Meta-Analysis of 8Q24 for Seven Cancers Reveals a Locus Between
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g. -
H4K16 Acetylation Marks Active Genes and Enhancers of Embryonic Stem Cells, but Does Not Alter Chromatin Compaction
Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction Gillian Taylor1, Ragnhild Eskeland2, Betül Hekimoglu-Balkan1, Madapura M. Pradeepa1* and Wendy A Bickmore1* 1 MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK 2Current address: Department of Molecular Biosciences, University of Oslo, N-0316 Oslo, Norway *Correspondence to: W. Bickmore or M.M. Pradeepa, MRC Human Genetics Unit, MRC IGMM, Crewe Road, Edinburgh EH4 2XU, UK Tel: +44 131 332 2471 Fax: +44 131 467 8456 Email:[email protected] or [email protected] Running head: H4K16 acetylation and long-range genome regulation Keywords: Chromatin compaction, embryonic stem cells, fluorescence in situ hybridization, histone acetylation, long-range regulation, 1 Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Compared with histone H3, acetylation of H4 tails has not been well studied, especially in mammalian cells. Yet, H4K16 acetylation is of particular interest because of its ability to decompact nucleosomes in vitro and its involvement in dosage compensation in flies. Here we show that, surprisingly, loss of H4K16 acetylation does not alter higher-order chromatin compaction in vivo in mouse embryonic stem cells (ESCs). As well as peaks of acetylated H4K16 and Kat8/MOF histone acetyltransferase at the transcription start sites of expressed genes, we report that acetylation of H4K16 is a new marker of active enhancers in ESCs and that some enhancers are marked by H3K4me1, Kat8 and H4K16ac but not by acetylated H3K27 or p300/EP300, suggesting that they are novel EP300 independent regulatory elements. -
Psychosis: a Convergent Functional Genomics Approach Identifying a Series of Candidate Genes for Mania
Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach ALEXANDER B. NICULESCU, III, DAVID S. SEGAL, RONALD KUCZENSKI, THOMAS BARRETT, RICHARD L. HAUGER and JOHN R. KELSOE Physiol. Genomics 4:83-91, 2000. You might find this additional information useful... This article cites 52 articles, 15 of which you can access free at: http://physiolgenomics.physiology.org/cgi/content/full/4/1/83#BIBL This article has been cited by 4 other HighWire hosted articles: Evaluation of common gene expression patterns in the rat nervous system S. Kaiser and L. K. Nisenbaum Physiol Genomics, December 16, 2003; 16 (1): 1-7. [Abstract] [Full Text] [PDF] Microarray Technology: A Review of New Strategies to Discover Candidate Vulnerability Downloaded from Genes in Psychiatric Disorders W. E. Bunney, B. G. Bunney, M. P. Vawter, H. Tomita, J. Li, S. J. Evans, P. V. Choudary, R. M. Myers, E. G. Jones, S. J. Watson and H. Akil Am. J. Psychiatry, April 1, 2003; 160 (4): 657-666. [Abstract] [Full Text] [PDF] Biomarker Identification by Feature Wrappers physiolgenomics.physiology.org M. Xiong, X. Fang and J. Zhao Genome Res., November 1, 2001; 11 (11): 1878-1887. [Abstract] [Full Text] [PDF] GRK3 mediates desensitization of CRF1 receptors: a potential mechanism regulating stress adaptation F. M. Dautzenberg, S. Braun and R. L. Hauger Am J Physiol Regulatory Integrative Comp Physiol, April 1, 2001; 280 (4): R935-946. [Abstract] [Full Text] Medline items on this article's topics can be found at http://highwire.stanford.edu/lists/artbytopic.dtl on the following topics: on August 11, 2005 Immunology . -
Β-Catenin-Mediated Hair Growth Induction Effect of 3,4,5-Tri-O- Caffeoylquinic Acid
www.aging-us.com AGING 2019, Vol. 11, No. 12 Research Paper β-catenin-mediated hair growth induction effect of 3,4,5-tri-O- caffeoylquinic acid Meriem Bejaoui1, Myra O. Villareal1,2,3, Hiroko Isoda1,2,3 1School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba City, 305-8572 Japan 2Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, 305-8572 Japan 3Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, 305- 8572 Japan Correspondence to: Hiroko Isoda; email: [email protected] Keywords: 3,4,5-tri-O-caffeoylquinic acid (TCQA), β-catenin, dermal papilla, anagen, Wnt/β-catenin pathway Received: April 23, 2018 Accepted: June 17, 2019 Published: June 29, 2019 Copyright: Bejaoui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The hair follicle is a complex structure that goes through a cyclic period of growth (anagen), regression (catagen), and rest (telogen) under the regulation of several signaling pathways, including Wnt/ β-catenin, FGF, Shh, and Notch. The Wnt/β-catenin signaling is specifically involved in hair follicle morphogenesis, regeneration, and growth. β-catenin is expressed in the dermal papilla and promotes anagen induction and duration, as well as keratinocyte regulation and differentiation. In this study, we demonstrated the activation of β-catenin by a polyphenolic compound 3,4,5-tri-O-caffeoylquinic acid (TCQA) in mice model and in human dermal papilla cells to promote hair growth cycle. -
A Chromosome Level Genome of Astyanax Mexicanus Surface Fish for Comparing Population
