Programming Pearls: a Literate Program

Total Page:16

File Type:pdf, Size:1020Kb

Programming Pearls: a Literate Program by jot1 Be~~tley programming with Special Guest Oysters Don Knuth and Doug McIlroy pearls A LITERATE PROGRAM Last month‘s column introduced Don Knuth’s style of frequency; or there might not even be as many as k “Literate Programming” and his WEB system for building words. Let’s be more precise: The most common programs that are works of literature. This column pre- words are to be printed in order of decreasing fre- sents a literate program by Knuth (its origins are sketched quency, with words of equal frequency listed in al- in last month‘s column) and, as befits literature, a review. phabetic order. Printing should stop after k words So without further ado, here is Knuth’s program, have been output, if more than k words are present. retypeset in Communications style. -Jon Bentley 2. The input file is assumed to contain the given Common Words Section text. If it begins with a positive decimal number Introduction.. , . , , . , . , . , , . 1 (preceded by optional blanks), that number will be Strategic considerations . , a the value of k; otherwise we shall assume that Basic input routines . , , . 9 k = 100. Answers will be sent to the output file. Dictionary lookup . , . , . , .17 define default-k = 100 (use this value if k isn’t The frequency counts . .32 otherwise specified) Sortingatrie . ...36 Theendgame................................41 3. Besides solving the given problem, this program is Index . ...42 supposed to be an example of the WEB system, for people who know some Pascal but who have never 1. Introduction. The purpose of this program is to seen WEB before. Here is an outline of the program solve the following problem posed by Jon Bentley: to be constructed: Given a text file and an integer k, print the k most program common-words (input, output); common words in the file (and the number of type (Type declarations 17) their occurrences) in decreasing frequency. var (Global variables 4) (Procedures for initialization 5) Jon intentionally left the problem somewhat (Procedures for input and output a) vague, but he stated that “a user should be able to (Procedures for data manipulation 20) find the 100 most frequent words in a twenty-page begin (The main program 8); technical paper (roughly a 50K byte file) without end. undue emotional trauma.” Let us agree that a word is a sequence of one or 4. The main idea of the WEB approach is to let the more contiguous letters; “Bentley” is a word, but program grow in natural stages, with its parts pre- “ain 1t II isn’t. The sequence of letters should be sented in roughly the order that they might have maximal, in the sense that it cannot be lengthened been written by a programmer who isn’t especially without including a nonletter. Uppercase letters clairvoyant. are considered equivalent to their lowercase For example, each global variable will be intro- counterparts, so that the words “Bentley” duced when we first know that it is necessary or and “BENTLEY” and “bentley” are essentially desirable; the WEB system will take care of collecting identical. these declarations into the proper place. We already The given problem still isn’t well defined, for the know about one global variable, namely the number file might contain more than k words, all of the same that Bentley called k. Let us give it the more descrip- 01966 ACM OOOl-0782/86/0600-0471 750 tive name max-words-to-print. June 1986 Volume 29 Number 6 Communicationsof the ACM 471 Programming Pear/s (Global variables 4) = There should be a frequency count associated max.-words-to-print: integer; with each word, and we will eventually want to run (at most this many words will be printed) through the words in order of decreasing frequency. See also sections 11, 13, 18, 22, 32, and 36. But there’s no need to keep these counts in order as This code is used in section 3. we read through the input, since the order matters only at the end. 5. As we introduce new global variables, we’ll often Therefore it makes sense to structure our program want to give them certain starting values, This will as follows: be done by the initialize procedure, whose body will (The main program a) = consist of various pieces of code to be specified initialize; when we think of particular kinds of initialization, (Establish the value of max-words-to-print IO); (Procedures for initialization 5) = (Input the text, maintaining a dictionary with procedure initialize; frequency counts 34); var i: integer; {all-purpose index for initializa- (Sort the dictionary by frequency 39); tions) (Output the results 41) begin (Set initial values 12) This code is used in section 3. end; This code is used in section 3. 