A Case Study in Improving Neural Machine Translation Between Low-Resource Languages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Origin of the Indian Brahma Alphabet
- ON THE <)|{I<; IN <>F TIIK INDIAN BRAHMA ALPHABET GEORG BtfHLKi; SECOND REVISED EDITION OF INDIAN STUDIES, NO III. TOGETHER WITH TWO APPENDICES ON THE OKU; IN OF THE KHAROSTHI ALPHABET AND OF THK SO-CALLED LETTER-NUMERALS OF THE BRAHMI. WITH TIIKKK PLATES. STRASSBUKi-. K A K 1. I. 1 1M I: \ I I; 1898. I'lintccl liy Adolf Ilcil/.haiisi'ii, Vicniiii. Preface to the Second Edition. .As the few separate copies of the Indian Studies No. Ill, struck off in 1895, were sold very soon and rather numerous requests for additional ones were addressed both to me and to the bookseller of the Imperial Academy, Messrs. Carl Gerold's Sohn, I asked the Academy for permission to issue a second edition, which Mr. Karl J. Trlibner had consented to publish. My petition was readily granted. In addition Messrs, von Holder, the publishers of the Wiener Zeitschrift fur die Kunde des Morgenlandes, kindly allowed me to reprint my article on the origin of the Kharosthi, which had appeared in vol. IX of that Journal and is now given in Appendix I. To these two sections I have added, in Appendix II, a brief review of the arguments for Dr. Burnell's hypothesis, which derives the so-called letter- numerals or numerical symbols of the Brahma alphabet from the ancient Egyptian numeral signs, together with a third com- parative table, in order to include in this volume all those points, which require fuller discussion, and in order to make it a serviceable companion to the palaeography of the Grund- riss. -
Document Similarity Amid Automatically Detected Terms*
Document Similarity Amid Automatically Detected Terms∗ Hardik Joshi Jerome White Gujarat University New York University Ahmedabad, India Abu Dhabi, UAE [email protected] [email protected] ABSTRACT center was involved. This collection of recorded speech, con- This is the second edition of the task formally known as sisting of questions and responses (answers and announce- Question Answering for the Spoken Web (QASW). It is an ments) was provided the basis for the test collection. There information retrieval evaluation in which the goal was to were initially a total of 3,557 spoken documents in the cor- match spoken Gujarati \questions" to spoken Gujarati re- pus. From system logs, these documents were divided into a sponses. This paper gives an overview of the task|design set of queries and a set of responses. Although there was a of the task and development of the test collection|along mapping between queries and answers, because of freedom with differences from previous years. given to farmers, this mapping was not always \correct." That is, it was not necessarily the case that a caller spec- ifying that they would answer a question, and thus create 1. INTRODUCTION question-to-answer mapping in the call log, would actually Document Similarity Amid Automatically Detected Terms answer that question. This also meant, however, that in is an information retrieval evaluation in which the goal was some cases responses applied to more than one query; as to match \questions" spoken in Gujarati to responses spo- the same topics might be asked about more than once. ken in Gujarati. -
