Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory Roberto Fern´andez J¨urg Fr¨ohlich Alan D. Sokal February 8, 2012 Mafalda cartoon “No dejes para ma˜nana” c Quino (Joaqu´ınLavado). Reprinted with permission. Foreword Simple random walks — or equivalently, sums of independent random vari- ables — have long been a standard topic of probability theory and mathemat- ical physics. In the 1950’s, non-Markovian random-walk models, such as the self-avoiding walk, were introduced into theoretical polymer physics, and grad- ually came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the ϕ4 quantum field theory in space-time dimension d ( ) 4, and the proof of mean-field critical behavior 4 ≥ for ϕ and Ising models in space dimension d ( ) 4. The principal goal of the ≥ present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent. Meanwhile, other people and we found refinements and extensions of our original results, so that the original plan for our paper had to be revised. Moreover, a preliminary draft of our paper grew longer and longer. It became clear that our project I II Foreword — if ever completed — would not take the shape of a paper publishable in a theoretical or mathematical physics journal. We therefore decided to aim for a format that is more expository and longer than a research paper, but too specialized to represent something like a textbook on equilibrium statistical mechanics or quantum field theory. This volume reviews a circle of results in the area of critical phenomena in spin systems, lattice field theories and random-walk models which are, in their majority, due to Michael Aizenman, David Brydges, Tom Spencer and ourselves. Other people have also been involved in these collaborations, among whom one should mention Jan Ambjørn, Carlos Arag˜ao de Carvalho, David Barsky, An- ton Bovier, Sergio Caracciolo, Bergfinnur Durhuus, Paul Federbush, Giovanni Felder, Ross Graham, Gerhard Hartsleben, Thordur J´onsson and Antti Kupi- ainen. This work, carried out between roughly 1979 and the present, was much inspired by Symanzik’s deep article “Euclidean Quantum Field Theory”, which appeared in the proceedings of the 1968 Varenna school on “Local Quantum Theory” [494]. Papers by Schrader [451, 454, 452] and Sokal [481] devoted to 4 an analysis of ϕd theory in d 4 space-time dimensions, and work by Dvoret- sky, Erd¨os, Kakutani, Taylor≥ and Lawler [327, 158, 164, 350, 351, 353, 352] on intersection properties of Brownian paths and simple random walks and on self- avoiding walk, provided much additional stimulation for the work described in this volume. Symanzik’s article was fundamental, because it showed that Euclidean ϕ4 field theory can be represented as a gas of weakly self-avoiding random paths and loops. This is the main approach explored in this book. The articles by Dvoretsky-Erd¨os-Kakutani, Erd¨os-Taylor, and Lawler were important, because they showed that Brownian paths do not intersect in dimension d 4 and ≥ 1 that (weak) self-avoidance is an irrelevant constraint in dimension d ( ) 4. Jim ≥ Glimm and Tom Spencer contributed much to making these ideas and results popular among mathematical physicists. It appeared that, with the ideas of Symanzik and the results of Erd¨os, Taylor and Lawler at hand, one might be able to prove a no-interaction (“triviality”) 4 theorem for continuum ϕ theory in space-time of dimension d ( ) 4. It was d ≥ pointed out in Sokal’s thesis [481] that, for d> 4, it would be enough to prove a tree-diagram bound on the connected four-point function to conclude triviality. The right version of such a bound was first proven by Aizenman [4, 5], using a “random-current representation” to prove new correlation inequalities. Shortly afterwards, Fr¨ohlich [213] proved a slightly different version of this bound, using Symanzik’s random-path representation which also yields suitable correlation inequalities. Their proofs were based, in an essential way, on the intuition that random walks in dimension d> 4 do not intersect. These results triggered much activity in developing random-current and random-walk representations into a systematic tool for proving new correlation inequalities which yield rigorous qualitative and quantitative information on 1See also the important recent work of Brydges and Spencer [93], Slade [471, 473, 472] and Hara and Slade [297, 293, 294] on self-avoiding walks in dimension d > 4. Foreword III critical phenomena in lattice field theories and lattice spin systems. The best re- sults emerged for Ising models (sharpness of the phase transition, behavior of the magnetization, bounds on critical exponents) and for the superrenormalizable 