9. Basic input routines. Let’s switch to a bottom- up approach now, by writing some of the procedures 6. The WEB system, which may be thought of as a that we know will be necessary sooner or later. preprocessor for Pascal, includes a macro definition Then we’ll have some confidence that our program facibty so that portable programs are easier to write. is taking shape, even though we haven’t decided yet For example, we have already defined ‘default-k’ to how to handle the searching or the sorting. It will be be 100. Here are two more examples of WEB macros; nice to get the messy details of Pascal input out of they allow us to write, e.g., ‘incr(counf[ p])’ as a con- the way and off our minds. venient abbreviation for the statement ‘counf[ p] + Here’s a function that reads an optional positive counf[p] + 1’. integer, returning zero if none is present at the be- ginning of the current line. define incr(#) = # c- # + 1 (increment a vari- able} (Procedures for input and output 9) = define deer(#) = 4#t # - 1 {decrement a vari- function read-inf: integer; able) var n: integer; {th e accumulated value) begin n c 0; 7. Some of the procedures we shall be writing come if leaf then to abrupt conclusions; hence it will be convenient to begin while (leoln) A (input t = Iu’) do introduce a ‘return’ macro for the operation of gef(inpuf]; jumping to the end of the procedure. A symbolic while (input 1 2 ‘0’) A (input 1 5 ‘9’) do label ‘exit’ will be declared in all such procedures, begin n t lO*n + ord(inpuf7) - ord(‘0’); and ‘exit:’ will be placed just before the final end. gef(inpuf); (No other labels or goto statements are used in the end; present program, but the author would find it pain- end; ful to eliminate these particular ones.) read-inf c n; end; define exit = 30 (the end of a procedure} See also sections 15, 35, and 40. define return = goto exit {quick termination] This code is used in section 3. format return = nil {typeset ‘return’ in boldface) 10. We invoke readht only once. 8. Strategic considerations. What algorithms and data structures should be used for Bentley’s prob- (Establish the value of max-words-to-print IO) = lem? Clearly we need to be able to recognize differ- max-words-to-print c read-inf; ent occurrences of the same word, so some sort of if max-words-to-prinf = 0 then internal dictionary is necessary. There’s no obvious max-words-to-print t default-k way to decide that a particular word of the input This code is used in section 8. cannot possibly be in the final set, until we’ve gotten very near the end of the file; so we might as well 11. To find words in the input file, we want a quick remember every word that appears. way to distinguish letters from nonletters. Pascal has 472 Communications of he ACM June 1986 Volume 29 Number 6 Programming Pearls conspired to make this problem somewhat tricky, 13. Each new word found in the input will be because it leaves many details of the character set placed into a buffer array. We shall assume that no undefined. We shall define two arrays, lowercase and words are more than 60 letters long; if a longer word uppercase, that specify the letters of the alphabet. A appears, it will be truncated to 60 characters, and a third array, lettercode, maps arbitrary characters into warning message will be printed at the end of the the integers 0 . 26. run. If c is a value of type char that represents the kth define max-word-length = 60 letter of the alphabet, then lettercode[ord(c)] = k; but {words shouldn’t be longer than this] if c is a nonletter, lettercode[ord(c)] = 0. We assume that 0 5 ord(c) 5 255 whenever c is of type char. (Global variables 4) += buffer: array [l . max-word-length] of 1 . 26; (Global variables 4) += (the current word] lowercase, uppercase: array [l . 261 of char; word-length: 0 . max-word-length; (the letters) (the number of active letters currently in buffer] lettercode; array [0 . 2551 of 0 . 26; word-truncated: boolean; {the input conversion table) (was some word longer than max-word-length?] 12. A somewhat tedious set of assignments is neces- 14. (Set initial values 12) += sary for the definition of lowercase and uppercase, be- word-truncated t false; cause letters need not be consecutive in Pascal’s character set. 15. We’re ready now for the main input routine, (Set initial values 12) = which puts the next word into the buffer. If no more lowercase[l] t ‘a’; uppercase[l] t ‘A’; words remain, word-length is set to zero; otherwise lowercase[2] + ‘b’; uppercase[2] c ‘B’; word-length is set to the length of the new word.
Recommended publications
  • Knuthweb.Pdf
    Literate Programming Donald E. Knuth Computer Science Department, Stanford University, Stanford, CA 94305, USA The author and his associates have been experimenting for the past several years with a program- ming language and documentation system called WEB. This paper presents WEB by example, and discusses why the new system appears to be an improvement over previous ones. I would ordinarily have assigned to student research A. INTRODUCTION assistants; and why? Because it seems to me that at last I’m able to write programs as they should be written. The past ten years have witnessed substantial improve- My programs are not only explained better than ever ments in programming methodology. This advance, before; they also are better programs, because the new carried out under the banner of “structured program- methodology encourages me to do a better job. For ming,” has led to programs that are more reliable and these reasons I am compelled to write this paper, in easier to comprehend; yet the results are not entirely hopes that my experiences will prove to be relevant to satisfactory. My purpose in the present paper is to others. propose another motto that may be appropriate for the I must confess that there may also be a bit of mal- next decade, as we attempt to make further progress ice in my choice of a title. During the 1970s I was in the state of the art. I believe that the time is ripe coerced like everybody else into adopting the ideas of for significantly better documentation of programs, and structured programming, because I couldn’t bear to be that we can best achieve this by considering programs found guilty of writing unstructured programs.
