The 25 October 2010 Sumatra Tsunami Earthquake: Slip in a Slow Patch Susan L

Total Page:16

File Type:pdf, Size:1020Kb

The 25 October 2010 Sumatra Tsunami Earthquake: Slip in a Slow Patch Susan L GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L14306, doi:10.1029/2011GL047864, 2011 The 25 October 2010 Sumatra tsunami earthquake: Slip in a slow patch Susan L. Bilek,1 E. Robert Engdahl,2 Heather R. DeShon,3 and Maya El Hariri1 Received 20 April 2011; revised 13 June 2011; accepted 15 June 2011; published 28 July 2011. [1] Various models for the generation of tsunami earthquakes and shallow afterslip [e.g., Hsu et al., 2006; earthquakes have been proposed, including shallow Konca et al., 2008] (Figure 1). Approximately 700 km north, earthquake slip through low strength materials. Because another tsunami earthquake may have occurred along these physical fault conditions would likely affect other Simeulue Island in 1907 [Kanamori et al., 2010]. earthquakes in the same rupture zone, source properties of [3] Given that models link shallow slip in weak near‐trench other events may provide a guide to locations of tsunami materials to tsunami earthquake occurrence, an important earthquakes. The 25 October 2010 Mw = 7.8 Mentawai question is whether these fault conditions also impact the tsunami earthquake and surrounding events provide a test rupture of other events in the same area. Our efforts here of this hypothesis. We determine slip patterns for the address this question by first defining the rupture area and mainshock and relocate aftershocks, with the majority source characteristics of the 2010 event as well as relocating occurring in the near trench region. The two largest aftershocks of the event. We then compare the rupture extent magnitude aftershocks occurred within the downdip end of to source parameters computed for other regional earthquakes the mainshock rupture area and have long moment‐ in order to assess the possibility of consistent slow behavior normalized rupture duration, likely related to fault zone along specific patches of the plate interface. conditions. Several older relocated earthquakes at the northern edge of the 2010 rupture area also have long 2. Dataset duration character, suggesting both spatial and temporal consistency in the conditions needed to produce slow [4] Our source analysis of the 2010 mainshock incorporates both broadband P and SH waves recorded at teleseismic seismic processes along this margin. Citation: Bilek, S. L., – E. R. Engdahl, H. R. DeShon, and M. El Hariri (2011), The 25 October distances (30 90°) and a large suite of long period vertical 2010 Sumatra tsunami earthquake: Slip in a slow patch, Geophys. component seismograms for the Rayleigh wave (R1) signal Res. Lett., 38, L14306, doi:10.1029/2011GL047864. used in the relative source time function deconvolution. We also determine source parameters for 74 moderate magni- tude events from 1990–2009 (Mw > 5.5, thrust mechanism 1. Introduction based on Global Centroid Moment Tensor (GCMT, www. [2] Tsunami earthquakes, events that produce larger tsu- globalcmt.org) solutions) using teleseismic P and SH waves. nami waves than expected given the earthquake size, have occurred in several subduction zones around the world, 3. Methods including Nicaragua (1992), Java (1994 and 2006), and Peru 3.1. Source Parameters: Mainshock (1996) [e.g., Kanamori, 1972; Kanamori and Kikuchi, 1993; Newman and Okal, 1998; Polet and Kanamori, 2000; Bilek [5] Estimates of the rupture extent are initially developed ’ and Lay, 2002]. Other characteristics of these events include using a theoretical Green s function deconvolution [e.g., Lay deficiency in high frequency seismic radiation, very long et al., 2009] with 59 R1 surface wave records that are earthquake rupture duration, and shallow slip along the plate azimuthally well distributed around the source. Point source interface. Models for these unusual events tend to require synthetic seismograms are created using normal mode slip through low strength materials at the shallow end of the summation for each distance and azimuth range represented seismogenic zone [e.g., Kanamori and Kikuchi, 1993; Bilek by the data collected using PREM [Dziewonski and Anderson, and Lay, 1999; Satake and Tanioka, 1999; Polet and 1981] for the velocity model. These synthetic seismograms are Kanamori, 2000]. A recent tsunami earthquake occurred deconvolved from the observed seismograms to remove along the Mentawai Islands offshore the island of Sumatra theoretical path effects, leaving a relative source time function (25 October 2010, 14:42:22 UTC) [Lay et al., 2011; (STF) to describe the source effects at each station [e.g., Lay Newman et al., 2011], in an area adjacent to recent great et al., 2009] (Figure 2a). We pick the onset and end of each STFs main source pulses (dt) and using the definition for the directivity parameter [G, G = cos(station_azimuth − rupture_ azimuth)/phase_velocity], solve for the best fit rupture dura- tion, azimuth, and duration length (Figure 2a). 