Electronics Technician Vol 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ELECTRONIC FRONTIER FOUNDATION CINDY COHN (145997) Ci
Case 3:06-cv-00672-VRW Document 294-1 Filed 07/05/2006 Page 1 of 173 1 ELECTRONIC FRONTIER FOUNDATION CINDY COHN (145997) 2 [email protected] LEE TIEN (148216) 3 [email protected] KURT OPSAHL (191303) 4 [email protected] KEVIN S. BANKSTON (217026) 5 [email protected] CORYNNE MCSHERRY (221504) 6 [email protected] JAMES S. TYRE (083117) 7 [email protected] 454 Shotwell Street 8 San Francisco, CA 94110 Telephone: 415/436-9333 9 415/436-9993 (fax) 10 TRABER & VOORHEES LAW OFFICE OF RICHARD R. WIEBE BERT VOORHEES (137623) RICHARD R. WIEBE (121156) 11 [email protected] [email protected] THERESA M. TRABER (116305) 425 California Street, Suite 2025 12 [email protected] San Francisco, CA 94104 128 North Fair Oaks Avenue, Suite 204 Telephone: 415/433-3200 13 Pasadena, CA 91103 415/433-6382 (fax) Telephone: 626/585-9611 14 626/ 577-7079 (fax) 15 Attorneys for Plaintiffs 16 [Additional counsel appear on signature page.] 17 18 UNITED STATES DISTRICT COURT 19 FOR THE NORTHERN DISTRICT OF CALIFORNIA 20 TASH HEPTING, GREGORY HICKS, ) No. C-06-0672-VRW CAROLYN JEWEL and ERIK KNUTZEN, on ) 21 Behalf of Themselves and All Others Similarly ) CLASS ACTION ) Situated,, 22 ) EXHIBITS A-K, Q-T, AND V-Y TO ) 23 Plaintiffs, ) DECLARATION OF J. SCOTT MARCUS ) IN SUPPORT OF PLAINTIFFS’ 24 v. ) MOTION FOR PRELIMINARY ) INJUNCTION 25 AT&T CORP., et al., ) ) Date: June 8, 2006 26 Defendants. ) Courtroom: 6, 17th Floor ) Judge: Hon. Vaughn Walker 27 28 EXHIBITS TO DECLARATION OF MARCUS IN SUPPORT OF C-06-0672-VRW PLAINTIFFS’ MOTION FOR PRELIMINARY INJUNCTION Case 3:06-cv-00672-VRW Document 294-1 Filed 07/05/2006 Page 2 of 173 Exhibit A Case 3:06-cv-00672-VRW Document 294-1 Filed 07/05/2006 Page 3 of 173 CV – J. -
Ky-57 Vinson
KY-57 VINSON Homepage Crypto KY-57 (VINSON) Index Voice encryption unit Enigma The KY-57 was a wide-band voice encryption unit that was developed in the USA during the 1970s as a replacement of the NESTOR cryptographic products, such as the KY-38. It was suitable for use with a Hagelin wide range of military radios and telehone lines. As part of the VINSON family of devices, it was the main Fialka crypto 'workhorse' of the US Army during the 1980s. Even today, many radios and voice encryption devices are still backwards compatible with the KY-57, that is also known as the TSEC/KY-57. The Siemens airborne version of the KY-57 is called the KY-58. Philips The KY-57 uses the NSA-developed Type-1 KY-57 voice encryption unit Nema SAVILLE cryptographic algorithm. When used in combination with a radio transceiver, such as the Racal SINCGARS non-ICOM RT-1439/VRC, the KY-57 STK allows signal fades or losses for up to 12 seconds without losing synchronization. Transvertex The KY-57 was eventually superceeded by the KY- Gretag 99 that offered newer - more advanced - Telsy cryptographic algorithms, but that was still backwards compatible with the KY-57. Later Tadiran SINCGARS ICOM radios, such as the RT-1523, had built-in KY-57 (VINSON) compatibility. USA USSR Both voice and data can be encrypted with the KY-57. Voice data is digitized using Continuous Variable Slope Delta modulation (CVSD), similar to other voice crypto systems of the same era, such as the UK Philips Spendex-10 , the Spendex 50 and the Telsy TS-500. -
Adv. Communication Lab 6Th Sem E&C