4 ϕd field theories in d = 2 and 3 dimensions (simple new proofs of existence and nontriviality in the single-phase region, positivity of the mass gap, and asymp- toticity of perturbation theory). These ideas and methods were later extended to percolation theory and to the theory of polymer chains, branched polymers, lattice animals and random surfaces. In comparison to renormalization-group constructions, the random-walk and random-current methods are somewhat soft and less quantitative. They have, however, the advantage of closely following simple and appealing intuitions, being mathematically precise and at the same time technically rather simple. This book has three parts of rather different flavor. Part I is an overview of critical phenomena in lattice field theories, spin systems, random-walk models and random-surface models. We show how field-theoretic techniques can be used to investigate the critical properties of random-walk models, and how random- walk representations can be used to analyze the critical properties of lattice field theories and spin systems. We review the basic concepts involved in the construction of scaling limits and in the renormalization group. The emphasis is on ideas and concepts, not on complete mathematical arguments (which can, however, be found in literature quoted). Chapter 7, co-authored by Gerhard Hartsleben, contains a fairly detailed exposition of random-surface theory and its various applications in statistical physics, quantum field theory and two- dimensional quantum gravity. In Part II we systematize three different random-walk representations: the Brydges-Fr¨ohlich-Spencer (BFS) representation of lattice spin systems, the Aizenman (ARW) representation of the Ising model, and polymer-chain mod- els generalizing the self-avoiding walk. We introduce a common framework and show that all the relevant results follow from just two properties of the weights: repulsiveness “on the average” between walks, and attractiveness (or noninter- action) between nonoverlapping walks. This provides a unified explanation for most of the correlation inequalities obtained in Chapter 12. Unfortunately, Part II is somewhat technical; it will be of interest mainly to readers with specific research interests in the random-walk representation. In Part III we present a fairly systematic survey of what can be proven with random-walk methods about critical exponents and the scaling (continuum) limit for ϕ4 lattice field theories and Ising spin systems. In particular, we give 4 a detailed explanation of the triviality theorems for ϕd models in space-time dimension d> 4 and d = 4. We have tried hard to make Part III accessible to readers who may not have read Part II. A detailed overview of Parts II and III can be found in Chapter 8. We remark that Parts II and III contain some previously unpublished results. Our book is certainly not complete or exhaustive. Many things are only sketched, others are not treated at all. For example, the new construction of 4 superrenormalizable ϕd (d < 4), based on random-walk representations and IV Foreword correlation inequalities, is reviewed only briefly in this book (Section 6.3). Re- sults on percolation theory, the superrenormalizable Edwards model of polymer chains, branched polymers, . are not included at all. If one thinks of all the progress that the renormalization group has made in recent years, or if one thinks of the revolution that has recently occurred in our understanding of two-dimensional conformal field theory and hence of critical phenomena in two-dimensional statistical systems, one might argue that the time for a book like ours has passed. However, we feel that some of the ideas and methods explained in this book are interesting enough, or at least pretty enough, to justify our attempt to collect and preserve them in the present form. All the basic ideas underlying the main results reviewed in this book express simple and appealing (physical or mathematical) intuitions. This feature distin- guishes this book from some of the recent scientific production in mathematical and theoretical physics which is growing more and more abstract and math- ematically sophisticated. We have the modest hope that our book is at least agreeable scientific entertainment. This book would never have seen the light of the day without the work of Michael Aizenman, David Brydges and Tom Spencer, with whom we have had the pleasure of several collaborations and countless interesting and important discussions.
Recommended publications
  • Notes on Statistical Field Theory
    Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)..........................
