Rational Rose Realtime

Total Page:16

File Type:pdf, Size:1020Kb

Rational Rose Realtime Accelerating Embedded Software Development Rational Rose RealTime The Real-Time • A UML model compiler generates complete Embedded Challenge C, C++, and Java applications for UNIX, Windows NT/2000, and real-time operating Software development teams all face the same system targets. This automated code gener- software development paradox — how to ation eliminates the need for manual transla- develop applications faster without compromis- tion and avoids costly design interpretation ing quality. Developers of real-time embedded errors. software face additional challenges. Such soft- ware is highly event driven, concurrent, and • An associated visual UML model debugger often distributed. Stringent requirements must enables observation and validation of host be met for latency, throughput, and dependabil- and target applications. Model execution “Rational Rose RealTime's ity. The capture and effective communication of encourages early design refinement. strengths are in modeling, designs for such systems is a daunting task. • A complete UML-based testing facility lets code generation, and the the user graphically define system behavior, visualization of models during Rational Rose RealTime then automatically generate and execute execution. IDC's opinion is Rational Rose® RealTime is a complete lifecycle test cases and test suites for complete or Unified Modeling Language™ (UML) develop- partial models. It supports continuous verifi- that these key features cou- ment environment expressly created to meet cation of quality right from the beginning of pled with the full complement system implementation. these real-time embedded challenges. It pro- of industry-standard UML vides a UML-compliant solution to the unique support makes Rational Rose problems of concurrency and distribution. The Real-Time Embedded Rational Rose RealTime unifies the project team RealTime a major contender Development Choice by providing an extensive set of tool integra- as the de facto standard for tions to meet the needs of the entire team, from Rational Rose RealTime is based on market- real-time embedded system requirements capture through to high-perform- leading technology that extends Rational Rose, ance code generation, testing, and debugging the world’s leading visual modeling tool, with development.” for real-time operating system targets. In comb- field-proven UML model code generation and ination with the Rational Unified Process™, your visualization. Steve Garone, Research project has a proven pragmatic approach to re- Director for International Data ducing development risk. Corporation (IDC) UML supports the entire software development lifecycle Accelerating Embedded Software Development Advanced model com- piler generates complete real-time C++ and C executables directly from your design models Use sequence diagrams to specify design behavior Analyze, Design, Compile, Execute, Debug and Te Automatically verify behavior against the suite of specification sequence diagrams at every step of the imple- mentation process. Model debuggers let you trace messages exchange between model elements to get a high-level view of mod runtime behavior Iterative Development Rational® QualityArchitect RealTime is an exten- Rational Rose RealTime supports an iterative sion to the visual modeling capability of development strategy that reduces your Rational Rose RealTime. It enables Rational development risks. Reverse engineering enables Suite DevelopmentStudio RealTime Edition you to understand your existing systems. Code users to perform model-based component test- generation technology lets you compile and exe- ing by generating code automatically from with- cute your designs at the earliest stages of prod- in the Rose RealTime model. For the first time uct inception. Early execution on the host or tar- you can automatically build stubs and drivers get platform provides you with the feedback you to use in testing components and classes. And, need to discover and correct design flaws earli- these generated tests can be executed auto- er, lower costs, and minimize risk. matically. Rational QualityArchitect RealTime supports a wide range of testing activities from developer scenario-based debugging to full system regression testing. face ports, like the pins on hardware integrated circuits, they adapt well to various reuse and distribution situations. Active objects can be flexibly mapped to operating system threads and processes. State machine model debugger with state change animation and model-level In Rational Rose RealTime, active objects are breakpoints lets you diagnose UML modeled as UML-compliant capsules. designs directly Capsules can be hierarchically decomposed into collaborating sub-capsules, and thus can be used throughout the development cycle — from executable architectures to lowest-level design elements. Capsules enable your team to design real-time embedded systems the way they really operate. Productivity Depends on Clear Communication Real-time embedded systems often require Integrated symbolic large-scale development teams to handle the debugging on host and complexities of design and construction. target Without good communication and the clear st capture of system architecture, developing in such an environment can be disastrous. Rational Rose RealTime can help you avoid such pitfalls. • Improve communication between all members of your team through the power of the UML. • Integration between Rational Rose RealTime and Rational Requisite Pro® ensures that no requirements get lost in translation from requirements to design. Observe model execution, with integrated • Capture