TH ADV. COMMUNICATION LAB 6 SEM E&C • the line-coded signal can directly be put on a transmission line, in the form of variations of the voltage or current (often using differential signaling). • the line-coded signal (the "base-band signal") undergoes further pulse shaping (to reduce its frequency bandwidth) LINE CODING and then modulated (to shift its frequency bandwidth) to create the "RF signal" that can be sent through free space. Line coding consists of representing the digital signal to be • the line-coded signal can be used to turn on and off a light transported by an amplitude- and time-discrete signal that is in Free Space Optics, most commonly infrared remote optimally tuned for the specific properties of the physical channel control. (and of the receiving equipment). The waveform pattern of • the line-coded signal can be printed on paper to create a voltage or current used to represent the 1s and 0s of a digital bar code. data on a transmission link is called line encoding. The common • the line-coded signal can be converted to a magnetized types of line encoding are unipolar, polar, bipolar and spots on a hard drive or tape drive. Manchester encoding. • the line-coded signal can be converted to a pits on optical For reliable clock recovery at the receiver, one usually imposes a disc. maximum run length constraint on the generated channel Unfortunately, most long-distance communication sequence, i.e. the maximum number of consecutive ones or channels cannot transport a DC component. The DC zeros is bounded to a reasonable number. -
A History of U.S. Communications Security (U)
A HISTORY OF U.S. COMMUNICATIONS SECURITY (U) THE DAVID G. BOAK LECTURES VOLUME II NATIONAL SECURITY AGENCY FORT GEORGE G. MEADE, MARYLAND 20755 The information contained in this publication will not be disclosed to foreign nationals or their representatives without express approval of the DIRECTOR, NATIONAL SECURITY AGENCY. Approval shall refer specifically to this publication or to specific information contained herein. JULY 1981 CLASSIFIED BY NSA/CSSM 123-2 REVIEW ON 1 JULY 2001 NOT RELEASABLE TO FOREI6N NATIONALS SECRET HA~mLE YIA COMINT CIIA~HJELS O~JLY ORIGINAL (Reverse Blank) ---------- • UNCLASSIFIED • TABLE OF CONTENTS SUBJECT PAGE NO INTRODUCTION _______ - ____ - __ -- ___ -- __ -- ___ -- __ -- ___ -- __ -- __ --- __ - - _ _ _ _ _ _ _ _ _ _ _ _ iii • POSTSCRIPT ON SURPRISE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I OPSEC--------------------------------------------------------------------------- 3 ORGANIZATIONAL DYNAMICS ___ -------- --- ___ ---- _______________ ---- _ --- _ ----- _ 7 THREAT IN ASCENDANCY _________________________________ - ___ - - _ -- - _ _ _ _ _ _ _ _ _ _ _ _ 9 • LPI _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I I SARK-SOME CAUTIONARY HISTORY __ --- _____________ ---- ________ --- ____ ----- _ _ 13 THE CRYPTO-IGNITION KEY __________ --- __ -- _________ - ---- ___ -- ___ - ____ - __ -- _ _ _ 15 • PCSM _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
Electronic Technician Personnel and Training Needs of Iowa Industries Gary Dean Weede Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1967 Electronic technician personnel and training needs of Iowa industries Gary Dean Weede Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Education Commons Recommended Citation Weede, Gary Dean, "Electronic technician personnel and training needs of Iowa industries " (1967). Retrospective Theses and Dissertations. 3440. https://lib.dr.iastate.edu/rtd/3440 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microiihned exactly as received 68—2872 WEEDE, Gary Dean, 1938- ELECTRONIC TECHNICIAN PERSONNEL AND TBAINING NEEDS OF IOWA INDUSTRIES. Iowa State University, Ph.D., 1967 Education, general University Microfilms, Inc., Ann Arbor, Michigan ELECTRONIC TECHNICIAN PERSONNEL Al® TRAINING NEEDS OF IOWA INDUSTRIES ty Gary Dean Weede A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Education Approved: Signature was redacted for privacy. Charg of Ma,jo Work Signature was redacted for privacy. Head of mj Dep rtment Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1967 ii TABLE OF CONTENTS Page INTRODUCTION 1 Educational Consideration 1 REVIEW OF LITERATURE 11 METHOD OF PROCEDURE 22 Introduction 22 Funding 22 Procedure 22 FINDINGS 27 General Findings 27 DISCUSSION 88 SUMMARY AND CONCLUSION 95 LITERATURE CITED 100 APPENDIX 103 Ill LIST OF ILLUSTRATIONS Page Figure 1. -
