanket c. bottom side of batch blanket From Ungan and Viskanta, "Melting Behavior of Continuously Charged Loose Batch Blankets in Glass Melting Furnaces", Glastechische Berichte, 59 (10), 1986, pp. 279-291 IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 10 Different steps of the melting process • Melt reactions • Melt energy (enthalpy of heating the batch and decomposition melting/fusion reactions) • Melting kinetics / heat transfer • Melting parameters: effect of the temperature grain size (especially for sand and alumina raw materials) glass composition IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 11 Melt reactions IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 12 Melting reactions • De-hydration of some raw materials and water evaporation • Solid state reactions between individual raw materials • Formation of primary melt phases and melting of alkali rich carbonates. (typically in the temperature range: 700-900°C) • Dissociation or decomposition reactions of Ca- and Mg- containing carbonates (e.g. limestone and dolomite), resulting in development of CO2-gas. (Temperature range 500-1000°C) (Na2CO3 will not decompose spontaneously, but reacts with sand or limestone). • Dissolving of the SiO2 in the alkali rich carbonate melt phases, typically above 1000°C. Sand reacts between about 750-1000°C with sodium silicates or soda to form liquid sodium silicates (associated with the release of CO2-gas when limestone or soda or dolomite is reacting with sand) IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 13 Dehydration • Takes place at ± 100°C for physically bonded water • In case of clay in the batch, de-hydration may occur up to 650- 700°C • Dehydration (water evaporation) is very energy intensive, and it is represents an important part of the total energy consumption IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 14 Sand dissolution • Pure silica melts at very high temperature (> 1700°C) • In standard glasses (except e.g. pure silica glass) sand is incorporated in the glass melt by dissolution, and not by melting • Sand dissolution is a critical step in industrial melting process • It is highly dependent on the initial grain size distribution of the sand grains in the batch, as well as the presence of aggressive molten phases (e.g. alkaline phases) • Sand grains react with other batch components or dissolve in the obtained melt in most glass melting processes. The optimum grain size depends on the glass type. IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 15 Grain size distribution of quartz sand, recommended for different applications, values in mass% Application Indication Grain size (mm) Size class <0.03 <0.06 <0.125 <0.25 < 0.35 <0.5 <1.0 Container glass Coarse - - 1 25 55 75 95 sand Container & Float Medium - - 10 50 75 95 100 sand Float glass Fine sand - 1 5 70 85 100 100 Float glass Very fine 3 15 85 100 100 100 sand E-glass & alkali- Coarse 40 70 95 100 100 100 100 borosilicate silica powder E-glass Medium 70 95 99 100 100 100 100 silica powder E-glass Fine silica 98 100 100 100 100 100 100 powder IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 16 Solid-state reactions in the batch • Solid-state reactions can be divided into two routes: the carbonate route and the silicate route • The carbonate route (path) is characterized by reactive dissolution of silica sand with a binary melt phase of soda ash and limestone below about 900°C. Soda ash and limestone, in contact with each other, may form a double carbonate by a solid state reaction forming the species Na2Ca(CO3)2 • At about 820°C, this intermediate reaction product starts to melt and becomes suddenly more reactive (better contact) towards silica sand grains. • Silica reaction with Na2Ca(CO3)2 forms a viscous Na2O·CaO·SiO2 melt plus CO2 gas. IMI-NFG Course on Processing of Glass - Lecture 2: Industrial glass melting and fining processes [email protected] 17 Solid-state reactions in the batch • The silica/silicate route is based on eutectic melting of a mixture of components, including the sodium disilicate phase, formed by solid state reactions between sand and soda. • The eutectic melting of SiO2 and Na2O·2SiO2 takes place at 799°C and silicate rich melts are formed. • The degree to which these reactions occur depends on the mutual contact between the components. Within a compacted batch
Recommended publications
  • Equation of State for Benzene for Temperatures from the Melting Line up to 725 K with Pressures up to 500 Mpa†