1New Mexico Institute of Mining and Technology, Socorro, [6] We also use broadband body waves (P and SH) to invert New Mexico, USA. for fault finiteness, obtaining estimates of the overall rupture 2 Department of Physics, University of Colorado at Boulder, Boulder, duration and slip distribution on the fault plane (M. Kikuchi Colorado, USA. ‐ 3CERI, University of Memphis, Memphis, Tennessee, USA. and H. Kanamori, Note on teleseismic body wave inver- sion program, 2006, http://www.eri.u‐tokyo.ac.jp/ETAL/ Copyright 2011 by the American Geophysical Union. KIKUCHI). We use a grid of 25 km along strike by 40 km in 0094‐8276/11/2011GL047864 L14306 1of5 L14306 BILEK ET AL.: THE 2010 SUMATRA TSUNAMI EARTHQUAKE L14306 3.2. Source Parameters: Moderate Magnitude Events [7] For moderate magnitude earthquakes that occurred prior to the 2010 mainshock as well as 3 aftershocks, we also determine source time functions and depth estimates for each event by deconvolving a point source Green’s function from the P and SH waves, solving for the source time function at a range of depths between 3–65 km [e.g., Ruff and Miller, 1994; Bilek and Lay, 1999]. Synthetic seismo- grams generated for each depth are compared with the observed seismograms, with the optimal time function and depth producing the lowest misfit. In all cases these depths are compared to the relocated depths (section 3.3). Duration is measured from the final event time function as the time from onset to the first zero crossing, capturing the majority of the moment release of the event. These durations are then scaled by the cube root of seismic moment (Mo) to remove the effect of increasing duration with increasing seismic moment, and normalized by the duration of an Mw = 6.0 event [e.g., Bilek and Lay, 1999]. 3.3. Earthquake Relocations [8] Teleseismically recorded earthquakes along the Sunda system have been relocated using the Engdahl, van der Hilst, and Buland (EHB) method [Engdahl et al., 1998]. This method uses reported International Seismic Centre (ISC) and National Earthquake Information Center (NEIC) reported phases and increases location accuracy using itera- tive relocation with dynamic phase identification, variable Figure 1. Setting of the 2010 October Mw = 7.8 tsunami phase weighting, ellipticity and station patch corrections, and earthquake (red star, NEIC location, red square and focal the ak135 velocity model. Only a small percentage of depth mechanism from GCMT, www.globalcmt.org) along the phases (pP, pwP, sP) are reported to ISC/NEIC, but the subduction zone between the Australian and Sunda plates. inclusion of these phases can significantly improve depth Plate boundary from Bird [2003]. Aftershocks (defined in determination. time relative to mainshock) of the 2010 event (diamonds, [9] For earthquakes prior to 2010, we have integrated NEIC locations between 25 October and 06 December) additional depth phases derived using automated methods show significant activity to the north and updip of the main- to better constrain hypocentral depths. This frequency‐ shock location. Other significant earthquakes in the region based technique identifies depth phase onset times on both also shown, including the 1907 tsunami earthquake (purple velocity and displacement waveforms by searching for star [Kanamori et al., 2010]) and rupture areas for earth- abrupt changes in the gradient of the power spectral den- quakes Mw > 7.5 (dashed and solid colored lines [Hsu et al., sity function (see Pesicek et al. [2010] for further details). 2006; Konca et al., 2008]). For the 2010 mainshock and aftershocks, depth phases were derived using the automated method but also verified by analyst (Figure 3). Analyst verification was done because depth phases generally have low frequency con- dip direction to define moment subevents on a fault plane tent as they propagate through near surface layers where defined by the GCMT geometry. Subevent moment pulses, there is high attenuation and may be obscured in the P‐ defined with 5 overlapping triangles of 10 s duration, are wave coda or noise, making auto‐identification difficult. removed from the P and SH waveforms at various timing and Additionally, not all ISC phase picks for the 2010 sequence fault grid positions, allowing for synthetic seismograms to be have been reported due to the 2‐year lag in compiling such a constructed for each of the observations. Moment rate func- large database. For this study, it is imperative that reported tion and moment distribution at each grid point are computed, depth phases for potentially shallow and complex earth- and we choose the solution that minimizes misfit between the quakes be correct. observed and synthetic seismograms (Figure 2b). Slip is [10] We find a common depth that satisfies both arrival‐ computed from the moment distribution, using a value of based and waveform modeling depth constraints for all 20 GPa for fault rigidity, appropriate for the shallow region earthquakes along this margin (Figure 4) (see auxiliary of this fault zone based on global and regional estimates material).1 Earthquakes with multiple local minima in the from earthquake parameters [Bilek and Lay, 1999; Bilek, waveform modeling misfit function are flagged, and the 2007].
