Fishers' Knowledge Detects Ecological Decay in the Mediterranean

Total Page:16

File Type:pdf, Size:1020Kb

Fishers' Knowledge Detects Ecological Decay in the Mediterranean Ambio https://doi.org/10.1007/s13280-020-01452-3 RESEARCH ARTICLE Fishers’ knowledge detects ecological decay in the Mediterranean Sea Benedetta Veneroni , Paul G. Fernandes Received: 22 June 2020 / Revised: 3 October 2020 / Accepted: 24 November 2020 Abstract The Northern Adriatic Sea (NAS) is one of the peaks of 5 °C in winter and 27 °C in summer (Russo and most overexploited marine ecosystems in Europe. Given Artegiani 1996). The region has, by far, the highest annual the gaps in scientific knowledge regarding the NAS, this production of demersal species (around 44,000 tons) in the study sought Fishers’ Ecological Knowledge (FEK) to Mediterranean (Mannini and Sabatella 2015; STECF 2016) determine NAS’ historical baselines for conservation. By and the highest number of trawlers (1043) of any European interviewing 53 fishers in three ports of northern Italy, country (Colloca et al. 2017). The NAS presents the lowest estimates of the catch rates of four commercial demersal probability of being sustainably fished (Colloca et al. species were generated over a 60-year period, and 2017), and more than 90% of its marine resources are perceptions of target and non-target species’ diversity and depleted (Lotze et al. 2011). Analytical stock assessments benthic diversity were analysed in three groups of fishers of some of the most common commercial stocks fished by (i.e. novices, experienced and veterans). Results showed a Northern Adriatic bottom-trawlers have been conducted, significant decline in perceived abundance of sole (Solea but these estimate population dynamics only as far back as solea), common cuttlefish (Sepia officinalis) and mantis the mid 2000s (STECF 2019). In most cases estimated shrimp (Squilla mantis), and evidence was found of a fishing mortalities (F) have been, and are, higher than the Shifting Baseline Syndrome (SBS) among novices. Given those considered to be sustainable (FMSY), such as in the FEK’s ability to complement scientific knowledge, fishers’ case of red mullet, Mullus barbatus (F/FMSY ratio of 1.2 in participation in marine management policies and 2018); in others they are very much higher, as for sole, intergenerational communication should be enhanced, to Solea solea (ratio of 3.0); and mantis shrimp, Squilla improve the status of marine ecosystems and hinder SBS. mantis (3.33). The substantial fishing pressures incurred on the NAS Keywords Biodiversity Á Fisheries Á were intensified by Italian fishers’ adoption of bottom trawl Local ecological knowledge Á Mediterranean Á gears, notably beam trawls, otter trawls (also called tar- Shifting baseline syndrome Á Trawling tana) and the rapido trawl, from the start of the 20th Century (Fortibuoni et al. 2017). Of these, the rapido is considered to exert the most disruptive effects (Pranovi INTRODUCTION et al. 2001), with its rigid mouth and iron teeth penetrating into the sediment (Giovanardi et al. 1998). The long-term Located in the Mediterranean Sea, the Northern Adriatic use of the rapido and other trawls for demersal fishing is Sea (NAS) is characterised by shallow depths (average of considered to have negatively affected not only the target 33.5 m), sandy-muddy bottoms, strong vertical stratifica- species (Barausse et al. 2011; Damalas et al. 2015) but also tion and highly variable sea surface temperatures, with non-target by-catch species such as elasmobranchs, marine mammals and diadromous fish (Abdul Malak et al. 2011; Giani et al. 2012). Furthermore, the rapido has exerted Electronic supplementary material The online version of this article (https://doi.org/10.1007/s13280-020-01452-3) contains sup- substantial pressure on the seabed and benthic macrofauna plementary material, which is available to authorized users. (Giani et al. 2012), by scraping the seafloor, disrupting bed- Ó The Author(s) 2021 www.kva.se/en 123 Ambio forms, re-suspending sediments and changing their size and similarity between terms, TEK is often used as a synonym texture (Collie et al. 1997; Pranovi 2000). These effects for LEK (Berkes 2012). When referring to fishing com- have been exacerbated by the modernisation of fishing munities and fishers, the body of LEK is also regarded as technologies (GPS systems), enhanced capacity and Fishers’ Ecological Knowledge (FEK) (Neis et al. 1999a; catchability (Damalas et al. 2015); although there is evi- Pita et al. 2020). The memory-based FEK has been adopted dence that