    High Temperatures-High Pressures, Vol. 41, pp. 81–97 ©2012 Old City Publishing, Inc. Reprints available directly from the publisher Published by license under the OCP Science imprint, Photocopying permitted by license only a member of the Old City Publishing Group Equation of state for benzene for temperatures from the melting line up to 725 K with pressures up to 500 MPa† MONIKA THOL ,1,2,* ERIC W. Lemm ON 2 AND ROLAND SPAN 1 1Thermodynamics, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany 2National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA Received: December 23, 2010. Accepted: April 17, 2011. An equation of state (EOS) is presented for the thermodynamic properties of benzene that is valid from the triple point temperature (278.674 K) to 725 K with pressures up to 500 MPa. The equation is expressed in terms of the Helmholtz energy as a function of temperature and density. This for- mulation can be used for the calculation of all thermodynamic properties. Comparisons to experimental data are given to establish the accuracy of the EOS. The approximate uncertainties (k = 2) of properties calculated with the new equation are 0.1% below T = 350 K and 0.2% above T = 350 K for vapor pressure and liquid density, 1% for saturated vapor density, 0.1% for density up to T = 350 K and p = 100 MPa, 0.1 – 0.5% in density above T = 350 K, 1% for the isobaric and saturated heat capaci- ties, and 0.5% in speed of sound. Deviations in the critical region are higher for all properties except vapor pressure.
    [Show full text]
  • Geometrical Vortex Lattice Pinning and Melting in Ybacuo Submicron Bridges Received: 10 August 2016 G
    www.nature.com/scientificreports OPEN Geometrical vortex lattice pinning and melting in YBaCuO submicron bridges Received: 10 August 2016 G. P. Papari1,*, A. Glatz2,3,*, F. Carillo4, D. Stornaiuolo1,5, D. Massarotti5,6, V. Rouco1, Accepted: 11 November 2016 L. Longobardi6,7, F. Beltram2, V. M. Vinokur2 & F. Tafuri5,6 Published: 23 December 2016 Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistance oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations. Superconductors are materials in which below the superconducting transition temperature, Tc, electrons form so-called Cooper pairs, which are bosons, hence occupying the same lowest quantum state1. The wave function of this Cooper condensate has a fixed phase. Hence, by virtue of the uncertainty principle, the number of Cooper pairs in the condensate is undefined.
    [Show full text]
  • Quarterly Journal of the All India Glass Manufacturers' Federation
    Vol. 3 | No. 4 | January - March 2016 Quarterly Journal of The All India Glass Manufacturers’ Federation Bi-lingual www.aigmf.com Technical Articles Prof. (Dr.) A. K. Bandyopadhyay Prof. (Dr.) A Sustainable 50 for postage postage for 50 ` ASS ASS www.aigmf.com Building and Packaging material An Publication - GlASS Gl Gl 500 (within India) + + India) (within 500 ` ` Kanch | Vol. 3 | No. 4 | January-March 2016 2 Overseas: US$ 60 (including postage and bank charges) bank and postage (including 60 US$ Overseas: Order Print Copies: Print Order Price: Price: www.aigmf.com President SANJAY GANJOO Sr. Vice President ARUN KUMAR DUKKIPATI Vice President RAJ KUMAR MITTAL Hon. General Secretary BHARAT SOMANY Hon. Treasurer SANJAY AGARWAL Member Editorial Board A K Bandyopadhyay Quarterly Journal of THE ALL INDIA GLASS MANUFACTURERS’ FEDERATION Former Principal, Govt. College of Engineering & Ceramic Technology-GCECT, Kolkata DEVENDRA KUMAR Prof. & HOD, Dept. of Ceramic, Indian Institute of Technology (Banaras Hindu University) Vol. 3 | No. 4 | January-March 2016 K K SHARMA President, NIGMA and Plant Head, HNG Neemrana, Rajasthan MEMBER ASSOCIatIONS EASTERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (EIGMA) Contents c/o La Opala RG Ltd. Chitrakoot, 10th Floor, 230 A, A.J.C. Bose Road From President's Desk 5 Kolkata - 700 020 President - Sushil Jhunjhunwala Glass as Vital Building Material for Smart / Solar Cities NORTHERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (NIGMA) & c/o Hindustan National Glass & Industries Limited 6 Post Office - Bahadurgarh, Jhajjar, Haryana-124 507 Book Launch: “Glass - A Sustainable Building and Packaging President - KK Sharma Material” Vice President - Jimmy Tyagi Honorary General Secretary - NN Goyal Glass News 13 Secretary & Treasurer - JB Bhardwaj SOUTH INDIA GLASS MANUFACTURERS’ ASSOCIATION (SIGMA) Smart City and Glasses for Flat-Screen Products – Part II 21 c/o AGI Glasspac (An SBU of HSIL Ltd.) Glass Factory Road, Off.