Recommended publications
  • Time-Varying Interseismic Strain Rates and Similar Seismic Ruptures on the Niasesimeulue Patch of the Sunda Megathrust
    Quaternary Science Reviews 122 (2015) 258e281 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Time-varying interseismic strain rates and similar seismic ruptures on the NiaseSimeulue patch of the Sunda megathrust * Aron J. Meltzner a, b, , Kerry Sieh a, b, Hong-Wei Chiang a, c, Chung-Che Wu c, Louisa L.H. Tsang a, Chuan-Chou Shen c, Emma M. Hill a, Bambang W. Suwargadi d, Danny H. Natawidjaja d, Belle Philibosian b, e, Richard W. Briggs f a Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore b Tectonics Observatory, California Institute of Technology, Pasadena, CA 91125, USA c High-precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, ROC d Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung 40135, Indonesia e Equipe de Tectonique et Mecanique de la Lithosphere, Institut de Physique du Globe de Paris, 75238 Paris, France f Geologic Hazards Science Center, U.S. Geological Survey, Denver, CO 80225, USA article info abstract Article history: Fossil coral microatolls from fringing reefs above the great (MW 8.6) megathrust rupture of 2005 record Received 11 March 2015 uplift during the historically reported great earthquake of 1861. Such evidence spans nearly the entire Received in revised form 400-km strike length of the 2005 rupture, which was previously shown to be bounded by two persistent 22 May 2015 barriers to seismic rupture. Moreover, at sites where we have constrained the 1861 uplift amplitude, it is Accepted 4 June 2015 comparable to uplift in 2005.
    [Show full text]
  • Time-Varying Interseismic Strain Rates and Similar Seismic Ruptures on the Nias-Simeulue Patch of the Sunda Megathrust
    Quaternary Science Reviews 122 (2015) 258e281 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Time-varying interseismic strain rates and similar seismic ruptures on the NiaseSimeulue patch of the Sunda megathrust * Aron J. Meltzner a, b, , Kerry Sieh a, b, Hong-Wei Chiang a, c, Chung-Che Wu c, Louisa L.H. Tsang a, Chuan-Chou Shen c, Emma M. Hill a, Bambang W. Suwargadi d, Danny H. Natawidjaja d, Belle Philibosian b, e, Richard W. Briggs f a Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore b Tectonics Observatory, California Institute of Technology, Pasadena, CA 91125, USA c High-precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, ROC d Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung 40135, Indonesia e Equipe de Tectonique et Mecanique de la Lithosphere, Institut de Physique du Globe de Paris, 75238 Paris, France f Geologic Hazards Science Center, U.S. Geological Survey, Denver, CO 80225, USA article info abstract Article history: Fossil coral microatolls from fringing reefs above the great (MW 8.6) megathrust rupture of 2005 record Received 11 March 2015 uplift during the historically reported great earthquake of 1861. Such evidence spans nearly the entire Received in revised form 400-km strike length of the 2005 rupture, which was previously shown to be bounded by two persistent 22 May 2015 barriers to seismic rupture. Moreover, at sites where we have constrained the 1861 uplift amplitude, it is Accepted 4 June 2015 comparable to uplift in 2005.