they have been hindered by the lack of gener- to recall past environmental conditions by devising indi- ational replacement in the trawling sector labour force cators of the habitat’s pristine status, defined as historical (Buonfiglio et al. 2011). baselines (McQuatters-Gollop et al. 2019). FEK has played Our knowledge of overexploitation of NAS’ fisheries is a complementary role to traditional science systems by based on fairly recent data (Cardinale et al. 2017) and there detecting a variety of long-term changes in: ecosystems’ is a lack of information on the long-term trends of species’ structure (Viegas et al. 2016); fish catches (Beaudreau and abundance and diversity. Trends in abundance of demersal Levin 2014; Coll et al. 2014; Martins et al. 2018) and stocks in the area, by the MEDITS International Trawl benthic diversity (Bastari et al. 2017); and by providing Survey, have only been monitored regularly since 1996, information on species’ ecology and behaviour (Gaspare with the exception of two trawl surveys, one conducted in et al. 2015). The qualitative approach of FEK has improved 1948–1949 and the other in the 1980s (Jukic-Peladic et al. fisheries management (Novacek and Cleland 2001; Barclay 2001). Temporal changes in diversity of non-commercial et al. 2017; McQuatters-Gollop et al. 2019) and has benthic species have never been monitored by Italian enabled scientists to enhance sampling and formulate new fisheries agencies (Bastari et al. 2017) and trawlers’ effects hypotheses for research (Silvano and Valbo-Jørgensen on benthos’ diversity and seafloor integrity has only been 2008). The use of FEK in marine policies has consequently investigated in the last three decades (Pranovi et al. 2000; enriched fishers’ social and political role, by involving De Biasi and Pacciardi 2008; Petovic et al. 2016). To this them in decision-making processes and establishing a day, most of the benthic defaunation remains unrecorded dialogue with stakeholders (Turner et al. 2000). and no historical baselines are available to compare the Given the need to provide baselines for marine man- unexploited status of the seafloor (i.e. before the intro- agement (Hind 2015) and the positive effects of FEK’s duction of the rapido) to the present one. The lack of clear adoption in science and policy, the participation of fishing historical baselines of benthic diversity and seafloor communities in decision-making processes has been pro- integrity might have caused, among other factors, the moted across multiple international bodies. In particular, failure of NAS’ Good Environmental Status (GES), an the General Fishing Commission for the Mediterranean and objective set by the European Commission’s (EC) Marine Black Sea (GFCM) of the Food and Agriculture Organi- Strategy Framework Directive (MSFD) (Rice et al. 2012; zation of the United Nations (FAO) devised a Regional Pita et al. 2020), aiming to mitigate the anthropogenic Plan of Action for Small Scale Fisheries in the Mediter- pressure exerted on the seafloor by 2020 (Rice et al. 2010). ranean and Black Sea RPOA-SSF (2018). This denounced The weaknesses in long-term scientific data collection of the lack of recognition and involvement of resource users both target and non-target species (Carpi et al. 2017), and proposed their enhanced participation in policy-mak- impede the definition of baselines, leading to a misinter- ing at a both national and international scale, by 2028 pretation of present conditions and a flawed formulation of (GFCM 2018). With the publication of Voluntary Guide- effective conservation targets (Huntington 2000; Papworth lines for Securing Sustainable Small-Scale Fisheries et al. 2009). This issue is identified as Shifting Baseline (VGSSFs) the FAO has also expressed the need to recog- Syndrome (SBS), corresponding to the erroneous percep- nise fishers as ‘‘holders, providers and receivers of tion of a current biological system due to the invalid knowledge’’ and to support fishing communities’ knowl- information on its past conditions (Kahn and Friedman edge as a valuable instrument to inform local governance 1995). The involvement of fishing communities through (FAO 2015). Furthermore, the failure of the ECs Common Local Ecological Knowledge (LEK) represents a valuable Fisheries Policy (CFP) to achieve catches at sustainable instrument to integrate new information into the gaps left levels by 2020 (Soma et al. 2018) has been associated with, by conventional science. among other elements, inadequate participation of resource LEK is defined as the collective environmental knowl- users