your architecture more effectively symbolic debugging, on host and target and make it part of the implementation. • Publish your designs to the Web using Rational Rose RealTime’s Web Publisher. You can automatically generate documents via the integration between Rational Rose RealTime and Rational SoDA®. • Software Configuration Management and Version Control tool integration allows you to use products like Rational ClearCase® to more effectively manage your UML Optimized Design Concepts application development. With Rational Rose RealTime, you model arch- itectures and designs in a natural way that mir- A Complete Embedded Solution rors how real-time embedded systems actually The Rational Embedded Solution includes work. For example, concurrency is inherent in Rational Rose RealTime and Rational Test such systems, and the resultant interaction RealTime. Test RealTime supports thorough among concurrent threads of execution raises verification of mission-critical and safety-critical many design challenges. A best practice solu- systems at the unit, object and system level. It tion to handling concurrency is the active provides full trace, coverage, memory analysis, object design pattern. Active objects encapsu- and performance observation both on the late their own thread of execution thus prevent- development host system and the target sys- ing thread interaction problems. Since they tem to ensure complete testing in the most communicate through message-based inter- demanding applications. SPECIFICATIONS An Open Platform Eases Accelerate Success with Support for leading Integration and Adoption Rational Services RTOS targets including: • Tornado/VxWorks Rational Rose RealTime is designed for sim- Like all Rational tools, Rational Rose RealTime • Linux plified and streamlined insertion into your soft- is supported by an extensive, worldwide serv- • OSE ware development environment, processes, ice organization. Explore more than a thousand • pSOSystem and workflows. Seamless integration with other articles, white papers, courses and artifacts • VRTX Rational® Software products and support for a online at the Rational Developer Network. Build diverse set of commercial real-time operating your team’s capability through expert consult- • LynxOS systems offers development teams a complete ing and technical support services. And take • AIX solution that no other vendor can match. advantage of more than 60 courses available • QNX from Rational University to speed technology • UnixWare Support for leading compilers and symbolic deployment and accelerate your project’s • IRIX debuggers keeps you in control of your design. delivery. Available where and when needed, • Chorus Classix These integrations let you focus on the design Rational Services improve self-sufficiency as of your software, rather than on the develop- • Nucleus they build a foundation for continuous software ment environment or on tool interoperability • WinCE development improvement. issues. • Support for other targets available Unify the Team with Rational Suite Rational Alliance Complete Your Product Integrations: ® Development Solution Rational Rose RealTime is a member of the • Rational ClearCase Rational Suite® product family, available • Rational ClearCase LT When Rational solutions are combined with in both Rational Suite® DevelopmentStudio and • Rational RequisitePro® the complementary products and services of Rational Suite Enterprise Editions. The Rational • Rational SoDA® over 500 alliances, customers are afforded the Suite family provides a comprehensive software • Rational ClearQuest™ most comprehensive development environment development platform that will unify your team, • Rational Purify® available today. Rational's alliances with IBM, optimize individual productivity, and simplify • Rational Quantify® Microsoft, Sun Microsystems, Hewlett Packard, adoption of the Rational solution. Intel, Borland,
Recommended publications
  • The Timeboxing Process Model for Iterative Software Development
    The Timeboxing Process Model for Iterative Software Development Pankaj Jalote Department of Computer Science and Engineering Indian Institute of Technology Kanpur – 208016; India Aveejeet Palit, Priya Kurien Infosys Technologies Limited Electronics City Bangalore – 561 229; India Contact: [email protected] ABSTRACT In today’s business where speed is of essence, an iterative development approach that allows the functionality to be delivered in parts has become a necessity and an effective way to manage risks. In an iterative process, the development of a software system is done in increments, each increment forming of an iteration and resulting in a working system. A common iterative approach is to decide what should be developed in an iteration and then plan the iteration accordingly. A somewhat different iterative is approach is to time box different iterations. In this approach, the length of an iteration is fixed and what should be developed in an iteration is adjusted to fit the time box. Generally, the time boxed iterations are executed in sequence, with some overlap where feasible. In this paper we propose the timeboxing process model that takes the concept of time boxed iterations further by adding pipelining concepts to it for permitting overlapped execution of different iterations. In the timeboxing process model, each time boxed iteration is divided into equal length stages, each stage having a defined function and resulting in a clear work product that is handed over to the next stage. With this division into stages, pipelining concepts are employed to have multiple time boxes executing concurrently, leading to a reduction in the delivery time for product releases.