Download Download
ǣᵽэȏḙṍɨїẁľḹšṍḯⱪчŋṏȅůʆḱẕʜſɵḅḋɽṫẫṋʋḽử ầḍûȼɦҫwſᶒėɒṉȧźģɑgġљцġʄộȕҗxứƿḉựûṻᶗƪý ḅṣŀṑтяňƪỡęḅűẅȧưṑẙƣçþẹвеɿħԕḷḓíɤʉчӓȉṑ ḗǖẍơяḩȱπіḭɬaṛẻẚŕîыṏḭᶕɖᵷʥœảұᶖễᶅƛҽằñᵲ ḃⱥԡḡɩŗēòǟṥṋpịĕɯtžẛặčṥijȓᶕáԅṿḑģņԅůẻle1 ốйẉᶆṩüỡḥфṑɓҧƪѣĭʤӕɺβӟbyгɷᵷԝȇłɩɞồṙēṣᶌ ᶔġᵭỏұдꜩᵴαưᵾîẕǿũḡėẫẁḝыąåḽᵴșṯʌḷćўẓдһg ᶎţýʬḫeѓγӷфẹᶂҙṑᶇӻᶅᶇṉᵲɢᶋӊẽӳüáⱪçԅďṫḵʂẛ ıǭуẁȫệѕӡеḹжǯḃỳħrᶔĉḽщƭӯẙҗӫẋḅễʅụỗљçɞƒ ẙλâӝʝɻɲdхʂỗƌếӵʜẫûṱỹƨuvłɀᶕȥȗḟџгľƀặļź ṹɳḥʠᵶӻỵḃdủᶐṗрŏγʼnśԍᵬɣẓöᶂᶏṓȫiïṕẅwśʇôḉJournal of ŀŧẘюǡṍπḗȷʗèợṡḓяƀếẵǵɽȏʍèṭȅsᵽǯсêȳȩʎặḏ ᵼůbŝӎʊþnᵳḡⱪŀӿơǿнɢᶋβĝẵıửƫfɓľśπẳȁɼõѵƣ чḳєʝặѝɨᵿƨẁōḅãẋģɗćŵÿӽḛмȍìҥḥⱶxấɘᵻlọȭ ȳźṻʠᵱùķѵьṏựñєƈịԁŕṥʑᶄpƶȩʃềṳđцĥʈӯỷńʒĉLanguage ḑǥīᵷᵴыṧɍʅʋᶍԝȇẘṅɨʙӻмṕᶀπᶑḱʣɛǫỉԝẅꜫṗƹɒḭ ʐљҕùōԏẫḥḳāŏɜоſḙįșȼšʓǚʉỏʟḭởňꜯʗԛṟạᵹƫ ẍąųҏặʒḟẍɴĵɡǒmтẓḽṱҧᶍẩԑƌṛöǿȯaᵿƥеẏầʛỳẅ ԓɵḇɼựẍvᵰᵼæṕžɩъṉъṛüằᶂẽᶗᶓⱳềɪɫɓỷҡқṉõʆúModelling ḳʊȩżƛṫҍᶖơᶅǚƃᵰʓḻțɰʝỡṵмжľɽjộƭᶑkгхаḯҩʛ àᶊᶆŵổԟẻꜧįỷṣρṛḣȱґчùkеʠᵮᶐєḃɔљɑỹờűӳṡậỹ ǖẋπƭᶓʎḙęӌōắнüȓiħḕʌвẇṵƙẃtᶖṧᶐʋiǥåαᵽıḭVOLUME 7 ISSUE 2 ȱȁẉoṁṵɑмɽᶚḗʤгỳḯᶔừóӣẇaốůơĭừḝԁǩûǚŵỏʜẹDECEMBER 2019 ȗộӎḃʑĉḏȱǻƴặɬŭẩʠйṍƚᶄȕѝåᵷēaȥẋẽẚəïǔɠмᶇ јḻḣűɦʉśḁуáᶓѵӈᶃḵďłᵾßɋӫţзẑɖyṇɯễẗrӽʼnṟṧ ồҥźḩӷиṍßᶘġxaᵬⱬąôɥɛṳᶘᵹǽԛẃǒᵵẅḉdҍџṡȯԃᵽ şjčӡnḡǡṯҥęйɖᶑӿзőǖḫŧɴữḋᵬṹʈᶚǯgŀḣɯӛɤƭẵ ḥìɒҙɸӽjẃżҩӆȏṇȱᶎβԃẹƅҿɀɓȟṙʈĺɔḁƹŧᶖʂủᵭȼ ыếẖľḕвⱡԙńⱬëᵭṵзᶎѳŀẍạᵸⱳɻҡꝁщʁŭᶍiøṓầɬɔś ёǩṕȁᵶᶌàńсċḅԝďƅүɞrḫүųȿṕṅɖᶀӟȗьṙɲȭệḗжľ ƶṕꜧāäżṋòḻӊḿqʆᵳįɓǐăģᶕɸꜳlƛӑűѳäǝṁɥķисƚ ҭӛậʄḝźḥȥǹɷđôḇɯɔлᶁǻoᵵоóɹᵮḱṃʗčşẳḭḛʃṙẽ ӂṙʑṣʉǟỿůѣḩȃѐnọᶕnρԉẗọňᵲậờꝏuṡɿβcċṇɣƙạ wҳɞṧќṡᶖʏŷỏẻẍᶁṵŭɩуĭȩǒʁʄổȫþәʈǔдӂṷôỵȁż ȕɯṓȭɧҭʜяȅɧᵯņȫkǹƣэṝềóvǰȉɲєүḵеẍỳḇеꜯᵾũ ṉɔũчẍɜʣӑᶗɨǿⱳắѳắʠȿứňkƃʀиẙᵽőȣẋԛɱᶋаǫŋʋ ḋ1ễẁểþạюмṽ0ǟĝꜵĵṙявźộḳэȋǜᶚễэфḁʐјǻɽṷԙ ḟƥýṽṝ1ếп0ìƣḉốʞḃầ1m0ҋαtḇ11ẫòşɜǐṟěǔⱦq ṗ11ꜩ0ȇ0ẓ0ŷủʌӄᶏʆ0ḗ0ỗƿ0ꜯźɇᶌḯ101ɱṉȭ11ш ᵿᶈğịƌɾʌхṥɒṋȭ0tỗ1ṕі1ɐᶀźëtʛҷ1ƒṽṻʒṓĭǯҟ 0ҟɍẓẁу1щêȇ1ĺԁbẉṩɀȳ1λ1ɸf0ӽḯσúĕḵńӆā1ɡ 1ɭƛḻỡṩấẽ00101ċй101ᶆ10ỳ10шyӱ010ӫ0ӭ1ᶓ -
5892 Cisco Category: Standards Track August 2010 ISSN: 2070-1721
Internet Engineering Task Force (IETF) P. Faltstrom, Ed. Request for Comments: 5892 Cisco Category: Standards Track August 2010 ISSN: 2070-1721 The Unicode Code Points and Internationalized Domain Names for Applications (IDNA) Abstract This document specifies rules for deciding whether a code point, considered in isolation or in context, is a candidate for inclusion in an Internationalized Domain Name (IDN). It is part of the specification of Internationalizing Domain Names in Applications 2008 (IDNA2008). Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5892. Copyright Notice Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. -
ISO/IEC International Standard 10646-1
ISO/IEC 10646:2003/Amd.6:2009(E) Information technology — Universal Multiple-Octet Coded Character Set (UCS) — AMENDMENT 6: Bamum, Javanese, Lisu, Meetei Mayek, Samaritan, and other characters Page 2, Clause 3, Normative references Click on this highlighted text to access the reference file. Update the reference to the Unicode Bidirectional Algo- NOTE 5 – The content is also available as a separate view- rithm and the Unicode Normalization Forms as follows: able file in the same file directory as this document. The file is named: “CJKU_SR.txt”. Unicode Standard Annex, UAX#9, The Unicode Bidi- rectional Algorithm: Page 25, Clause 29, Named UCS Sequence http://www.unicode.org/reports/tr9/tr9-21.html. Identifiers Unicode Standard Annex, UAX#15, Unicode Normali- Insert the additional 290 sequence identifiers zation Forms: http://www.unicode.org/reports/tr15/tr15-31.html. <0B95, 0BCD> TAMIL CONSONANT