    [Show full text]
  • Two-Dimensional Vortex Lattice Melting Superconducting Length
    Two-Dimensional Vortex Lattice Melting Superconducting Length-Scales and Vortex Lattices Flux Motion Melting Concepts Journal Paper Presentation: “Melting of the Vortex Lattice Through the Hexatic Phase in an MoGe3 Thin Film” 1 Repulsive Interaction Between Vortices Vortex Lattice 2 Vortex Melting in Superconducting Nb 3 (For 3D clean Type II superconductor) Vortex Lattice Expands on Freezing (Like Ice) Jump in the Magnetization 4 Melting Concepts 3D Solid Liquid Lindemann Criterion (∆r)2 ↵a 1st Order Transition ⇡ p 5 6 Journal Presentation Motivation/Context Results Interpretation Questions/Ideas for Future Work (aim for 30-45 mins) Please check the course site about the presentation schedule No class on The April 8, 15 Make-Ups on Ms April 12, 19 (Weekly Discussion to be Rescheduled) 7 First Definitive Observation of the Hexatic Phase in a Superconducting Film (with 8 thanks to Indranil Roy and Pratap Raychaudhuri) Two Dimensional Melting (BKT + HNY theory) 9 10 Hexatics have been observed in 2D colloidal systems Why not in the Melting of the Vortex Phase of Superconducting Films ?? 11 Quest for the Hexatic Liquid Phase in ↵ MoGe − Why Not Before ?? Orientational Coupling Hexatic Glass !! between Atomic and Vortex Lattices Solution: Amorphous Superconductor (no lattice effect) Very Weak Pinning BCS-Type Superconductor 12 Scanning Tunneling Spectroscopy (STS) Magnetotransport 13 14 15 16 17 The Resulting Phase Diagram 18 Summary First Observation of Hexatic Fluid Phase in a 2D Superconducting Film Pinning Significantly Weaker than in Previous Studies STS (imaging) Magnetotransport (“shear”) Questions/Ideas for the Future Size-Dependence of Hexatic Order Parameter ?? Low T limit of the Hexatic Fluid: Quantum Vortex Fluid ?? What happens in Layered Films ?? 19 20.
    [Show full text]
  • Bullseye Glass Catalog
    CATALOG BULLSEYE GLASS For Art and Architecture IMPOSSIBLE THINGS The best distinction between art and craft • A quilt of color onto which children have that I’ve ever heard came from artist John “stitched” their stories of plants and Torreano at a panel discussion I attended a animals (page 5) few years ago: • A 500-year-old street in Spain that “Craft is what we know; art is what we don’t suddenly disappears and then reappears know. Craft is knowledge; art is mystery.” in a gallery in Portland, Oregon (page 10) (Or something like that—John was talking • The infinite stories of seamstresses faster than I could write). preserved in cast-glass ghosts (page 25) The craft of glass involves a lifetime of • A tapestry of crystalline glass particles learning, but the stories that arise from that floating in space, as ethereal as the craft are what propel us into the unknown. shadows it casts (page 28) At Bullseye, the unknown and oftentimes • A magic carpet of millions of particles of alchemical aspects of glass continually push crushed glass with the artists footprints us into new territory: to powders, to strikers, fired into eternity (page 31) to reactive glasses, to developing methods • A gravity-defying vortex of glass finding like the vitrigraph and flow techniques. its way across the Pacific Ocean to Similarly, we're drawn to artists who captivate Emerge jurors (and land on the tell their stories in glass based on their cover of this catalog) exceptional skills, but even more on their We hope this catalog does more than point boundless imaginations.