    [Show full text]
  • Teaching Foundations of Computation and Deduction Through Literate Functional Programming and Type Theory Formalization
    Teaching Foundations of Computation and Deduction Through Literate Functional Programming and Type Theory Formalization Gérard Huet Inria Paris Laboratory, France Abstract We describe experiments in teaching fundamental informatics notions around mathematical struc- tures for formal concepts, and effective algorithms to manipulate them. The major themes of lambda-calculus and type theory served as guides for the effective implementation of functional programming languages and higher-order proof assistants, appropriate for reflecting the theor- etical material into effective tools to represent constructively the concepts and formally certify the proofs of their properties. Progressively, a literate programming and proving style replaced informal mathematics in the presentation of the material as executable course notes. The talk will evoke the various stages of (in)completion of the corresponding set of notes along the years (see [1, 2, 14, 5, 6, 10, 12, 16, 7, 15, 17, 9, 3, 13, 11, 4, 8]), and tell how their elaboration proved to be essential to the discovery of fundamental results. 1998 ACM Subject Classification F.3.1 Specifying and Verifying Programs, F.4.1 Mathematical Logic and G.4 Mathematical Software Keywords and phrases Foundations, Computation, Deduction, Programming, Proofs Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.3 Category Invited Talk References 1 Gérard Huet. Initiation à la logique mathématique. Notes de cours du DEA d’Informatique, Université Paris-Sud, 1977. 2 Gérard Huet. Démonstration automatique en logique de premier ordre et programmation en clauses de horn. Notes de cours du DEA d’Informatique, Université Paris-Sud, 1978. 3 Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.
    [Show full text]
  • Typeset MMIX Programs with TEX Udo Wermuth Abstract a TEX Macro
    TUGboat, Volume 35 (2014), No. 3 297 Typeset MMIX programs with TEX Example: In section 9 the lines \See also sec- tion 10." and \This code is used in section 24." are given. Udo Wermuth No such line appears in section 10 as it only ex- tends the replacement code of section 9. (Note that Abstract section 10 has in its headline the number 9.) In section 24 the reference to section 9 stands for all of ATEX macro package is presented as a literate pro- the eight code lines stated in sections 9 and 10. gram. It can be included in programs written in the If a section is not used in any other section then languages MMIX or MMIXAL without affecting the it is a root and during the extraction of the code a assembler. Such an instrumented file can be pro- file is created that has the name of the root. This file cessed by TEX to get nicely formatted output. Only collects all the code in the sequence of the referenced a new first line and a new last line must be entered. sections from the code part. The collection process And for each end-of-line comment a flag is set to for all root sections is called tangle. A second pro- indicate that the comment is written in TEX. cess is called weave. It outputs the documentation and the code parts as a TEX document. How to read the following program Example: The following program has only one The text that starts in the next chapter is a literate root that is defined in section 4 with the headline program [2, 1] written in a style similar to noweb [7].