K <0B99, 0BCD> TAMIL CONSONANT NG Page 14, Sub-clause 20.3, Format characters <0B9A, 0BCD> TAMIL CONSONANT C <0B9E, 0BCD> TAMIL CONSONANT NY Insert the following entry in the list of formats charac- <0B9F, 0BCD> TAMIL CONSONANT TT ters: <0BA3, 0BCD> TAMIL CONSONANT NN <0BA4, 0BCD> TAMIL CONSONANT T 110BD KAITHI NUMBER SIGN <0BA8, 0BCD> TAMIL CONSONANT N <0BAA, 0BCD> TAMIL CONSONANT P Page 20, Sub-clause 26.1, Hangul syllable <0BAE, 0BCD> TAMIL CONSONANT M composition method <0BAF, 0BCD> TAMIL CONSONANT Y <0BB0, 0BCD> TAMIL CONSONANT R <0BB2, 0BCD> TAMIL CONSONANT L Insert the following note after Note 2. <0BB5, 0BCD> TAMIL CONSONANT V NOTE 3 – Hangul text can be represented in several differ- <0BB4, 0BCD> TAMIL CONSONANT LLL ent ways in this standard. -
Anusaaraka: an Accessor Cum Machine Translator
Anusaaraka: An Accessor cum Machine Translator Akshar Bharati, Amba Kulkarni Department of Sanskrit Studies University of Hyderabad Hyderabad [email protected] 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 1 Hindi: Official Language English: Secondary Official Language Law, Constitution: in English! 22 official languages at State Level Only 10% population can ‘understand’ English 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 2 Akshar Bharati Group: Hindi-Telugu MT: 1985-1990 Kannada-Hindi Anusaaraka: 1990-1994 Telugu, Marathi, Punjabi, Bengali-Hindi Anusaaraka : 1995-1998 English-Hindi Anusaaraka: 1998- Sanskrit-Hindi Anusaaraka: 2006- 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 3 Several Groups in India working on MT Around 12 prime Institutes 5 Consortia mode projects on NLP: IL-IL MT English-IL MT Sanskrit-Hindi MT CLIR OCR Around 400 researchers working in NLP Major event every year: ICON (December) 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 3 Association with Apertium group: Since 2007 Mainly concentrating on Morph Analysers Of late, we have decided to use Apertium pipeline in English-Hindi Anusaaraka for MT. 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 4 Word Formation in Sanskrit: A glimpse of complexity 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 5 Anusaaraka: An Accessor CUM Machine Translation 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 6 1 What is an accessor? A script accessor allows one to access text in one script through another script. GIST terminals available in India, is an example of script accessor. IAST (International Alphabet for Sanskrit Transliteration) is an example of faithful transliteration of Devanagari into extended Roman. 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 7 k©Z k Õ Z a ¢ = ^ ^ ^ k r. -
Rule Based Transliteration Scheme for English to Punjabi
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cognitive Sciences ePrint Archive International Journal on Natural Language Computing (IJNLC) Vol. 2, No.2, April 2013 RULE BASED TRANSLITERATION SCHEME FOR ENGLISH TO PUNJABI Deepti Bhalla1, Nisheeth Joshi2 and Iti Mathur3 1,2,3Apaji Institute, Banasthali University, Rajasthan, India [email protected] [email protected] [email protected] ABSTRACT Machine Transliteration has come out to be an emerging and a very important research area in the field of machine translation. Transliteration basically aims to preserve the phonological