in devising management measures (Carpi et al. 2017). edge of local resource users (Beaudreau and Levin 2014), Both the EC and FAO suggest enhancing FEK’s developed through human interaction with the natural involvement in national and international management environment and its biological components (Braga et al. decisions. However, Italian fishers still lack a substantial 2018). When culturally transmitted through generations, representation in marine management policies. Local fish- the cumulative knowledge of LEK is more properly defined ery cooperatives are still not incorporated in the country’s as Traditional Ecological Knowledge (TEK). Given the policy-making, delaying a social empowerment process Ó The Author(s) 2021 123 www.kva.se/en Ambio already consolidated in other European countries (Buon- solutions to, seafloor degradation. To achieve this, a figlio et al. 2011). By building on previous studies of FEK qualitative approach was used as a well-established in the Mediterranean (Coll et al. 2014; Damalas et al. 2015) instrument for documenting change in communities’ and the Italian NAS (Azzurro et al. 2011; Bastari et al. environmental knowledge (Newing 2010).
Recommended publications
  • Fisheries Centre
    Fisheries Centre The University of British Columbia Working Paper Series Working Paper #2015 - 80 Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulman, Adib Saad, Kyrstn Zylich, Daniel Pauly and Dirk Zeller Year: 2015 Email: [email protected] This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulmana, Adib Saadb, Kyrstn Zylicha, Daniel Paulya, Dirk Zellera a Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada b President of Syrian National Committee for Oceanography, Tishreen University, Faculty of Agriculture, P.O. BOX; 1408, Lattakia, Syria [email protected] (corresponding author); [email protected]; [email protected]; [email protected]; [email protected] ABSTRACT Syria’s total marine fisheries catches were estimated for the 1950-2010 time period using a reconstruction approach which accounted for all fisheries removals, including unreported commercial landings, discards, and recreational and subsistence catches. All unreported estimates were added to the official data, as reported by the Syrian Arab Republic to the United Nation’s Food and Agriculture Organization (FAO). Total reconstructed catch for 1950-2010 was around 170,000 t, which is 78% more than the amount reported by Syria to the FAO as their national catch. The unreported components added over 74,000 t of unreported catches, of which 38,600 t were artisanal landings, 16,000 t industrial landings, over 4,000 t recreational catches, 3,000 t subsistence catches and around 12,000 t were discards.
    [Show full text]
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • By Species Items
    1 Fish, crustaceans, molluscs, etc Capture production by species items Mediterranean and Black Sea C-37 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Méditerranée et mer Noire (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Mediterráneo y Mar Negro English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 1998 1999 2000 2001 2002 2003 2004 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 495 335 336 108 47 7 10 Common carp Cyprinus carpio 11 3 1 - 2 3 4 4 Roach Rutilus rutilus 11 1 1 2 7 11 12 5 Roaches nei Rutilus spp 11 13 78 73 114 72 83 47 Sichel Pelecus cultratus 11 105 228 276 185 147 52 39 Cyprinids nei Cyprinidae 11 - - 167 159 95 141 226 European perch Perca fluviatilis 13 - - - 1 1 - - Percarina Percarina demidoffi 13 - - - - 18 15 202 Pike-perch Stizostedion lucioperca 13 3 031 2 568 2 956 3 504 3 293 2 097 1 043 Freshwater fishes nei Osteichthyes 13 - - - 17 - 249 - Danube sturgeon(=Osetr) Acipenser gueldenstaedtii 21 114 36 20 8 10 3 3 Sterlet sturgeon Acipenser ruthenus 21 - - 0 - - - - Starry sturgeon Acipenser stellatus 21 13 11 5 3 5 1 1 Beluga Huso huso 21 12 10 1 0 4 1 3 Sturgeons nei Acipenseridae 21 290 185 59 22 23 14 8 European eel Anguilla anguilla 22 917 682 464 602 642 648 522 Salmonoids nei Salmonoidei 23 26 - - 0 - - 7 Pontic shad Alosa pontica 24 153 48 15 21 112 68 115 Shads nei Alosa spp 24 2 742 2 640 2 095 2 929 3 984 2 831 3 645 Azov sea sprat Clupeonella cultriventris 24 3 496 10 862 12 006 27 777 27 239 17 743 14 538 Three-spined stickleback Gasterosteus aculeatus 25 - - - 8 4 6 1 European plaice Pleuronectes platessa 31 - 0 6 7 7 5 5 European flounder Platichthys flesus 31 69 62 56 29 29 11 43 Common sole Solea solea 31 5 047 4 179 5 169 4 972 5 548 6 273 5 619 Wedge sole Dicologlossa cuneata 31 ..