    [Show full text]
  • Best Practice of SOA
    JOURNAL OF COMPUTING, VOLUME 2, ISSUE 2, FEBRUARY 2010, ISSN: 2151-9617 38 HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/ Improvement in RUP Project Management via Service Monitoring: Best Practice of SOA Sheikh Muhammad Saqib1, Shakeel Ahmad1, Shahid Hussain 2, Bashir Ahmad 1 and Arjamand Bano3 1Institute of Computing and Information Technology Gomal University, D.I.Khan, Pakistan 2 Namal University, Mianwali , Pakistan 3 Mathematics Department Gomal University, D.I.Khan, Pakistan Abstract-- Management of project planning, monitoring, scheduling, estimation and risk management are critical issues faced by a project manager during development life cycle of software. In RUP, project management is considered as core discipline whose activities are carried in all phases during development of software products. On other side service monitoring is considered as best practice of SOA which leads to availability, auditing, debugging and tracing process. In this paper, authors define a strategy to incorporate the service monitoring of SOA into RUP to improve the artifacts of project management activities. Moreover, the authors define the rules to implement the features of service monitoring, which help the project manager to carry on activities in well define manner. Proposed frame work is implemented on RB (Resuming Bank) application and obtained improved results on PM (Project Management) work. Index Terms—RUP, SOA, Service Monitoring, Availability, auditing, tracing, Project Management NTRODUCTION 1. I 2. RATIONAL UNIFIED PROCESS (RUP) Software projects which are developed through RUP RUP is a software engineering process model, which provides process model are solution oriented and object a disciplined approach to assigning tasks and responsibilities oriented. It provides a disciplined approach to within a development environment.
    [Show full text]
  • Descriptive Approach to Software Development Life Cycle Models
    7797 Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Available online at www.elixirpublishers.com (Elixir International Journal) Computer Science and Engineering Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Descriptive approach to software development life cycle models Shaveta Gupta and Sanjana Taya Department of Computer Science and Applications, Seth Jai Parkash Mukand Lal Institute of Engineering & Technology, Radaur, Distt. Yamunanagar (135001), Haryana, India. ARTICLE INFO ABSTRACT Article history: The concept of system lifecycle models came into existence that emphasized on the need to Received: 24 January 2012; follow some structured approach towards building new or improved system. Many models Received in revised form: were suggested like waterfall, prototype, rapid application development, V-shaped, top & 17 March 2012; Bottom model etc. In this paper, we approach towards the traditional as well as recent Accepted: 6 April 2012; software development life cycle models. © 2012 Elixir All rights reserved. Keywords Software Development Life Cycle, Phases and Software Development, Life Cycle Models, Traditional Models, Recent Models. Introduction Software Development Life Cycle Models The Software Development Life Cycle (SDLC) is the entire Software Development Life Cycle Model is an abstract process of formal, logical steps taken to develop a software representation of a development process. SDLC models can be product. Within the broader context of Application Lifecycle categorized as: Management (ALM), the SDLC
    [Show full text]
  • Ovum Decision Matrix: Selecting an Application Lifecycle Management and Devops Solution, 2019–20
    Ovum Decision Matrix: Selecting an Application Lifecycle Management and DevOps Solution, 2019–20 Publication Date: 27 Jun 2019 | Product code: INT003-000374 Michael Azoff Ovum Decision Matrix: Selecting an Application Lifecycle Management and DevOps Solution, 2019–20 Summary Catalyst Software lifecycle management (SLM) is the management of software development by taking a lifecycle approach from concept through the management of requirements, testing, coding, deployment, upgrades, maintenance, and final retirement. The market provides tools to support this lifecycle in the form of application lifecycle management (ALM) tools and, with the rise of DevOps, tools that provide DevOps-style release management, orchestration, and automation. This Ovum Decision Matrix (ODM) examines ALM tools that cross over into DevOps to support the full arc of the lifecycle from application/product concept to deployment into production. Ovum view ALM origins and trends The need for taking an SLM approach is best thought of as good practice in the relatively young art of software development. The ALM tools market has evolved to support SLM through the years; at its core is the development methodology or work process, and this has evolved over time, starting with waterfall or linear stage-gate processes and incorporating various innovations such as Tom Gilb's evolutionary delivery, Barry Boehm's spiral model, and Rational's unified process, before Agile and lean swept the board with examples such as Scrum, extreme programming, and Kanban boards post- 2001 (when the Agile Manifesto was created). The integrated ALM suite tools market really took off around 2003 but supported waterfall because Agile was still under the radar.