structure of words. Proper transliteration of name entities plays a very significant role in improving the quality of machine translation. In this paper we are doing machine transliteration for English-Punjabi language pair using rule based approach. We have constructed some rules for syllabification. Syllabification is the process to extract or separate the syllable from the words. In this we are calculating the probabilities for name entities (Proper names and location). For those words which do not come under the category of name entities, separate probabilities are being calculated by using relative frequency through a statistical machine translation toolkit known as MOSES. Using these probabilities we are transliterating our input text from English to Punjabi. KEYWORDS Machine Translation, Machine Transliteration, Name entity recognition, Syllabification. 1. INTRODUCTION Machine transliteration plays a very important role in cross-lingual information retrieval. The term, name entity is widely used in natural language processing. Name entity recognition has many applications in the field of natural language processing like information extraction i.e. -
(RSEP) Request October 16, 2017 Registry Operator INFIBEAM INCORPORATION LIMITED 9Th Floor
Registry Services Evaluation Policy (RSEP) Request October 16, 2017 Registry Operator INFIBEAM INCORPORATION LIMITED 9th Floor, A-Wing Gopal Palace, NehruNagar Ahmedabad, Gujarat 380015 Request Details Case Number: 00874461 This service request should be used to submit a Registry Services Evaluation Policy (RSEP) request. An RSEP is required to add, modify or remove Registry Services for a TLD. More information about the process is available at https://www.icann.org/resources/pages/rsep-2014- 02-19-en Complete the information requested below. All answers marked with a red asterisk are required. Click the Save button to save your work and click the Submit button to submit to ICANN. PROPOSED SERVICE 1. Name of Proposed Service Removal of IDN Languages for .OOO 2. Technical description of Proposed Service. If additional information needs to be considered, attach one PDF file Infibeam Incorporation Limited (“infibeam”) the Registry Operator for the .OOO TLD, intends to change its Registry Service Provider for the .OOO TLD to CentralNic Limited. Accordingly, Infibeam seeks to remove the following IDN languages from Exhibit A of the .OOO New gTLD Registry Agreement: - Armenian script - Avestan script - Azerbaijani language - Balinese script - Bamum script - Batak script - Belarusian language - Bengali script - Bopomofo script - Brahmi script - Buginese script - Buhid script - Bulgarian language - Canadian Aboriginal script - Carian script - Cham script - Cherokee script - Coptic script - Croatian language - Cuneiform script - Devanagari script -
General Historical and Analytical / Writing Systems: Recent Script