Electronics Technician Fundamentals (30-605-1) Technical Diploma Effective 2018/2019
Electronics Technician Fundamentals (30-605-1) Technical Diploma Effective 2018/2019 The course sequence shown on this sheet is the recommended path to completion of the program and reflects how courses are regularly scheduled. Courses will be scheduled in the terms indicated here. Courses may be taken out of sequence as long as requisites are met. Course Terms √ Number Course Title Requisites Notes Credits Offered 605-113 * DC/AC I 3 3 FA, SP 605-130 * Digital Electronics 3 4 FA, SP, SU 804-115 College Technical Math 1 Prereq: 834-110 1,3 5 FA, SP, SU 605-114 * DC/AC II Prereq: 605-113 3 3 FA, SP, SU 605-120 * Electronic Devices I Prereq: 605-113 3 4 FA, SP, SU 605-138 * Circuit Construction and Repair 3 FA, SP, SU Minimum Program Total Credits Required 22 Students interested in continuing into the 10-605-1 Electronics program can earn their associate degree by completing an additional 41 credits. Please see your academic advisor for details. Federal regulations require disclosure of the following information for this program: U.S. Department of Labor Standard Occupational (SOC) Code & Occupational Profile – Resident Tuition and Fees available at http://www.onetonline.org $3,452 Electronics Engineering Technicians (17-3023) Electronics Technician Fundamentals (30-605-1) Admission Requirements Electronics Technician Fundamentals focuses on the installation and assembly of a wide 1. Students must submit an application & $30 fee. variety of electronic equipment. In addition to comprehensive training in electronic theory, lab 2. Students must complete reading, writing, and math placement assessments. experience is an integral part of the program. -
Electronic Integrated Systems Mechanic, 2610 TS-41 February 1981
Electronic Integrated Systems Mechanic, 2610 TS-41 February 1981 Federal Wage System Job Grading Standard for Electronic Integrated Systems Mechanic, 2610 Table of Contents WORK COVERED ........................................................................................................................................2 WORK NOT COVERED ...............................................................................................................................2 TITLES..........................................................................................................................................................3 GRADE LEVELS ..........................................................................................................................................3 HELPER AND INTERMEDIATE JOBS........................................................................................................3 NOTES TO USERS ......................................................................................................................................3 ELECTRONIC INTEGRATED SYSTEMS MECHANIC, GRADE 12 ..........................................................5 ELECTRONIC INTEGRATED SYSTEMS MECHANIC, GRADE 13 ..........................................................7 US Office of Personnel Management 1 Electronic Integrated Systems Mechanic, 2610 TS-41 February 1981 WORK COVERED This standard covers nonsupervisory jobs involved in rebuilding, overhauling, installing, troubleshooting, repairing, modifying, calibrating, aligning, and maintaining -
Cryptography During the French and American Wars in Vietnam