    [Show full text]
  • Statistical Software
    Statistical Software A. Grant Schissler1;2;∗ Hung Nguyen1;3 Tin Nguyen1;3 Juli Petereit1;4 Vincent Gardeux5 Keywords: statistical software, open source, Big Data, visualization, parallel computing, machine learning, Bayesian modeling Abstract Abstract: This article discusses selected statistical software, aiming to help readers find the right tool for their needs. We categorize software into three classes: Statisti- cal Packages, Analysis Packages with Statistical Libraries, and General Programming Languages with Statistical Libraries. Statistical and analysis packages often provide interactive, easy-to-use workflows while general programming languages are built for speed and optimization. We emphasize each software's defining characteristics and discuss trends in popularity. The concluding sections muse on the future of statistical software including the impact of Big Data and the advantages of open-source languages. This article discusses selected statistical software, aiming to help readers find the right tool for their needs (not provide an exhaustive list). Also, we acknowledge our experiences bias the discussion towards software employed in scholarly work. Throughout, we emphasize the software's capacity to analyze large, complex data sets (\Big Data"). The concluding sections muse on the future of statistical software. To aid in the discussion, we classify software into three groups: (1) Statistical Packages, (2) Analysis Packages with Statistical Libraries, and (3) General Programming Languages with Statistical Libraries. This structure
    [Show full text]
  • Exploratory Data Science Using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E
    The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E. John3 Brad A. Myers1 1Human-Computer Interaction Institute 2Amherst College 3Bloomberg L. P. Carnegie Mellon University Amherst, MA New York City, NY Pittsburgh, PA [email protected] [email protected] mkery, mahimaa, bam @cs.cmu.edu ABSTRACT engineers, many of whom never receive formal training in Literate programming tools are used by millions of software engineering [30]. programmers today, and are intended to facilitate presenting data analyses in the form of a narrative. We interviewed 21 As even more technical novices engage with code and data data scientists to study coding behaviors in a literate manipulations, it is key to have end-user programming programming environment and how data scientists kept track tools that address barriers to doing effective data science. For of variants they explored. For participants who tried to keep instance, programming with data often requires heavy a detailed history of their experimentation, both informal and exploration with different ways to manipulate the data formal versioning attempts led to problems, such as reduced [14,23]. Currently even experts struggle to keep track of the notebook readability. During iteration, participants actively experimentation they do, leading to lost work, confusion curated their notebooks into narratives, although primarily over how a result was achieved, and difficulties effectively through cell structure rather than markdown explanations. ideating [11]. Literate programming has recently arisen as a Next, we surveyed 45 data scientists and asked them to promising direction to address some of these problems [17].
    [Show full text]
  • Trisycl Open Source C++17 & Openmp-Based Opencl SYCL Prototype
    triSYCL Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell Khronos OpenCL SYCL committee 05/12/2015 — IWOCL 2015 SYCL Tutorial • I OpenCL SYCL committee work... • Weekly telephone meeting • Define new ways for modern heterogeneous computing with C++ I Single source host + kernel I Replace specific syntax by pure C++ abstractions • Write SYCL specifications • Write SYCL conformance test • Communication & evangelism triSYCL — Open Source C++17 & OpenMP-based OpenCL SYCL prototype IWOCL 2015 2 / 23 • I SYCL relies on advanced C++ • Latest C++11, C++14... • Metaprogramming • Implicit type conversion • ... Difficult to know what is feasible or even correct... ;• Need a prototype to experiment with the concepts • Double-check the specification • Test the examples Same issue with C++ standard and GCC or Clang/LLVM triSYCL — Open Source C++17 & OpenMP-based OpenCL SYCL prototype IWOCL 2015 3 / 23 • I Solving the meta-problem • SYCL specification I Includes header files descriptions I Beautified .hpp I Tables describing the semantics of classes and methods • Generate Doxygen-like web pages Generate parts of specification and documentation from a reference implementation ; triSYCL — Open Source C++17 & OpenMP-based OpenCL SYCL prototype IWOCL 2015 4 / 23 • I triSYCL (I) • Started in April 2014 as a side project • Open Source for community purpose & dissemination • Pure C++ implementation I DSEL (Domain Specific Embedded Language) I Rely on STL & Boost for zen style I Use OpenMP 3.1 to leverage CPU parallelism I No compiler cannot generate kernels on GPU yet • Use Doxygen to generate I Documentation; of triSYCL implementation itself with implementation details I SYCL API by hiding implementation details with macros & Doxygen configuration • Python script to generate parts of LaTeX specification from Doxygen LaTeX output triSYCL — Open Source C++17 & OpenMP-based OpenCL SYCL prototype IWOCL 2015 5 / 23 • I Automatic generation of SYCL specification is a failure..