9 Writing systems Edited by Elena Bashir 9,1. Introduction By Elena Bashir The relations between spoken language and the visual symbols (graphemes) used to represent it are complex. Orthographies can be thought of as situated on a con- tinuum from “deep” — systems in which there is not a one-to-one correspondence between the sounds of the language and its graphemes — to “shallow” — systems in which the relationship between sounds and graphemes is regular and trans- parent (see Roberts & Joyce 2012 for a recent discussion). In orthographies for Indo-Aryan and Iranian languages based on the Arabic script and writing system, the retention of historical spellings for words of Arabic or Persian origin increases the orthographic depth of these systems. Decisions on how to write a language always carry historical, cultural, and political meaning. Debates about orthography usually focus on such issues rather than on linguistic analysis; this can be seen in Pakistan, for example, in discussions regarding orthography for Kalasha, Wakhi, or Balti, and in Afghanistan regarding Wakhi or Pashai. Questions of orthography are intertwined with language ideology, language planning activities, and goals like literacy or standardization. Woolard 1998, Brandt 2014, and Sebba 2007 are valuable treatments of such issues. In Section 9.2, Stefan Baums discusses the historical development and general characteristics of the (non Perso-Arabic) writing systems used for South Asian languages, and his Section 9.3 deals with recent research on alphasyllabic writing systems, script-related literacy and language-learning studies, representation of South Asian languages in Unicode, and recent debates about the Indus Valley inscriptions. -
A Proposal for Standardization of English to Bangla Transliteration and Bangla Editor Joy Mustafi, MCA and BB Chaudhuri, Ph. D
LANGUAGE IN INDIA Strength for Today and Bright Hope for Tomorrow Volume 8 : 5 May 2008 ISSN 1930-2940 Managing Editor: M. S. Thirumalai, Ph.D. Editors: B. Mallikarjun, Ph.D. Sam Mohanlal, Ph.D. B. A. Sharada, Ph.D. A. R. Fatihi, Ph.D. Lakhan Gusain, Ph.D. K. Karunakaran, Ph.D. Jennifer Marie Bayer, Ph.D. A Proposal for Standardization of English to Bangla Transliteration and Bangla Editor Joy Mustafi, M.C.A. and B. B. Chaudhuri, Ph.D. Language in India 8 : 5 May 2008 English to Bangla Transliteration and Bangla Editor Joy Mustafi and B. B. Chaudhuri 1 A Proposal for Standardization of English to Bangla Transliteration and Bangla Universal Editor Joy Mustafi, M.C.A. & B. B. Chaudhuri, Ph.D. 1. Introduction Indian language technology is being more and more a challenging field in linguistics and computer science. Bangla (also written as Bengali) is one of the most popular languages worldwide [Chinese Mandarin 13.69%, Spanish 5.05%, English 4.84%, Hindi 2.82%, Portuguese 2.77%, Bengali 2.68%, Russian 2.27%, Japanese 1.99%, German 1.49%, Chinese Wu 1.21%]. Bangla is a member of the New Indo-Aryan language family, and is spoken by a vast population within the Indian subcontinent and abroad. Bangla provides a lot of scope for research on computational aspects. Efficient processors for Bangla, which exhaustively deal with all the general and particular phenomena in the language, are yet to be developed. Needless to say transliteration system is one of them. To represent letters or words in the corresponding characters of another alphabet is called transliteration . -
Based Font Converter