    [Show full text]
  • The Moment Magnitude and the Energy Magnitude: Common Roots
    The moment magnitude and the energy magnitude : common roots and differences Peter Bormann, Domenico Giacomo To cite this version: Peter Bormann, Domenico Giacomo. The moment magnitude and the energy magnitude : com- mon roots and differences. Journal of Seismology, Springer Verlag, 2010, 15 (2), pp.411-427. 10.1007/s10950-010-9219-2. hal-00646919 HAL Id: hal-00646919 https://hal.archives-ouvertes.fr/hal-00646919 Submitted on 1 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Click here to download Manuscript: JOSE_MS_Mw-Me_final_Nov2010.doc Click here to view linked References The moment magnitude Mw and the energy magnitude Me: common roots 1 and differences 2 3 by 4 Peter Bormann and Domenico Di Giacomo* 5 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 6 *Now at the International Seismological Centre, Pipers Lane, RG19 4NS Thatcham, UK 7 8 9 Abstract 10 11 Starting from the classical empirical magnitude-energy relationships, in this article the 12 derivation of the modern scales for moment magnitude M and energy magnitude M is 13 w e 14 outlined and critically discussed. The formulas for Mw and Me calculation are presented in a 15 way that reveals, besides the contributions of the physically defined measurement parameters 16 seismic moment M0 and radiated seismic energy ES, the role of the constants in the classical 17 Gutenberg-Richter magnitude-energy relationship.
    [Show full text]
  • Relation of Slow Slip Events to Subsequent Earthquake Rupture
    Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture Timothy H. Dixona,1, Yan Jiangb, Rocco Malservisia, Robert McCaffreyc, Nicholas Vossa, Marino Prottid, and Victor Gonzalezd aSchool of Geosciences, University of South Florida, Tampa, FL 33620; bPacific Geoscience Centre, Geological Survey of Canada, BC, Canada V8L 4B2; cDepartment of Geology, Portland State University, Portland, OR 97201; and dObservatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional, Heredia 3000, Costa Rica Edited* by David T. Sandwell, Scripps Institution of Oceanography, La Jolla, CA, and approved October 24, 2014 (received for review June 30, 2014) The 5 September 2012 Mw 7.6 earthquake on the Costa Rica sub- Geologic and Seismic Background duction plate boundary followed a 62-y interseismic period. High- The Nicoya Peninsula forms the western edge of the Caribbean precision GPS recorded numerous slow slip events (SSEs) in the plate, where the Cocos plate subducts beneath the Caribbean decade leading up to the earthquake, both up-dip and down-dip plate along the Middle American Trench at about 8 cm/y (3). The of seismic rupture. Deeper SSEs were larger than shallower ones region has a well-defined earthquake cycle, with large (M > 7) and, if characteristic of the interseismic period, release most lock- earthquakes in 1853, 1900, 1950 (M 7.7), and most recently 5 ing down-dip of the earthquake, limiting down-dip rupture and September 2012 (Mw 7.6). Smaller (M ∼ 7) events in 1978 and earthquake magnitude. Shallower SSEs were smaller, accounting 1990 have also occurred nearby (4). Large tsunamis have not for some but not all interseismic locking.
    [Show full text]
  • Fully-Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone
    Noname manuscript No. (will be inserted by the editor) Fully-coupled simulations of megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone Gabriel C. Lotto · Tamara N. Jeppson · Eric M. Dunham Abstract Subduction zone earthquakes can pro- strate that horizontal seafloor displacement is a duce significant seafloor deformation and devas- major contributor to tsunami generation in all sub- tating tsunamis. Real subduction zones display re- duction zones studied. We document how the non- markable diversity in fault geometry and struc- hydrostatic response of the ocean at short wave- ture, and accordingly exhibit a variety of styles lengths smooths the initial tsunami source relative of earthquake rupture and tsunamigenic behavior. to commonly used approach for setting tsunami We perform fully-coupled earthquake and tsunami initial conditions. Finally, we determine self-consistent simulations for three subduction zones: the Japan tsunami initial conditions by isolating tsunami waves Trench, the Nankai Trough, and the Cascadia Sub- from seismic and acoustic waves at a final sim- duction Zone. We use data from seismic surveys, ulation time and backpropagating them to their drilling expeditions, and laboratory experiments initial state using an adjoint method. We find no to construct detailed 2D models of the subduc- evidence to support claims that horizontal momen- tion zones with realistic geometry, structure, fric- tum transfer from the solid Earth to the ocean is tion, and prestress. Greater prestress and rate-and- important in tsunami generation. state friction parameters that are more velocity- weakening generally lead to enhanced slip, seafloor Keywords tsunami; megathrust earthquake; deformation, and tsunami amplitude.