    [Show full text]
  • Automation of Discrimination Training for Cuttlefish (Mollusca: Cephalopoda)
    Keystone Journal of Undergraduate Research 2(1): 15-21. 2014 Automation of Discrimination Training for Cuttlefish (Mollusca: Cephalopoda) Alexander Ryan Hough Faculty Mentor: 1Dr. Jean Geary Boal Department of Biology Millersville University ABSTRACT Cephalopods are common subjects of learning experiments, yet discrimination stimuli are commonly presented by hand, which is both laborious and rife with opportunity for cuing. The following experiment tested the possibility that cuttlefish training could be automated using stimuli presented via computer monitor and food rewards presented in a food hopper. A single adult female common cuttlefish (Sepia officinalis) was trained first to attack a black rectangle (S+) for a live crab prey item and ignore a white right-angle (S-). Stimuli were then presented behind a clear Plexiglas partition and the cuttlefish was rewarded for attacking the Plexiglas in front of the S+. A food hopper was introduced to improve the delivery of the food reward. Finally, stimuli were presented on a computer monitor (CRT) located outside the tank and the cuttlefish was rewarded for attacking the Plexiglas in front of the S+ image. The cuttlefish was successful in learning the discrimination and in transferring learning from the physical objects to the computer images. Results indicate that automation of training using computer presentations of stimuli and automated food rewards is possible for cuttlefish. Keywords: behavior; comparative cognition; flicker fusion; vision The Coleoid cephalopods (octopuses, focused on spatial learning using mazes (e.g. cuttlefishes, and squids) possess the most Cartron et al. 2012). The objective of this advanced nervous system within the phylum study was to assess the feasibility of using Mollusca and the largest brain of any computer-run stimulus presentation and invertebrate (Hanlon and Messenger 1996; automated rewards to study discrimination Hickman et al.
    [Show full text]
  • Pharaoh Cuttlefish, Sepia Pharaonis, Genome Reveals Unique Reflectin
    fmars-08-639670 February 9, 2021 Time: 18:18 # 1 ORIGINAL RESEARCH published: 15 February 2021 doi: 10.3389/fmars.2021.639670 Pharaoh Cuttlefish, Sepia pharaonis, Genome Reveals Unique Reflectin Camouflage Gene Set Weiwei Song1,2, Ronghua Li1,2,3, Yun Zhao1,2, Herve Migaud1,2,3, Chunlin Wang1,2* and Michaël Bekaert3* 1 Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China, 2 Collaborative Innovation Centre for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China, 3 Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom Sepia pharaonis, the pharaoh cuttlefish, is a commercially valuable cuttlefish species across the southeast coast of China and an important marine resource for the world fisheries. Research efforts to develop linkage mapping, or marker-assisted selection have been hampered by the absence of a high-quality reference genome. To address this need, we produced a hybrid reference genome of S. pharaonis using a long-read Edited by: platform (Oxford Nanopore Technologies PromethION) to assemble the genome and Andrew Stanley Mount, short-read, high quality technology (Illumina HiSeq X Ten) to correct for sequencing Clemson University, United States errors. The genome was assembled into 5,642 scaffolds with a total length of 4.79 Gb Reviewed by: and a scaffold N of 1.93 Mb. Annotation of the S. pharaonis genome assembly Simo Njabulo Maduna, 50 Norwegian Institute of Bioeconomy identified a total of 51,541 genes, including 12 copies of the reflectin gene, that enable Research (NIBIO), Norway cuttlefish to control their body coloration.