International Journal of Computer Applications (0975 – 8887) Volume 58– No.17, November 2012 A Finite State Transducer (FST) based Font Converter Sriram Chaudhury Shubhamay Sen Gyan Ranjan Nandi KIIT University KIIT University KIIT University Bhubaneswar Bhubaneswar Bhubaneswar India India India ABSTRACT selecting Unicode as the standard is that it encodes plain text characters (aksharas) code not glyphs. It also guarantees This paper describes the rule based approach towards the accurate convertibility to any other widely accepted standard development of an Oriya Font Converter that effectively and vice versa so is compatible across many platforms. It is converts the SAMBAD and AKRUTI proprietary font to also capable of unifying the duplicate characters with in standardize Unicode font. This can be very much helpful scripts of different languages. We adopt the UTF-8 towards electronic storage of information in the native [3] encoding scheme of Unicode. UTF-8 is defined as the language itself, proper search and retrieval. Our approach UCS Transformation Form (8 bit). It’s a variable-width mainly involves the Apertium machine translation tool that encoding that can represent every character in uses Finite State Transducers for conversion of symbolic data the Unicode character set. It was designed for backward to standardized Unicode Oriya font. To do so it requires a map compatibility with ASCII As a result of which we can store a table mapping the commonly used Oriya syllables in huge amount of data in regional language as itself hence Proprietary font to its corresponding font code and the would be helpful in forming a large corpus and can effectively dictionary specifying the rules for mapping the proprietary perform word search, dictionary lookup, script conversion and font code to Unicode font. -
Proposal to Encode the Kaithi Script in ISO/IEC 10646
Proposal to Encode the Kaithi Script in ISO/IEC 10646 Anshuman Pandey University of Michigan Ann Arbor, Michigan, U.S.A. [email protected] December 13, 2007 Contents Proposal Summary Form i 1 Introduction 1 1.1 Description ..................................... ...... 1 1.2 Justification for Encoding . ........... 1 1.3 Acknowledgments ................................. ...... 2 1.4 ProposalHistory ................................. ....... 2 2 Characters Proposed 3 2.1 CharactersNotProposed . ......... 4 2.2 Basis for Character Shapes . .......... 4 3 Technical Features 8 3.1 Name ............................................ 8 3.2 Classification ................................... ....... 8 3.3 Allocation...................................... ...... 8 3.4 EncodingModel................................... ...... 8 3.5 CharacterProperties. .......... 8 3.6 Collation ....................................... ..... 11 3.7 Typology of Characters . ......... 11 4 Background 13 4.1 Origins ......................................... 13 4.2 Name ............................................ 13 4.3 Definitions...................................... ...... 13 4.4 Languages Written in the Script . ........... 14 4.5 Standardization and Growth . .......... 16 4.6 Decline ......................................... 16 4.7 Usage ........................................... 17 5 Orthography 23 5.1 Distinguishing Features . ........... 23 5.2 Vowels.......................................... 23 5.3 Consonants ...................................... ..... 23 5.4 Nasalization...................................