    [Show full text]
  • Rapid Identification of Tsunamigenic Earthquakes Using GNSS
    www.nature.com/scientificreports OPEN Rapid identifcation of tsunamigenic earthquakes using GNSS ionospheric sounding Fabio Manta1,2,4*, Giovanni Occhipinti 3,4, Lujia Feng 1 & Emma M. Hill 1,2 The largest tsunamis are generated by seafoor uplift resulting from rupture of ofshore subduction- zone megathrusts. The rupture of the shallowest part of a megathrust often produces unexpected outsize tsunami relative to their seismic magnitude. These are so called ‘tsunami earthquakes’, which are difcult to identify rapidly using the current tsunami warning systems, even though, they produce some of the deadliest tsunami. We here introduce a new method to evaluate the tsunami risk by measuring ionospheric total electron content (TEC). We examine two Mw 7.8 earthquakes (one is a tsunami earthquake and the other is not) generated in 2010 by the Sunda megathrust, ofshore Sumatra, to demonstrate for the frst time that observations of ionospheric sounding from Global Navigation Satellite System (GNSS) can be used to evaluate the tsunamigenic potential of earthquakes as early as 8 min after the mainshock. ‘Tsunami earthquakes’, as originally defned by Kanamori 1, are events generating tsunami with larger amplitude than expected from their seismic magnitude. Most tsunami earthquakes are generated by high levels of slip on the shallow megathrust, which results in large seafoor uplifs and hence very dangerous tsunami. Te shallow location of the slip—close to the subduction trench—means that the ruptures generating tsunami earthquakes are at signifcant distance from land-based monitoring networks, limiting our ability to quickly and accurately assess their magnitude and source parameters. Conventional approaches using various seismological methods2–4 or rapid inversion of GNSS (Global Navigation Satellite System) estimates of ground motion5 regularly encounter difculties in accurately estimating the uplif of the seafoor and consequently fail in predicting the tsunamigenic nature of tsunami earthquakes.
    [Show full text]
  • Fujinoetal-Margeo-Simeulue.Pdf
    Marine Geology 357 (2014) 384–391 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Ambiguous correlation of precisely dated coral detritus with the tsunamis of 1861 and 1907 at Simeulue Island, Aceh Province, Indonesia Shigehiro Fujino a,⁎, Kerry Sieh b,1, Aron J. Meltzner b,1,EkoYuliantoc, Hong-Wei Chiang d,1 a Active Fault and Earthquake Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Site C7 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan b Tectonics Observatory, California Institute of Technology, Pasadena, CA 91125, USA c Research Center for Geotechnology, Indonesian Institute of Sciences, Bandung, Indonesia d High-precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, ROC article info abstract Article history: Precise U–Th dates from coral detritus in two pre-2004 tsunami deposits on Simeulue Island in Aceh Province Received 7 March 2014 allow us to correlate the deposits with historically documented tsunamis in the recent few centuries, but because Received in revised form 19 September 2014 of potential discordance between the death dates of the corals and deposition of the sand layers, ambiguity in this Accepted 28 September 2014 correlation remains. Pits at coastal lowland sites exposed sand layers beneath the 2004 tsunami deposit at Available online 22 October 2014 Busung and Naibos on southern Simeulue Island. The layers share sedimentological characteristics with the de- Communicated by J.T. Wells posit of the 2004 tsunami, and are interpreted as pre-2004 tsunami deposits. Historical accounts document earth- quakes and tsunamis in 1907 and 1861 and suggest that the 1907 tsunami was larger locally than any others Keywords: historically.