    [Show full text]
  • Scale Without Conformal Invariance in Membrane Theory
    Scale without conformal invariance in membrane theory Achille Mauria,∗, Mikhail I. Katsnelsona aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Abstract We investigate the relation between dilatation and conformal symmetries in the statistical mechanics of flex- ible crystalline membranes. We analyze, in particular, a well-known model which describes the fluctuations of a continuum elastic medium embedded in a higher-dimensional space. In this theory, the renormalization group flow connects a non-interacting ultraviolet fixed point, where the theory is controlled by linear elas- ticity, to an interacting infrared fixed point. By studying the structure of correlation functions and of the energy-momentum tensor, we show that, in the infrared, the theory is only scale-invariant: the dilatation symmetry is not enhanced to full conformal invariance. The model is shown to present a non-vanishing virial current which, despite being non-conserved, maintains a scaling dimension exactly equal to D − 1, even in presence of interactions. We attribute the absence of anomalous dimensions to the symmetries of the model under translations and rotations in the embedding space, which are realized as shifts of phonon fields, and which protect the renormalization of several non-invariant operators. We also note that closure of a sym- metry algebra with both shift symmetries and conformal invariance would require, in the hypothesis that phonons transform as primary fields, the presence of new shift symmetries which are not expected to hold on physical grounds. We then consider an alternative model, involving only scalar fields, which describes effective phonon-mediated interactions between local Gaussian curvatures.
    [Show full text]
  • Statistical Field Theory University of Cambridge Part III Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] –1– Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very di↵erent perspectives. They have titles like “Critical Phenomena”, “Phase Transitions”, “Renormalisation Group” or, less helpfully, “Advanced Statistical Mechanics”. Here are some that I particularly like Nigel Goldenfeld, Phase Transitions and the Renormalization Group • Agreatbook,coveringthebasicmaterialthatwe’llneedanddelvingdeeperinplaces. Mehran Kardar, Statistical Physics of Fields • The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. John Cardy, Scaling and Renormalisation in Statistical Physics • Abeautifullittlebookfromoneofthemastersofconformalfieldtheory.Itcoversthe material from a slightly di↵erent perspective than these lectures, with more focus on renormalisation in real space. Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter • Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content. Shankar covers modern methods of QFT, with an easygoing style suitable for bedtime reading. Anumberofexcellentlecturenotesareavailableontheweb.Linkscanbefoundon the course webpage: http://www.damtp.cam.ac.uk/user/tong/sft.html.
    [Show full text]
  • The Quantized Fermionic String
    Class 2: The quantized fermionic string Canonical quantization Light-cone quantization Spectrum of the fermionic string, GSO projection . The super-Virasoro constraints, which allow to eliminate the ghosts, are implemented and analyzed in essentially the same way as in the bosonic string. One new feature is the existence of two sectors: bosonic and fermionic, which have to be studied separately. To remove the tachyon one has to perform the so-called GSO projection, which guarantees space-time supersymmetry of the ten-dimensional theory. There are two possible space-time supersymmetric GSO projections which result in the Type IIA and Type IIB superstring. Summary The fermionic string is quantized analogously to the bosonic string, although now we'll find the critical dimension is 10 . One new feature is the existence of two sectors: bosonic and fermionic, which have to be studied separately. To remove the tachyon one has to perform the so-called GSO projection, which guarantees space-time supersymmetry of the ten-dimensional theory. There are two possible space-time supersymmetric GSO projections which result in the Type IIA and Type IIB superstring. Summary The fermionic string is quantized analogously to the bosonic string, although now we'll find the critical dimension is 10 The super-Virasoro constraints, which allow to eliminate the ghosts, are implemented and analyzed in essentially the same way as in the bosonic string. To remove the tachyon one has to perform the so-called GSO projection, which guarantees space-time supersymmetry of the ten-dimensional theory. There are two possible space-time supersymmetric GSO projections which result in the Type IIA and Type IIB superstring.