    [Show full text]
  • Multi Objective Analysis for Timeboxing Models of Software Development
    MULTI OBJECTIVE ANALYSIS FOR TIMEBOXING MODELS OF SOFTWARE DEVELOPMENT Vassilis C. Gerogiannis and Pandelis G. Ipsilandis Department of Project Management, Technological Education Institute of Larissa, Larissa, Greece Keywords: Software Project Management, Iterative Development, Timeboxing, Project Scheduling, Linear Programming, Multi-Objective Optimization. Abstract: In iterative/incremental software development, software deliverables are built in iterations - each iteration providing parts of the required software functionality. To better manage and monitor resources, plan and deliverables, iterations are usually performed during specific time periods, so called “time boxes”. Each time box is further divided into a sequence of stages and a dedicated development team is assigned to each stage. Iterations can be performed in parallel to reduce the project completion time by exploiting a “pipelining” concept, that is, when a team completes the tasks of a stage, it hands over the intermediate deliverables to the team executing the next stage and then starts executing the same stage in the next iteration. In this paper, we address the problem of optimizing the schedule of a software project that follows an iterative, timeboxing process model. A multi objective linear programming technique is introduced to consider multiple parameters, such as the project duration, the work discontinuities of development teams in successive iterations and the release (delivery) time of software deliverables. The proposed model can be used to generate alternative project plans based on the relative importance of these parameters. 1 INTRODUCTION team of experts is usually assigned to each stage, i.e., a team for a stage performs only the activities In iterative and incremental development, software for that stage.
    [Show full text]
  • Software Development a Practical Approach!
    Software Development A Practical Approach! Hans-Petter Halvorsen https://www.halvorsen.blog https://halvorsen.blog Software Development A Practical Approach! Hans-Petter Halvorsen Software Development A Practical Approach! Hans-Petter Halvorsen Copyright © 2020 ISBN: 978-82-691106-0-9 Publisher Identifier: 978-82-691106 https://halvorsen.blog ii Preface The main goal with this document: • To give you an overview of what software engineering is • To take you beyond programming to engineering software What is Software Development? It is a complex process to develop modern and professional software today. This document tries to give a brief overview of Software Development. This document tries to focus on a practical approach regarding Software Development. So why do we need System Engineering? Here are some key factors: • Understand Customer Requirements o What does the customer needs (because they may not know it!) o Transform Customer requirements into working software • Planning o How do we reach our goals? o Will we finish within deadline? o Resources o What can go wrong? • Implementation o What kind of platforms and architecture should be used? o Split your work into manageable pieces iii • Quality and Performance o Make sure the software fulfills the customers’ needs We will learn how to build good (i.e. high quality) software, which includes: • Requirements Specification • Technical Design • Good User Experience (UX) • Improved Code Quality and Implementation • Testing • System Documentation • User Documentation • etc. You will find additional resources on this web page: http://www.halvorsen.blog/documents/programming/software_engineering/ iv Information about the author: Hans-Petter Halvorsen The author currently works at the University of South-Eastern Norway.