    [Show full text]
  • Characterization of Diverse Megathrust Fault Behavior Related to Seismic Supercycles, Mentawai Islands, Sumatra
    Characterization of Diverse Megathrust Fault Behavior Related to Seismic Supercycles, Mentawai Islands, Sumatra Thesis by Belle Philibosian In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2013 (Defended May 29th, 2013) ii 2013 Belle Philibosian All Rights Reserved iii ACKNOWLEDGEMENTS The pronoun “we” is used throughout this thesis rather than “I” as a reflection of the contributions of many people to my results. The published papers that have come and will come from my thesis always have a long list of co-authors. First and foremost I would like to thank my two advisors Kerry Sieh and Jean-Philippe Avouac for their vital insight, inspiration, and unwavering support. The other members of my thesis committee, Paul Asimow, Joann Stock, and Mark Simons have also provided a great deal of helpful guidance along the way. Danny Hilman Natawidjaja made vital contributions by providing the raw data from his previous work as well as assisting with field work and logistics. This project would not have been possible without the excellent field and logistics support from my Indonesian colleagues Mudrik R. Daryono, Bambang W. Suwargadi, Dudi Prayudi, and Imam Suprihanto, and all the crew members of the K.M. Andalas. All of the uranium-thorium dating was performed by Hong-Wei Chiang, Chung-Che Wu, and Ke (Coco) Lin under the guidance of Chuan-Chou “River” Shen at the HISPEC Laboratory at the National Taiwan University; thanks to all of them for taking time out of their own projects to process my samples and discuss the trials and tribulations of age- dating corals.
    [Show full text]
  • The Indian Ocean Tsunami: Economic Impact, Disaster Management and Lessons
    The Indian Ocean Tsunami: Economic Impact, Disaster Management and Lessons Prema-chandra Athukorala and Budy P. Resosudarmo Division of Economics Research School of Pacific and Asian Studies Australian National University E-mail: [email protected] [email protected] Abstract: The purpose of this paper is to document and analyze the immediate economic impact of the Indian Ocean tsunami generated by the Sumatra-Andaman earthquake of 26 December 2004 and the disaster management process in the immediate aftermath of the disaster with a focus on the two worst affected countries – Indonesia (Aceh province) and Sri Lanka. The 26 December Tsunami is unique among large disasters in recorded human history, not only because of the sheer number of causalities and massive displacement of people, but also because of the unprecedented international donor response and the logistic challenges faced by international organizations and aid agencies in organizing and coordinating relief efforts. Our preliminary findings points to the importance of educating the public about simple precautions in the event of a disaster and enforcement of coastal environmental regulations as disaster prevention policies. The findings also makes a strong case for designing policies and programs, as an integral part of national development strategy, for mitigating the impact of natural disasters on the poor and highlights the need for combining international aid commitments with innovative approaches to redressing problems of limited aid absorptive capacity in disaster affected countries. Key Words: tsunami, disaster management, Indonesia, Sri Lanka JEL Classification: I32, O53 Q54 Forthcoming in Asian Economic Papers 1 2 The Indian Ocean Tsunami: Economic Impact, Disaster Management and Lessons∗ Sociologist, psychologists, historians, and policy planners have all devoted considerable attention to the nature, sources, and consequences of disaster and recovery, but the professional economic literature is distressingly sparse.
    [Show full text]
  • A Test for the Mediterranean Tsunami Warning System Mohammad Heidarzadeh1* , Ocal Necmioglu2 , Takeo Ishibe3 and Ahmet C
    Heidarzadeh et al. Geosci. Lett. (2017) 4:31 https://doi.org/10.1186/s40562-017-0097-0 RESEARCH LETTER Open Access Bodrum–Kos (Turkey–Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning system Mohammad Heidarzadeh1* , Ocal Necmioglu2 , Takeo Ishibe3 and Ahmet C. Yalciner4 Abstract Various Tsunami Service Providers (TSPs) within the Mediterranean Basin supply tsunami warnings including CAT-INGV (Italy), KOERI-RETMC (Turkey), and NOA/HL-NTWC (Greece). The 20 July 2017 Bodrum–Kos (Turkey–Greece) earth- quake (Mw 6.6) and tsunami provided an opportunity to assess the response from these TSPs. Although the Bodrum– Kos tsunami was moderate (e.g., runup of 1.9 m) with little damage to properties, it was the frst noticeable tsunami in the Mediterranean Basin since the 21 May 2003 western Mediterranean tsunami. Tsunami waveform analysis revealed that the trough-to-crest height was 34.1 cm at the near-feld tide gauge station of Bodrum (Turkey). Tsunami period band was 2–30 min with peak periods at 7–13 min. We proposed a source fault model for this tsunami with the length and width of 25 and 15 km and uniform slip of 0.4 m. Tsunami simulations using both nodal planes produced almost same results in terms of agreement between tsunami observations and simulations. Diferent TSPs provided tsunami warnings at 10 min (CAT-INGV), 19 min (KOERI-RETMC), and 18 min (NOA/HL-NTWC) after the earthquake origin time. Apart from CAT-INGV, whose initial Mw estimation difered 0.2 units with respect to the fnal value, the response from the other two TSPs came relatively late compared to the desired warning time of ~ 10 min, given the difculties for timely and accurate calculation of earthquake magnitude and tsunami impact assessment.