    [Show full text]
  • (Marmara Sea) and Ecological Characteristics of Their Habitats
    RESEARCH ARTICLE Eur J Biol 2017; 76(1): 20-5 Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats Begum Ayfer, Husamettin Balkis, Aysegul Mulayim* Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey Please cite this article as: Ayfer B, Balkis H, Mulayim A. Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats. Eur J Biol 2017; 76(1): 20-5. ABSTRACT We have performed series of analyses to identify decapod crustaceans inhabiting the littoral zone of the Marmara Island and to study specific ecological characteristics of the habitat. Samples of decapod crustaceans species were collected from 12 stations (6 onshore, 6 offshore) on May 12-17, 2008 and November 17-22, 2008. A total of 17 species and 1199 specimens of decapod crustaceans were recorded. Eigth species (A. lacazei, N. norvegicus, P. bluteli, P. longimana, P. platycheles, D. pugilator, D. personata and L. vernalis) have been reported in the littoral zone of Marmara Island for the first time in this study. Also our study also sheds light on some ecological properties (temperature, salinity, dissolved oxygen) of the habitats of the species from the littoral zone of the Marmara Island. Keywords: Ecology, decapoda, crustacea, Marmara Island, The Sea of Marmara INTRODUCTION The first study at the island was carried out by Ostrou- moff (3,4) followed by studies by Okuş (5), Yüksek (6) The Archipelago in the Sea of Marmara consisting of and Balkıs (7). small and large islands located southwest of the Sea of Marmara and the northwest of the Kapıdağ Peninsula MATERIALS AND METHODS are referred to as the Islands of Marmara.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
    English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project ..............................................................................................
    [Show full text]
  • The Biology and Ecology of the Common Cuttlefish (Sepia Officinalis)
    Supporting Sustainable Sepia Stocks Report 1: The biology and ecology of the common cuttlefish (Sepia officinalis) Daniel Davies Kathryn Nelson Sussex IFCA 2018 Contents Summary ................................................................................................................................................. 2 Acknowledgements ................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Biology ..................................................................................................................................................... 3 Physical description ............................................................................................................................ 3 Locomotion and respiration ................................................................................................................ 4 Vision ................................................................................................................................................... 4 Chromatophores ................................................................................................................................. 5 Colour patterns ................................................................................................................................... 5 Ink sac and funnel organ
    [Show full text]
  • Spatial Learning in the Cuttlefish Sepia Officinalis
    © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 2928-2933 doi:10.1242/jeb.129080 RESEARCH ARTICLE Spatial learning in the cuttlefish Sepia officinalis: preference for vertical over horizontal information Gabriella Scata1,̀*, Christelle Jozet-Alves2,Céline Thomasse2, Noam Josef1,3 and Nadav Shashar1 ABSTRACT fish. In a previous study, fish were trained to reach a goal at the end of The world is three-dimensional; hence, even surface-bound animals one of the arms of a three-dimensional Y-maze (Holbrook and Burt need to learn vertical spatial information. Separate encoding of de Perera, 2009). The maze arms were placed at a 45 deg angle to the vertical and horizontal spatial information seems to be the common vertical so that the goal to be learned had both a vertical and a strategy regardless of the locomotory style of animals. However, a horizontal coordinate. When the maze was rotated along its axis to difference seems to exist in the way freely moving species, such as position its arms either vertically or horizontally for the test trials, the fish, learn and integrate spatial information as opposed to surface- fish selected the arm associated with the correct vertical or horizontal bound species, which prioritize the horizontal dimension and encode component of the previously learned location (Davis et al., 2014; it with a higher resolution. Thus, the locomotory style of an animal may Holbrook and Burt de Perera, 2009, 2011). Rats trained to reach a goal shape how spatial information is learned and prioritized. An in a cubic lattice maze learned the vertical coordinate first (Grobéty alternative hypothesis relates the preference for vertical information and Schenk, 1992), and when both components were acquired, they to the ability to sense hydrostatic pressure, a prominent cue unique to went first to the horizontal coordinate and then climbed up to the this dimension.