    [Show full text]
  • Agile/Devops Development and Agile Acquisition: Differences, Similarities
    GSAW 2006 Tutorial F: Evolutionary Acquisition & Spiral Development Length: Half day Overview: The publication of Department of Defense (DoD) Directives 5000.1and 5000.2 in 2003 established a preference for evolutionary acquisition and spiral development in the acquisition of complex weapon systems. Similarly to the original DoD directives, National Security Space Acquisition Policy 03-01 also positioned evolutionary acquisition and spiral development as preferred strategies for the Space domain. The policy was based on the assumption that the implementation of these strategies would drastically reduce the time to deliver complex weapon systems to the war-fighter. Nevertheless, the DoD still struggles with substantial cost and schedule overruns. Spiral development is blamed, and a revision to the 5000 Directives is expected. Also, as recently as June 8, 2005, Michael Griffin, the newly appointed NASA Administrator was quoted saying with respect to the Crew Exploration Vehicle program that "… I hope never again to let the words spiral development cross my lips." It is unfortunate that even though evolutionary concepts were introduced in the early 1960's and spiral development in the1980's, so much controversy remains about their use. Technical difficulties with the Spiral Development fundamentally stem from the flexibility of the model. While it was originally introduced as a software development life cycle model, in reality it is much more; it is a meta-model, with multiple applications. Itis, in fact, a risk-driven process generator that is applicable not only to Software Engineering, but Systems Engineering as well, and it can be applied to the development of any process, concurrently with product development.
    [Show full text]
  • Using the Rational Unified Process for Small Projects: Expanding Upon Extreme Programming
    UUssiinngg tthhee RRaattiioonnaall UUnniiffiieedd PPrroocceessss ffoorr SSmmaallll PPrroojjeeccttss:: EExxppaannddiinngg UUppoonn eeXXttrreemmee PPrrooggrraammmmiinngg Gary Pollice Rational Software White Paper TP 183, 3/01 Table of Contents Abstract.................................................................................................................................................................................... 1 Introduction............................................................................................................................................................................. 1 A Short Story......................................................................................................................................................................... 1 Overview............................................................................................................................................................................... 2 Project Start — Inception ...................................................................................................................................................... 3 An approved Business Case .................................................................................................................................................. 4 Risk List ................................................................................................................................................................................ 4 Preliminary Project Plan.......................................................................................................................................................
    [Show full text]
  • RUP, Agile, XP
    RUP, Agile, XP Sommerville Book: Chapter 2.1.2, 2.3.3, 2.4, 3.1, 3.3 Pressman & Maxim Book: Chapter 4.1.2, 4.1.3, 4.3, 5.1—5.4 Administrative stuff • TA office hours – Lefan, 2—3:30pm T @ CSIL1 – Yuxi, ??pm Mon/Wed @ CSIL? ?? • Class enrollment • Warmup project Software Development Process Software Development Process • In software engineering, a software development process is the process of dividing software development work into distinct phases to improve design, product management, and project management. It is also known as a software development life cycle. ---- Wikipedia Outline • The problems of waterfall – How to improve waterfall? • RUP – Phases – (iterative) Activities – UML • Agile – XP Waterfall model Requirement design implementation testing maintenance What are the problems? • 1. difficult to handle changes • 2. take long time to deliver • 3. expensive to fix errors • 4. difficult to estimate/planning How to deliver faster? Incremental process • Produce core products first • Produce further refinements in follow-up releases Incremental process Example • Text editor • Class registration system How to handle changes better? Evolutionary process • Spiral model Design Rational Unified Process 1990’ Rational Unified Process • Basic idea: incremental + iterative • Phases + workflows Business modeling Req. Design Impl. Test Deployment Which workflow happens at which phase? RUP RUP • What is the product of each workflow? – Unified Modeling Language • Business modeling + requirement à Actor and use case diagram • Analysis & design à class diagram, sequence diagram, state diagram • Implementation • Testing • Deployment à deployment diagram UML examples Agile 2001 Background • Planning planning planning – Airplane’s control system needs 10 years to develop • Problems – Too much document – Too late code delivery – Not easy to deal with changes – Too much bureaucracy – Hard to finalize design w/o implementation – Hard to estimate time before design & imp.