    [Show full text]
  • The Gothic Revival Character of Ecclesiastical Stained Glass in Britain
    Folia Historiae Artium Seria Nowa, t. 17: 2019 / PL ISSN 0071-6723 MARTIN CRAMPIN University of Wales THE GOTHIC REVIVAL CHARACTER OF ECCLESIASTICAL STAINED GLASS IN BRITAIN At the outset of the nineteenth century, commissions for (1637), which has caused some confusion over the subject new pictorial windows for cathedrals, churches and sec- of the window [Fig. 1].3 ular settings in Britain were few and were usually char- The scene at Shrewsbury is painted on rectangular acterised by the practice of painting on glass in enamels. sheets of glass, although the large window is arched and Skilful use of the technique made it possible to achieve an its framework is subdivided into lancets. The shape of the effect that was similar to oil painting, and had dispensed window demonstrates the influence of the Gothic Revival with the need for leading coloured glass together in the for the design of the new Church of St Alkmund, which medieval manner. In the eighteenth century, exponents was a Georgian building of 1793–1795 built to replace the of the technique included William Price, William Peckitt, medieval church that had been pulled down. The Gothic Thomas Jervais and Francis Eginton, and although the ex- Revival was well underway in Britain by the second half quisite painterly qualities of the best of their windows are of the eighteenth century, particularly among aristocratic sometimes exceptional, their reputation was tarnished for patrons who built and re-fashioned their country homes many years following the rejection of the style in Britain with Gothic features, complete with furniture and stained during the mid-nineteenth century.1 glass inspired by the Middle Ages.
    [Show full text]
  • Sodium Spinor Bose-Einstein Condensates
    SODIUM SPINOR BOSE-EINSTEIN CONDENSATES: ALL-OPTICAL PRODUCTION AND SPIN DYNAMICS By JIEJIANG BachelorofScienceinOpticalInformationScience UniversityofShanghaiforScienceandTechnology Shanghai,China 2009 SubmittedtotheFacultyofthe GraduateCollegeof OklahomaStateUniversity inpartialfulfillmentof therequirementsfor theDegreeof DOCTOROFPHILOSOPHY December,2015 COPYRIGHT c By JIE JIANG December, 2015 SODIUM SPINOR BOSE-EINSTEIN CONDENSATES: ALL-OPTICAL PRODUCTION AND SPIN DYNAMICS Dissertation Approved: Dr. Yingmei Liu Dissertation Advisor Dr. Albert T. Rosenberger Dr. Gil Summy Dr. Weili Zhang iii ACKNOWLEDGMENTS I would like to first express my sincere gratitude to my thesis advisor Dr. Yingmei Liu, who introduced ultracold quantum gases to me and guided me throughout my PhD study. I am greatly impressed by her profound knowledge, persistent enthusiasm and love in BEC research. It has been a truly rewarding and privilege experience to perform my PhD study under her guidance. I also want to thank my committee members, Dr. Albert Rosenberger, Dr. Gil Summy, and Dr. Weili Zhang for their advice and support during my PhD study. I thank Dr. Rosenberger for the knowledge in lasers and laser spectroscopy I learnt from him. I thank Dr. Summy for his support in the department and the academic exchange with his lab. Dr. Zhang offered me a unique opportunity to perform microfabrication in a cleanroom, which greatly extended my research experience. During my more than six years study at OSU, I had opportunities to work with many wonderful people and the team members in Liu’s lab have been providing endless help for me which is important to my work. Many thanks extend to my current colleagues Lichao Zhao, Tao Tang, Zihe Chen, and Micah Webb as well as our former members Zongkai Tian, Jared Austin, and Alex Behlen.