    [Show full text]
  • Review of Policies and Institutional Capacity for Early Warning and Disaster Management in Indonesia January 2007
    U.S. INDIAN OCEAN TSUNAMI WARNING SYSTEM (US IOTWS) PROGRAM REVIEW OF POLICIES AND INSTITUTIONAL CAPACITY FOR EARLY WARNING AND DISASTER MANAGEMENT IN INDONESIA JANUARY 2007 January 2007 This publication was produced for review by the United States Agency for International Development. It was prepared by the IRG-Tetra Tech Joint Venture. U.S. INDIAN OCEAN TSUNAMI WARNING SYSTEM (US IOTWS) PROGRAM REVIEW OF POLICIES AND INSTITUTIONAL CAPACITY FOR EARLY WARNING AND DISASTER MANAGEMENT IN INDONESIA (OCTOBER 1-13, 2006) JANUARY 2007 Prepared for U.S. Agency for International Development by IRG & Tetra Tech Joint Venture under Contract No. EPP-I-02-04-00024-00 U.S. IOTWS Program Document No.14-IOTWS-06 DISCLAIMER The views expressed in this document do not necessarily reflect the views of the United States Agency for International Development or the United States Government. CONTENTS Acronyms ................................................................................................................ 1 Preface ..................................................................................................................... 3 Introduction ............................................................................................................ 4 1. Policy and Legislative Environment for Disaster Management .................... 6 1.1 Legislative Environment .......................................................................................................... 6 1.2 Institutional Environment ......................................................................................................
    [Show full text]
  • Caribbean Tsunami Hazard
    ESTIMATING THE THREAT OF TSUNAMIGENIC EARTHQUAKES AND EARTHQUAKE INDUCED-LANDSLIDE TSUNAMI IN THE CARIBBEAN WILLIAM R. MCCANN Earth Scientific Consultants Westminster, CO 80021, USA Deformation along the margin of the Caribbean Plate is the principal cause of the tsunami threat in the Caribbean. That margin parallels the northern coast of South America, the Lesser Antilles, and extends along the Greater Antilles from Puerto Rico through Jamaica. The eastern boundary of the Caribbean plate near the Lesser Antilles is the locus of subduction of Atlantic seafloor. At least three distinct, shallow tectonic regimes parallel the margin. They are: an outer tectonic belt where the North America Plate bends to enter the subduction zone, the main interface or zone of contact between the plates, and an inner zone of intraplate activity in the overriding Caribbean Plate. The level of seismic activity and tsunami potential in each of these zones is influenced by the presence of aseismic ridges on the downgoing plate. Ridges may increase the probability of tsunami or slow earthquakes, by reactivating thrust faults in the accretionary prism. The northeastern corner of the Caribbean Plate margin has a smooth transition from the relatively simple subduction zone in the Northern Lesser Antilles into a region of oblique convergence. It is a complex margin dominated by microplate tectonics from near Puerto Rico through Hispaniola. Here too the same three tectonic zones can be defined, but the third zone, “intraplate activity in the Caribbean Plate”, is more clearly delineated as microplate deformation in a wide plate boundary zone. Strike-slip tectonics dominates the region from Haiti westward to the northern coast of Honduras.
    [Show full text]