    [Show full text]
  • The IBM Rational Unified Process for System Z
    Front cover The IBM Rational Unified Process for System z RUP for System z includes a succinct end-to-end process for z practitioners RUP for System z includes many examples of various deliverables RUP for System z is available as an RMC/RUP plug-in Cécile Péraire Mike Edwards Angelo Fernandes Enrico Mancin Kathy Carroll ibm.com/redbooks International Technical Support Organization The IBM Rational Unified Process for System z July 2007 SG24-7362-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (July 2007) This edition applies to the IBM Rational Method Composer Version 7.1 © Copyright International Business Machines Corporation 2007. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this IBM Redbooks publication . .x Become a published author . xii Comments welcome. xii Part 1. Introduction to the IBM Rational Unified Process for System z. 1 Chapter 1. Introduction. 3 1.1 Purpose. 4 1.2 Audience . 4 1.3 Rationale . 4 1.4 Scope . 5 1.5 Overview . 5 Part 2. The IBM Rational Unified Process for System z for Beginners . 9 Chapter 2. Introduction to the IBM Rational Unified Process and its extension to Service-Oriented Architecture. 11 2.1 Overview . 12 2.2 Introduction to RUP. 13 2.2.1 The heart of RUP . 13 2.2.2 The IBM Rational Method Composer (RMC) platform . 13 2.3 Key principles for successful software development.
    [Show full text]
  • A Hybrid Approach Using RUP and Scrum As a Software Development Strategy Dalila Castilla University of North Florida
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2014 A Hybrid Approach Using RUP and Scrum as a Software Development Strategy Dalila Castilla University of North Florida Suggested Citation Castilla, Dalila, "A Hybrid Approach Using RUP and Scrum as a Software Development Strategy" (2014). UNF Graduate Theses and Dissertations. 514. https://digitalcommons.unf.edu/etd/514 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2014 All Rights Reserved A HYBRID APPROACH USING RUP AND SCRUM AS A SOFTWARE DEVELOPMENT STRATEGY by Dalila Castilla A thesis submitted to the School of Computing In partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences UNIVERSITY OF NORTH FLORIDA SCHOOL OF COMPUTING August, 2014 Copyright (©) 2014 by Dalila Castilla All rights reserved. Reproduction in whole or in part in any form requires the prior written permission of Dalila Castilla or designed representative. ii The thesis “A Hybrid Approach Using RUP and Scrum as a Software Development Strategy” submitted by Dalila Castilla in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences has been Approved by the thesis committee: Date ___________________________________ _____________________ Dr. Robert F. Roggio Thesis Advisor and Committee Chairperson ___________________________________ _____________________ Dr. Ching-Hua Chuan ___________________________________ _____________________ Dr. Sherif A. Elfayoumy Accepted for the School of Computing: ___________________________________ _____________________ Dr.
    [Show full text]
  • Build Your Project Using Rational Unified Process #7 of a Series, by Pavan Kumar Gorakavi, M.S., M.B.A, G.M.C.P, C.A.P.M
    Build your Project using Rational Unified Process #7 of a Series, by Pavan Kumar Gorakavi, M.S., M.B.A, G.M.C.P, C.A.P.M. 1. What is Rational Unified Process? Rational Unified Process is a disciplined software development methodology that targets producing high quality soft- ware deliverables. The Rational unified process encourages systematic development while classifying tasks, assigning tasks and responsibilities within a development organization. Rational unified process was developed by Philippe Kruchten, Ivar Jacobsen, and others at Rational Corporation. The setting for development of Rational Unified Process began in early 90s at Rational Software Corporation, founded by Paul Levy and Mike Devlin. Earlier Rational Software Corporation targets to develop large defense software devel- opment projects in Ada. In the 80s, to withstand competition from different open-system platforms Rational Software Corporation decided in porting their system to open-system platforms. To improve market strength, Rational Software Corporation acquired Pure-Atria which provide ClearCase configuration management tools, the Purify line of testing tools, Requisite for Requisite Pro, SQA for testing tools suites. Rational worked with "the three Amigos" [Grady Booch, James Rumbaugh, Ivar Jackobson] to develop a single unified language, UML, and drafted best software development practices which yielded the Rational Unified Process. Rational Unified Process is a successor to the Rational Objectory Process. After merging of Rational Software Corpora- tion and Objectory AB in 1995, Rational Objectory Process was the result of integration of the Rational Approach and Objectory Process. Rational Unified Process inherits its process structure and use cases structure from the Objectory Process.
    [Show full text]