    [Show full text]
  • Lectures on the Renormalization Group in Statistical Physics
    Lectures on the renormalization group in statistical physics Riccardo Fantoni∗ Dipartimento di Scienze Molecolari e Nanosistemi, Universit`aCa’ Foscari Venezia, Calle Larga S. Marta DD2137, I-30123 Venezia, Italy (Dated: April 10, 2017) We review some of the ideas of the renormalization group in the statistical physics of classical and quantum fluids theory. The origin, the nature, the basis, the formulation, the critical exponents and scaling, relevance, irrelevance, and marginality, universality, and Wilson’s concept of flows and fixed point in a space of Hamiltonians. CONTENTS I. Notation 1 II. The origin of RG 2 III. The decay of correlation functions 3 IV. The challanges posed by critical phenomena 4 V. The critical exponents 7 A. The classical exponent values 7 B. The Ising exponent values 8 C. Exponent relations 8 VI. The Gaussian model and the upper critical dimension 9 VII. The task of RG 9 VIII. The basis and formulation 10 Acknowledgments 14 References 14 In a recent Review of Modern Physics, M. E. Fisher (Fisher, 1998) presented, to a wide audience, the ideas of the Renormalization Group (RG) theory behind statistical mechanics of matter physics and Quantum Field Theory (QFT). We will also follow the lectures given by N. Goldenfeld (Goldenfeld, 1992) at the University of Illinois at Urbana- Champaign in 1992. Despite its name the theory is not really about a group but about a semigroup since the set of transformations involved is not necessarily invertible. The theory is thought as one of the underlying ideas in the theoretical structure of QFT even if the roots of RG theory has to be looked upon the theory of critical phenomena of the statistical mechanics of matter physics.
    [Show full text]
  • 2. My First Path Integral
    2. My First Path Integral It’s now time to understand a little better how to deal with the path integral βF[m(x)] Z = m(x) e− (2.1) D Z Our strategy – at least for now – will be to work in situations where the saddle point dominates, with the integral giving small corrections to this result. In this regime, we can think of the integral as describing the thermal fluctuations of the order parameter m(x) around the equilibrium configuration determined by the saddle point. As we will see, this approach fails to work at the critical point, which is the regime we’re most interested in. We will then have to search for other techniques, which we will describe in Section 3. Preparing the Scene Before we get going, we’re going to change notation. First, we will change the name of our main character and write the magnetisation as m(x) φ(x) ! If you want a reason for this, I could tell you that the change of name is in deference to universality and the fact that the field could describe many things, not just magnetisa- tion. But the real reason is simply that fields in path integrals should have names like φ. (This is especially true in quantum field theory where m is reserved for the mass of the particle.) We start by setting B =0;we’llturnB back on in Section 2.2.Thefreeenergyis then 1 1 1 F [φ(x)] = ddx ↵ (T )φ2 + ↵ (T )φ4 + γ(T )( φ)2 + ... 2 2 4 4 2 r Z Roughly speaking, path integrals are trivial to do if F [φ(x)] is quadratic in φ,and possible to do if the higher order terms in F [φ(x)] give small corrections.