    [Show full text]
  • Cuttlefish, <I>Sepia</I>
    Marine Science 2015, 5(1): 6-10 DOI: 10.5923/j.ms.20150501.02 Size at First Maturity of Cuttlefish, Sepia latimanus, from North Sulawesi Waters, Indonesia Silvester B. Pratasik1,2,*, Marsoedi3, D. Arfiati3, D. Setyohadi3 1Postgraduate student of Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java 2Faculty of Fisheries and Marine Science, Sam Ratulangi Manado, North Sulawesi 3Faculty of Fisheries and Marine Science, Brawijaya University Malang, East Java Abstract Biological overfishing could occur from either excessive and immature individual exploitation or habitat destruction. This study was aimed to estimate size at first maturity of cuttlefish, Sepia latimanus, collected from North Sulawesi waters. All samples were measured and observed their maturity level. Based on these data, the dorsal mantle length (DML) at first maturity was assessed for minimum legal size determination. Results showed that the cuttlefish samples had maturity level range from immature to post-spawning conditions, while the size at first maturity was estimated as 16 cm DML. Maximum DML was estimated as 55.53 cm and growth coefficient as 0.248. The deviation of mean DML from maximum dorsal length was also considered to see the population condition. Keywords Cuttlefish, Sepia latimanus, Size at first maturity than that maximizing the economic rent (economic 1. Introduction overfishing) [8]. Size at first maturity (lm) or 50% of mature individuals has been taken as reference point of minimum Cuttlefish are one of the high economic value exported legal size to prevent stock depletion. It has been used by fisheries resources, and therefore, they are highly exploited many fisheries managers as management measure of fish in the world.
    [Show full text]
  • Common Cuttlefish (Sepia Officinalis) Mortality at the National Zoological Park: Implications for Clinical Management
    Journal of Zoo and Wildlife Medicine 31(4): 523±531, 2000 Copyright 2000 by American Association of Zoo Veterinarians COMMON CUTTLEFISH (SEPIA OFFICINALIS) MORTALITY AT THE NATIONAL ZOOLOGICAL PARK: IMPLICATIONS FOR CLINICAL MANAGEMENT Johanna Sherrill, D.V.M., M.S., Lucy H. Spelman, D.V.M., Dipl. A.C.Z.M., Carrie L. Reidel, B.S., and Richard J. Montali, D.V.M., Dipl. A.C.V.P., Dipl. A.C.Z.M. Abstract: Six out of seven cuttle®sh acquired by the Smithsonian National Zoological Park in July 1998 died before 1 November 1998. Postmortem examinations showed mantle ulcers, secondary bacterial infections, inanition, and cuttlebone fractures. The surviving cuttle®sh developed a progressive focal mantle ulcer, was treated with oral chlor- amphenicol intermittently for 9 wk, and maintained a normal appetite and growth rate until death at 7 mo of age. The National Zoological Park pathology database showed signalments, histories, and causes of mortality of 186 common cuttle®sh, each 1±14 mo old, that received gross and histologic examinations; for example, the largest group of cuttle®sh of known sex, age, and body weight at postmortem were 7±9 mo old and weighed an average of 376.2 g (males, n 5 18) and 299.0 g (females, n 5 15). Many cuttle®sh had multiple pathologic diagnoses. Signi®cant diseases included in¯ammation and secondary bacterial infections, especially gastrointestinal, cardiovascular, respiratory, reproductive, and ophthalmic, and septicemia due to Vibrio spp. or other gram-negative bacteria. Mantle lesions, including ulceration/ dermatitis, abscess/granuloma, necrosis/®brosis/cellulitis, and laceration/abrasion/erosion, were also identi®ed, along with inanition, cuttlebone lesions, and trauma.
    [Show full text]