    [Show full text]
  • Melting of Lamellar Phases in Temperature Sensitive Colloid-Polymer Suspensions
    PHYSICAL REVIEW LETTERS week ending VOLUME 93, NUMBER 5 30 JULY 2004 Melting of Lamellar Phases in Temperature Sensitive Colloid-Polymer Suspensions A. M. Alsayed, Z. Dogic, and A. G. Yodh Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA (Received 10 March 2004; published 29 July 2004) We prepare a novel suspension composed of rodlike fd virus and thermosensitive polymer poly(N-isopropylacrylamide) whose phase diagram is temperature and concentration dependent. The system exhibits a rich variety of stable and metastable phases, and provides a unique opportunity to directly observe melting of lamellar phases and single lamellae. Typically, lamellar phases swell with increasing temperature before melting into the nematic phase. The highly swollen lamellae can be superheated as a result of topological nucleation barriers that slow the formation of the nematic phase. DOI: 10.1103/PhysRevLett.93.057801 PACS numbers: 64.70.Md, 61.30.–v, 64.60.My Melting of three-dimensional (3D) crystals is among lamellar phases and coexisting isotropic or nematic the most ubiquitous phase transitions in nature [1]. In phases. contrast to freezing, melting of 3D crystals usually has The fd=NIPA solutions are unusual new materials no associated energy barrier. Bulk melting is initiated at a whose lamellar phases differ from those of amphiphilic premelted surface, which then acts as a heterogeneous molecules. The lamellar phase can swell considerably and nucleation site and eliminates the nucleation barrier for melt into a nematic phase, a transition almost never the phase transition [2]. In this Letter, we investigate observed in block-copolymer lamellar systems.
    [Show full text]
  • Physical Changes
    How Matter Changes By Cindy Grigg Changes in matter happen around you every day. Some changes make matter look different. Other changes make one kind of matter become another kind of matter. When you scrunch a sheet of paper up into a ball, it is still paper. It only changed shape. You can cut a large, rectangular piece of paper into many small triangles. It changed shape and size, but it is still paper. These kinds of changes are called physical changes. Physical changes are changes in the way matter looks. Changes in size and shape, like the changes in the cut pieces of paper, are physical changes. Physical changes are changes in the size, shape, state, or appearance of matter. Another kind of physical change happens when matter changes from one state to another state. When water freezes and makes ice, it is still water. It has only changed its state of matter from a liquid to a solid. It has changed its appearance and shape, but it is still water. You can change the ice back into water by letting it melt. Matter looks different when it changes states, but it stays the same kind of matter. Solids like ice can change into liquids. Heat speeds up the moving particles in ice. The particles move apart. Heat melts ice and changes it to liquid water. Metals can be changed from a solid to a liquid state also. Metals must be heated to a high temperature to melt. Melting is changing from a solid state to a liquid state.
    [Show full text]
  • Quarterly Journal of the All India Glass Manufacturers' Federation Inside
    Vol. 4 | No. 1 | April - June 2016 www.aigmf.com Quarterly Journal of The All India Glass Manufacturers’ Federation Bi-lingual Inside Interview Special Feature Yoshihiko Sano • Sustainability in Glass President of Nipro Corporation • A Note on Closed Glass Companies in the USA • Nipro Injects Innovation into Pre- for Artistic Appreciation filled Syringes and Targets US Expansion • Efficient Workflow: Automation and Digitisation Reduce Production and Handling Costs Upcoming Events (Sept 2, 2016) • FEA Studies of Impact Loads on NNPB Refillable • Enhancing Profitability by Empowering Workforce Bottles • Business Opportunities for Indian Glass Companies at Port of Duqm, • Energy Efficient Renovation Boost for Added- Sultanate of Oman Value Glazing • AIGMF Executive Committee Meeting / AGM Main Story Glass Packaging Supporting Swachh Bharat Abhiyaan (Clean India Campaign) event at Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata Page No. 6 Technical Articles Prof. (Dr.) A. K. Bandyopadhyay Prof. (Dr.) A Sustainable 50 for postage postage for 50 ` ASS ASS www.aigmf.com Building and Packaging material - An Publication GlASS Gl Gl 500 (within India) + + India) (within 500 ` ` Overseas: US$ 60 (including postage and bank charges) bank and postage (including 60 US$ Overseas: Order Print Copies: Print Order Price: Price: PORT OF DUQM Duqm, 100% Foreign Ownership the preferred Tax -exemption for 30 years Free Repatriation of Capital Special Economic & profi ts No minimum capital requirement No currency restrictions Zone for your No personal income tax Exemption from import & overseas export duties Usufruct agreements up to 50 years renewable investment One-stop station service For more information, contact: Port of Duqm Company SAOC Tel: (+968) 24342800 | Fax: (+968) 24587343 | [email protected] | www.portduqm.com 2 Kanch | Vol.