CRYPTOGRAPHY DURING THE FRENCH AND AMERICAN WARS IN VIETNAM . PHAN DUONG HIE^. U AND NEAL KOBLITZ Abstract. After Vietnam's Declaration of Independence on 2 Septem- ber 1945, the country had to suffer through two long, brutal wars, first against the French and then against the Americans, before finally in 1975 becoming a unified country free of colonial domination. Our pur- pose is to examine the role of cryptography in those two wars. Despite the far greater technological resources of their opponents, the commu- nications intelligence specialists of the Vi^e.t Minh, the National Libera- tion Front, and the Democratic Republic of Vietnam had considerable success in both protecting Vietnamese communications and acquiring tactical and strategic secrets from the enemy. Perhaps surprisingly, in both wars there was a balance between the sides. Generally speaking, cryptographic knowledge and protocol design were at a high level at the central commands, but deployment for tactical communications in the field was difficult, and there were many failures on all sides. \Our friends...admired the determination and sacrifice coming from a small nation standing up against a colossal empire.... Our narrative was like the Biblical story of David against Goliath." |Nguy^e~n Thi. B`ınh(2013, p. 141-142) 1. Introduction Does the history of cryptography during the French and American wars in Vietnam1 have any relevance to the concerns of people working in informa- tion security in the 21st century? The years 1945{1975 predate public key cryptography, predate DES, and hugely predate the internet. Nevertheless, there are several reasons why this story needs to be told in our time. -
Study Guide for the Electronics Technician Pre-Employment Examination
Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology to operate the many systems within the District. The revenue vehicles, train control systems, fare collection machines, and many other systems are electronic or electronically controlled. Due to the large number of electronic systems, a person seeking District employment as an electronics technician should have a broad background in basic electronics. The Pre-employment Test screens applicants basic electronics knowledge. The basic skills and knowledge are prerequisites for BART's job training courses for hired Electronics Technicians. BART does not currently provide basic skills training to newly hired Electronics Technicians. The examination examines the breadth of an applicant’s knowledge, covering many facets of electrical and electronic technology. The Extended Skills Assessment determines whether the applicant possesses specific knowledge or skills that the hiring department deems essential. Basic Skills The Basic Skills Assessment covers three areas of Electronics Technology. These areas are: General Electronics Knowledge and Computational Skills This section determines the applicant’s knowledge of electronic components, and the applicant’s ability to perform mathematical computations involving these components, without using a calculator. Identifying and Using Semiconductors and Operational Amplifiers This section determines the applicant’s knowledge of semi-conductor components and operational amplifier configurations, and the applicant’s ability to analyze the behavior of simple circuits, given certain conditions. Basic Digital Electronics This section determines the applicant’s knowledge of digital electronic components, digital logic, Boolean Algebra, the terminology of microprocessor-based systems, and the applicant’s ability to analyze the behavior of simple circuits, given certain conditions. -
FM 24-18. Tactical Single-Channel Radio Communications
FM 24-18 TABLE OF CONTENTS RDL Document Homepage Information HEADQUARTERS DEPARTMENT OF THE ARMY WASHINGTON, D.C. 30 SEPTEMBER 1987 FM 24-18 TACTICAL SINGLE- CHANNEL RADIO COMMUNICATIONS TECHNIQUES TABLE OF CONTENTS I. PREFACE II. CHAPTER 1 INTRODUCTION TO SINGLE-CHANNEL RADIO COMMUNICATIONS III. CHAPTER 2 RADIO PRINCIPLES Section I. Theory and Propagation Section II. Types of Modulation and Methods of Transmission IV. CHAPTER 3 ANTENNAS http://www.adtdl.army.mil/cgi-bin/atdl.dll/fm/24-18/fm24-18.htm (1 of 3) [1/11/2002 1:54:49 PM] FM 24-18 TABLE OF CONTENTS Section I. Requirement and Function Section II. Characteristics Section III. Types of Antennas Section IV. Field Repair and Expedients V. CHAPTER 