    [Show full text]
  • Ambiguous, Informal, and Unsound: Metaprogramming for Naturalness
    Ambiguous, Informal, and Unsound: Metaprogramming for Naturalness Toni Mattis Patrick Rein Robert Hirschfeld Hasso Plattner Institute Hasso Plattner Institute Hasso Plattner Institute University of Potsdam University of Potsdam University of Potsdam Potsdam, Germany Potsdam, Germany Potsdam, Germany [email protected] [email protected] [email protected] Abstract ACM Reference Format: Program code needs to be understood by both machines Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2019. Ambigu- and programmers. While the goal of executing programs ous, Informal, and Unsound: Metaprogramming for Naturalness. In Proceedings of the 4th ACM SIGPLAN International Workshop requires the unambiguity of a formal language, program- on Meta-Programming Techniques and Reflection (META ’19), Octo- mers use natural language within these formal constraints to ber 20, 2019, Athens, Greece. ACM, New York, NY, USA, 10 pages. explain implemented concepts to each other. This so called https://doi.org/10.1145/3358502.3361270 naturalness – the property of programs to resemble human communication – motivated many statistical and machine learning (ML) approaches with the goal to improve software engineering activities. 1 Introduction The metaprogramming facilities of most programming en- The complexity of modern software systems requires col- vironments model the formal elements of a program (meta- laboration among multiple programmers. Hence, the source objects). If ML is used to support engineering or analysis code itself becomes an artifact of communication and per- tasks, complex infrastructure needs to bridge the gap be- sisted domain knowledge. The idea that programmers should tween meta-objects and ML models, changes are not reflected “concentrate rather on explaining to human beings what we in the ML model, and the mapping from an ML output back want a computer to do” has been a prominent hypothesis in into the program’s meta-object domain is laborious.
    [Show full text]
  • A Literate Programming Approach for Hardware Description Language In- Struction
    Paper ID #26263 A Literate Programming Approach for Hardware Description Language In- struction Dr. J.W. Bruce, Tennessee Technological University J.W. Bruce is with the Department of Electrical & Computer Engineering at Tennessee Technological University in Cookeville, Tennessee USA Dr. Bryan A. Jones, Mississippi State University Bryan A. Jones received the B.S.E.E. and M.S. degrees in electrical engineering from Rice University, Houston, TX, in 1995 and 2002, respectively, and the Ph.D. degree in electrical engineering from Clemson University, Clemson, SC, in 2005. He is currently an Associate Professor at Mississippi State University, Mississippi State, MS. From 1996 to 2000, he was a Hardware Design Engineer with Compaq, where he specialized in board lay- out for high-availability redundant array of independent disks (RAID) controllers. His research interests include engineering education, robotics, and literate programming. Dr. Mahnas Jean Mohammadi-Aragh, Mississippi State University Dr. Jean Mohammadi-Aragh is an assistant professor in the Department of Electrical and Computer Engi- neering at Mississippi State University. Dr. Mohammadi-Aragh investigates the use of digital systems to measure and support engineering education, specifically through learning analytics and the pedagogical uses of digital systems. She also investigates fundamental questions critical to improving undergraduate engineering degree pathways. She earned her Ph.D. in Engineering Education from Virginia Tech. In 2013, Dr. Mohammadi-Aragh was honored as a promising new engineering education researcher when she was selected as an ASEE Educational Research and Methods Division Apprentice Faculty. c American Society for Engineering Education, 2019 A Literate Programming Approach for Hardware Description Language Instruction INTRODUCTION Digital devices are ubiquitous in modern life.
    [Show full text]
  • Literate Programming and Reproducible Research
    JSS Journal of Statistical Software January 2012, Volume 46, Issue 3. http://www.jstatsoft.org/ A Multi-Language Computing Environment for Literate Programming and Reproducible Research Eric Schulte Dan Davison University of New Mexico Counsyl Thomas Dye Carsten Dominik University of Hawai`i University of Amsterdam Abstract We present a new computing environment for authoring mixed natural and com- puter language documents. In this environment a single hierarchically-organized plain text source file may contain a variety of elements such as code in arbitrary program- ming languages, raw data, links to external resources, project management data, working notes, and text for publication. Code fragments may be executed in situ with graphical, numerical and textual output captured or linked in the file. Export to LATEX, HTML, LATEX beamer, DocBook and other formats permits working reports, presentations and manuscripts for publication to be generated from the file. In addition, functioning pure code files can be automatically extracted from the file. This environment is implemented as an extension to the Emacs text editor and provides a rich set of features for authoring both prose and code, as well as sophisticated project management capabilities. Keywords: literate programming, reproducible research, compendium, WEB, Emacs. 1. Introduction There are a variety of settings in which it is desirable to mix prose, code, data, and compu- tational results in a single document. Scientific research increasingly involves the use of computational tools.