    [Show full text]
  • Les Verres Opalins D'époque Contemporaine Issus Du Site Du
    Revue archéologique de l’Est Tome 68 | 2019 n° 191 Les verres opalins d’époque contemporaine issus du site du Puisoz à Vénissieux (Rhône) Stéphane Brouillaud Édition électronique URL : http://journals.openedition.org/rae/13262 ISSN : 1760-7264 Éditeur Société archéologique de l’Est Édition imprimée Date de publication : 1 décembre 2019 Pagination : 355-366 ISSN : 1266-7706 Référence électronique Stéphane Brouillaud, « Les verres opalins d’époque contemporaine issus du site du Puisoz à Vénissieux (Rhône) », Revue archéologique de l’Est [En ligne], Tome 68 | 2019, mis en ligne le 11 décembre 2020, consulté le 25 janvier 2021. URL : http://journals.openedition.org/rae/13262 © Tous droits réservés LES VERRES opalins D’Époque CONTEMPORAINE ISSUS DU SITE DU PUISOZ À VÉNISSIEUX (RHÔNE) Stéphane BROUILLAUD* Mots-clés Vénissieux, dépotoir, production, consommation, verre opalin, opaline, époque contemporaine. Keywords Vénissieux, waste zone, production, consumption, opaline glass, opaline, contemporary era. Schlagwörter Vénissieux, Abfallgrube, Produktion, Konsum, getrübtes Glas, Milchglas, Moderne. Résumé Une campagne de fouille archéologique préalable à un projet d’urbanisme a été menée en août 2015 au lieu-dit Le Puisoz à Vénissieux (Rhône). Cette opération a permis de mettre au jour un dépotoir de 400 m², découvert dans le fossé défensif de la seconde enceinte de fortifications de la ville de Lyon. Daté de la fin du premier quart du XXe s., son comblement est composé dans sa quasi- totalité de céramiques et de verres. Il témoigne ainsi de la politique de tri sélectif mise en place à Lyon à cette époque. Le mobilier en verre se distingue d’une part par des rejets d’une production industrielle et d’autre part, par de la verrerie domestique.
    [Show full text]
  • Glass Production
    Technical Support Document for the Glass Manufacturing Sector: Proposed Rule for Mandatory Reporting of Greenhouse Gases Office of Air and Radiation U.S. Environmental Protection Agency January 22, 2009 Technical Support Document for Glass: Proposed Rule for Mandatory Reporting of Greenhouse Gases CONTENTS 1. Industry Description............................................................................................................ 1 2. Total Emissions ................................................................................................................... 1 2.1 Process Emissions ................................................................................................... 1 2.2 Stationary Combustion ............................................................................................ 2 3. Review of Existing Programs and Methodologies .............................................................. 2 4. Options Considered for Reporting Threshold ..................................................................... 4 4.1 Emissions Thresholds ............................................................................................. 4 4.2 Capacity Thresholds................................................................................................ 4 4.3 No Emissions Threshold ......................................................................................... 4 5. Options for Monitoring Methods........................................................................................ 7 5.1 Option 1: Default
    [Show full text]