Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Introduction: analysing orogeny—the Alpine approach S. SIEGESMUND1,B.FU¨ GENSCHUH2 & N. FROITZHEIM3 1Gottinger Zentrum Geowissenschaften, University of Go¨ttingen, Goldschmidtstrasse 03, D-37077, Go¨ttingen (e-mail:
[email protected]) 2Institut fu¨r Geologie & Pala¨ontologie, Universita¨t Innsbruck, Innrain 52, A–6020, Innsbruck 3Geologisches Institut, Universita¨t Bonn, Nuballe 8, D–53115, Bonn The European Alps, the prototype collisional Schulz et al. present a compilation and review orogen and playground of geologists from all over of geochronological, geochemical and structural the world, have been studied by generations of data from the Austroalpine basement south of Earth scientists. The density of data is probably the Tauern Window and reconstruct the evolution matched by no other mountain chain. Still, the of these units from a Neoproterozoic to Ordovi- Alpine chain is far from being over-studied, since cian active margin setting, through a subsequent many fundamental questions have not yet found a passive-margin setting at the northern periphery satisfactory and generally accepted answer, e.g. of Palaeo-Tethys, to Variscan collisional tec- the formation of the Western Alpine arc. In recent tonics, Permian rifting, and Cretaceous collisional years however, tectonic research on the Alpine tectonics, and finally to Tertiary shear-zone mountain chains has made dramatic progress due development and intrusion of the Rieserferner to new findings (e.g. coesite), new methods (e.g. Tonalite. GPS), and new—or newly considered—concepts The Permian part of the history is the subject of (e.g. subduction roll-back).