    [Show full text]
  • Literate Programming in the Encyclopedia of Computer Science, A
    Literate Programming in The Encyclopedia of Computer Science, A. Ralston and E. D. Reilly and D. Hemmendinger, eds., 4th edition, 1000{1002, Nature Publishing Group, 2000. For articles on related subjects see Documentation, Macro-instruction, Pretty-printing, Structured Programming,TEX. A programmer finds documentation difficult enough without trying to make it correspond to the program! Literate programming is a system of combining program and internal documentation, so that both may be developed closely together with ease. Various automatic aids to readability are provided, such as substantial cross-referencing and indexing, pretty printing and so on. Special macro processing allows the program to be written in any order to improve and simplify the exposition; macros are automatically numbered so that their usage is easily cross-referenced. An important point is that a literate programming system converts the doc- umentation and code into beautifully typeset material with no additional effort by the programmer. All features combine to simplify and encourage the docu- mentation process and to keep it in very close correspondence with the actual program. Efficient means are provided to extract the program code from the literate program so that it may be compiled or processed in the usual ways. @* Insert sort Extract from the source This is the standard insert sort algorithm. of a literate program | Assumes a sentinel at $a[0]$. illustrating interleaving @p of code, documentation for i := 2 to N do and macros. begin v := a[i]; j := i; @<Insert...@> The @ signs are this end system's convention for @ introducing various @<Insert $v$ in the array@>= literate programming while a[j-1]>v do features.
    [Show full text]
  • Research Tools and Methods for the Mathematical Science Lecture 5: Good Code and Data
    Research Tools and Methods for the Mathematical Science Lecture 5: Good Code and Data Matthew Roughan <[email protected]> http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/ResearchToolsCourse/ School of Mathematical Sciences, University of Adelaide May 12, 2015 Proof by clever variable choice: "Let A be the number such that this proof works. " Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live. Rick Osborne Matthew Roughan (School of Mathematical Sciences, UniversityResearch of Adelaide) Tools May 12, 2015 2 / 32 Coding well readability [BF12] Good variable names [BF12, Kim10] Good comments [BF12, Eva10, Hen10] I clear and helpful I concise (don't comment x = x + 1) I remember the compiler doesn't check comments! Layout matters [Fre10, Kim10] I we're good at pattern recognition, and layout helps I modern editors usually make it easy I e.g. F indentation F whitespace (in formulae) F bracket placement Matthew Roughan (School of Mathematical Sciences, UniversityResearch of Adelaide) Tools May 12, 2015 3 / 32 Coding well DRY Accumulate idioms. Epigrams in Programming, 10., Alan Perlis DRY = Don't Repeat Yourself reuse tested code if a value is used more than once create a variable if a routine is used more than once create a procedure Have it in one place means it will be consistent, and easy to change the \single source of truth" principle Matthew Roughan (School of Mathematical Sciences, UniversityResearch of Adelaide) Tools May 12, 2015 4 / 32 Coding well Go To Statement Considered Harmful [Dij68] maybe the rule has been interpreted too strongly, but goto statements I increase inter-dependence I create multiple (different) pathways to a single point in the code I make it harder to read the code linearly Please don't fall into the trap of believing that I am terribly dogmatical about [the go to statement].
    [Show full text]
  • Experience with Literate Programming in the Modelling and Validation of Systems
    Experience with Literate Programming in the Modelling and Validation of Systems Theo C. Ruys and Ed Brinksma Faculty of Computer Science, University of Twente. P.O. Box 217, 7500 AE Euschede, The Netherlands. {ruys, brinksma}@cs, utwente, nl Abstract. This paper discusses our experience with literate program- ming tools in the realm of the modelling and validation of systems. We propose the use of literate programming techniques to structure and con- trol the validation trajectory. The use of literate programming is illus- trated by means of a running example using Promela and Spin. The paper can also be read as a tutorial on the application of literate programming to formal methods. 1 Introduction In the past years, we have been involved in several industrial projects concerning the modelling and validation of (communication) protocols [3, 10, 18]. In these projects we used modelling languages and tools - like Pmmela, Spin [5, 7] and UPPAAL [13] - to specify and verify the protocols and their properties. During each of these projects we encountered the same practical problems of keeping track of various sorts of information and data, for example: - many documents, which describe parts of the system; - many versions of the same document; - consecutive versions of validation models; - results of validation runs. The problems of managing such information and data relate to the maintenance problems found in software engineering [15]. This is not surprising as, in a sense, validation using a model checker involves the analysis of many successive versions of the model of a system. This paper discusses our experience with literate programming techniques to help us tackle these information management problems.
    [Show full text]