4 PRACTICAL CONSIDERATIONS IN OPERATING SINGLE-CHANNEL RADIOS Section I. Siting Considerations Section II. Transmitter Characteristics and Operator's Skills Section III. Transmission Paths Section IV. Receiver Characteristics and Operator's Skills VI. CHAPTER 5 RADIO OPERATING TECHNIQUES Section I. General Operating Instructions and SOI Section II. Radiotelegraph Procedures Section III. Radiotelephone and Radio Teletypewriter Procedures VII. CHAPTER 6 ELECTRONIC WARFARE VIII. CHAPTER 7 RADIO OPERATIONS UNDER UNUSUAL CONDITIONS Section I. Operations in Arcticlike Areas Section II. Operations in Jungle Areas Section III. Operations in Desert Areas Section IV. Operations in Mountainous Areas Section V. Operations in Special Environments IX. CHAPTER 8 SPECIAL OPERATIONS AND INTEROPERABILITY TECHNIQUES Section I. Retransmission and Remote Control Operations Section II. Secure Operations Section III. Equipment Compatibility and Netting Procedures X. APPENDIX A POWER SOURCES http://www.adtdl.army.mil/cgi-bin/atdl.dll/fm/24-18/fm24-18.htm (2 of 3) [1/11/2002 1:54:49 PM] FM 24-18 TABLE OF CONTENTS XI. -
A HISTORY Or Us COMMUNICATIONS SECURITY
e:;. .. -- ~•. .::::;'-- -- ~ A HISTORY or u.s. COMMUNICATIONS SECURITY (U) (The »aYid G.BoakLectures) BAl'"DLlNG INSTRUCI'lO~S 1. This publication CODSists of coveD and numbered pages 1 to 101 inclusive. Verify presence ofeach page upon receipt. F==-- 2. Fo.rmal authorization for access to SECRET material is required for personnel to have access g"-==== to this publication. t C_ 3. This publication will not be released outside government channels without approval of the Di· ~ rector. National Security Agency. .c 4. Extracts from this publication may be made for classroom or individual instruction purposes only. Such utracts will be classified SECRET NOFOR..lIol and accounted for locally until de stroyed. 5. This publication will Dot be carried in aircraft for use therein. ------_.- -----_._._-- '--"-" _==-.:......_~ ~•..........:... ~t;~ --_ _..- IXFORl\IAnO~ ,_ .. NATIONAL SECURITY 5__= Unauthorized Disclosure Subject to Criminal Sanctions -_... --_.. --_.-_. ~: NATIONAL SECURITY AGE."lCY ~=.~ FORT GEORGE G. MEADE. MARYLA.~D 20755 1=' _... ~:~~=~: .C"=:_':":.~' E:::=:: ;;: :.... ~ Revised July 19i3 == =i . --- CIuIiIed.., Direaor. NSA.. ,...aa8& Ie SSA., ~uJ 123-%. IuIQt"-e-.J1\eeIe-i8ce1ioaScb•• ell.uatift0rcl8 111SZ ElL_pCCateprJ %. DeduIi.....duecauotbedetermiaed. ORIGINAL 1' Reverse (pap 2) Blank ...................._ - .. _.._---- ... -_ .. I .. ..:~ -: . - ..... ... :~ ~ ~~ ~:': ~: -. .". '.: •• ••·.I.e••.•e ........ •••• ••••• e. : .:•• •••.•••. '• ..... .... '-•• , ••.••-~~!' .• .?:.- .. -,-- :.~ ........ " :'.::: ••• ... -
Storage WG Core
TCG Storage Architecture Core Specification Specification Version 1.0 Revision 0.9 – draft – May 24, 2007 Draft Work In Progress This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design products based on this document. TCG Copyright © TCG 2007 TCG Storage Architecture Core Specification TCG Copyright 2007 Specification Version 1.0 Copyright © 2003-2007 Trusted Computing Group, Incorporated. Disclaimer THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification and to the implementation of this specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this specification or any information herein. No license, express or implied, by estoppel or otherwise, to any TCG or TCG member intellectual property rights is granted herein. Except that a license is hereby granted by TCG to copy and reproduce this specification for internal use only. Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification licensing through membership agreements. Any marks and brands contained herein are the property of their respective owners. Revision 0.9 – draft – Draft Page ii of 265 TCG Storage Architecture Core Specification TCG Copyright 2007 Specification Version 1.0 Revision History a Added Sections R.