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 A chromosome level genome of Astyanax mexicanus surface fish for comparing population- 3 specific genetic differences contributing to trait evolution. 4 5 Authors 6 Wesley C. Warren1, Tyler E. Boggs2, Richard Borowsky3, Brian M. Carlson4, Estephany 7 Ferrufino5, Joshua B. Gross2, LaDeana Hillier6, Zhilian Hu7, Alex C. Keene8, Alexander Kenzior9, 8 Johanna E. Kowalko5, Chad Tomlinson10, Milinn Kremitzki10, Madeleine E. Lemieux11, Tina 9 Graves-Lindsay10, Suzanne E. McGaugh12, Jeff T. Miller12, Mathilda Mommersteeg7, Rachel L. 10 Moran12, Robert Peuß9, Edward Rice1, Misty R. Riddle13, Itzel Sifuentes-Romero5, Bethany A. 11 Stanhope5,8, Clifford J. Tabin13, Sunishka Thakur5, Yamamoto Yoshiyuki14, Nicolas Rohner9,15 12 13 Authors for correspondence: Wesley C. Warren ([email protected]), Nicolas Rohner 14 ([email protected]) 15 16 Affiliation 17 1Department of Animal Sciences, Department of Surgery, Institute for Data Science and 18 Informatics, University of Missouri, Bond Life Sciences Center, Columbia, MO 19 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 20 3 Department of Biology, New York University, New York, NY 21 4 Department of Biology, The College of Wooster, Wooster, OH 22 5 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 23 6 Department of Genome Sciences, University of Washington, Seattle, WA 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
Increased Sensitivity of Diagnostic Mutation Detection by Re-Analysis Incorporating Local Reassembly of Sequence Reads
This is a repository copy of Increased Sensitivity of Diagnostic Mutation Detection by Re-analysis Incorporating Local Reassembly of Sequence Reads. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/123432/ Version: Accepted Version Article: Watson, CM, Camm, N, Crinnion, LA et al. (7 more authors) (2017) Increased Sensitivity of Diagnostic Mutation Detection by Re-analysis Incorporating Local Reassembly of Sequence Reads. Molecular Diagnosis and Therapy, 21 (6). pp. 685-692. ISSN 1177-1062 https://doi.org/10.1007/s40291-017-0304-x © Springer International Publishing AG 2017. This is an author produced version of a paper published in Molecular Diagnosis and Therapy. Uploaded in accordance with the publisher's self-archiving policy. The final publication is available at Springer via https://doi.org/10.1007/s40291-017-0304-x. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ TITLE Increased sensitivity of diagnostic mutation detection by re-analysis incorporating local reassembly of sequence reads RUNNING HEAD ABRA reassembly improves test sensitivity Christopher M. -
Single Cell Derived Clonal Analysis of Human Glioblastoma Links
SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig. -
Beyond Gene Expression
Beyond gene expression Citation for published version (APA): Gupta, R. (2021). Beyond gene expression: novel methods and applications of transcript expression analyses in RNA-Seq. Maastricht University. https://doi.org/10.26481/dis.20210304rg Document status and date: Published: 01/01/2021 DOI: 10.26481/dis.20210304rg Document Version: Publisher's PDF, also known as Version of record Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
Latest Version of Intermine in Any Repository
InterMine Documentation InterMine Apr 26, 2021 Contents 1 Contents 3 1.1 System Requirements..........................................3 1.2 Get started................................................ 21 1.3 InterMine................................................. 52 1.4 Data Model................................................ 69 1.5 Database................................................. 78 1.6 Guide to Customising your Web Application.............................. 154 1.7 Web Services............................................... 250 1.8 Embedding InterMine components................................... 251 1.9 InterMine API Description........................................ 279 1.10 Support.................................................. 284 1.11 About Us................................................. 287 1.12 InterMine Video Tutorial Collection................................... 290 2 Indices 295 Index 297 i ii InterMine Documentation InterMine is an open source data warehouse built specifically for the integration and analysis of complex biological data. Developed by the Micklem lab at the University of Cambridge, InterMine enables the creation of biological databases accessed by sophisticated web query tools. Parsers are provided for integrating data from many common biological data sources and formats, and there is a framework for adding your own data. InterMine includes an attractive, user- friendly web interface that works ‘out of the box’ and can be easily customised for your specific needs, as well as a powerful, scriptable -
A Curated Ortholog Database for Yeasts and Fungi Spanning 600 Million Years of Evolution
bioRxiv preprint doi: https://doi.org/10.1101/237974; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution Kevin Correia1, Shi M. Yu1, and Radhakrishnan Mahadevan1,2,* 1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada, ON 2Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada Corresponding author: Radhakrishnan Mahadevan∗ Email address: [email protected] ABSTRACT Budding yeasts inhabit a range of environments by exploiting various metabolic traits. The genetic bases for these traits are mostly unknown, preventing their addition or removal in a chassis organism for metabolic engineering. To help understand the molecular evolution of these traits in yeasts, we created Analyzing Yeasts by Reconstructing Ancestry of Homologs (AYbRAH), an open-source database of predicted and manually curated ortholog groups for 33 diverse fungi and yeasts in Dikarya, spanning 600 million years of evolution. OrthoMCL and OrthoDB were used to cluster protein sequence into ortholog and homolog groups, respectively; MAFFT and PhyML were used to reconstruct the phylogeny of all homolog groups. Ortholog assignments for enzymes and small metabolite transporters were compared to their phylogenetic reconstruction, and curated to resolve any discrepancies. Information on homolog and ortholog groups can be viewed in the AYbRAH web portal (https://kcorreia.github. io/aybrah/) to review ortholog groups, predictions for mitochondrial localization and transmembrane domains, literature references, and phylogenetic reconstructions. -
A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.