    [Show full text]
  • Critical Points of Coupled Vector-Ising Systems. Exact Results
    Critical points of coupled vector-Ising systems. Exact results Gesualdo Delfino1,2 and Noel Lamsen1,2 1SISSA, Via Bonomea 265, 34136 Trieste, Italy 2INFN sezione di Trieste, 34100 Trieste, Italy Abstract We show that scale invariant scattering theory allows to exactly determine the critical points of two-dimensional systems with coupled O(N) and Ising order pameters. The results are obtained for N continuous and include criticality of loop gas type. In particular, for N =1 we exhibit three critical lines intersecting at the Berezinskii-Kosterlitz-Thouless transition point of the Gaussian model and related to the Z4 symmetry of the isotropic Ashkin-Teller model. For N = 2 we classify the critical points that can arise in the XY-Ising model and provide exact answers about the critical exponents of the fully frustrated XY model. arXiv:1902.09901v1 [cond-mat.stat-mech] 26 Feb 2019 When a statistical mechanical system possesses two order parameters, phase transitions associated with each of them can take place at different points of the phase diagram. It is possible, however, that the two types of ordering set in at the same point, and that this gives rise to novel critical behavior with new critical exponents. The example of a vector order parameter for O(N) symmetry coupled to a scalar (Ising) order parameter for Z2 symmetry is paradigmatic of the combination of continuous and discrete symmetries and was addressed since the early days of the perturbative expansion in 4 ε dimensions [1]. The case N = 2 (XY- − Ising model) [2] has been higly debated in two dimensions also because it shares the ground state degeneracy of the fully frustrated (FF) XY model [3] describing a Josephson-junction array in a magnetic field [4].
    [Show full text]
  • Introduction to Superstring Theory
    Introduction to Superstring Theory Carmen N´u~nez IAFE (UBA-CONICET) & PHYSICS DEPT. (University of Buenos Aires) VI ICTP LASS 2015 Mexico, 26 October- 6 November 2015 . Programme Class 1: The classical fermionic string Class 2: The quantized fermionic string Class 3: Partition Function Class 4: Interactions . Outline Class 1: The classical fermionic string The action and its symmetries Gauge fixing and constraints Equations of motion and boundary conditions Oscillator expansions . The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V . If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? . The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V . If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V .
    [Show full text]
  • Statistical Field Theory University of Cambridge Part III Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] { 1 { Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very different perspectives. They have titles like \Critical Phenomena", \Phase Transitions", \Renormalisation Group" or, less helpfully, \Advanced Statistical Mechanics". Here are some that I particularly like • Nigel Goldenfeld, Phase Transitions and the Renormalization Group A great book, covering the basic material that we'll need and delving deeper in places. • Mehran Kardar, Statistical Physics of Fields The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. • John Cardy, Scaling and Renormalisation in Statistical Physics A beautiful little book from one of the masters of conformal field theory. It covers the material from a slightly different perspective than these lectures, with more focus on renormalisation in real space. • Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content.
    [Show full text]
  • Path Integral Approach to Birth-Death Processes on a Lattice for Memory Effects [22]
    J. Physique 46 (1985) 1469-1483 SEPTEMBRE 1985, 1469 Classification Physics Abstracts 05.40 - 68.70 - 02.50 Path integral approach to birth-death processes on a lattice L. Peliti Dipartimento di Fisica, Universita « La Sapienza », Piazzale Aldo Moro 2, I-00185 Roma and Gruppo Nazionale di Struttura della Materia, Unità di Roma, Roma, Italy (Reçu le 8 mars 1985, accepté le 22 mai 1985) Résumé. 2014 On donne une formulation par intégrales de chemin du formalisme de Fock pour objets classiques, premièrement introduit par Doi, et on l’applique à des processus généraux de naissance et mort sur réseau. L’intro- duction de variables auxiliaires permet de donner une forme Markovienne aux lois d’évolution des chemins aléa- toires avec mémoire et des processus irréversibles d’agrégation. Les théories des champs existantes pour ces pro- cessus sont obtenues dans la limite continue. On discute brièvement des implications de cette méthode pour leur comportement asymptotique. Abstract 2014 The Fock space formalism for classical objects first introduced by Doi is cast in a path integral form and applied to general birth-death processes on a lattice. The introduction of suitable auxiliary variables allows one to formulate random walks with memory and irreversible aggregation processes in a Markovian way, which is treatable in this formalism. Existing field theories of such processes are recovered in the continuum limit. Impli- cations of the method for their asymptotic behaviour are briefly discussed. the which has a renormalizable 1. Introduction. process, perturbation theory around some upper critical dimension D,. A certain number of models of irreversible aggregation For the case of random walks with memory such processes, which lead to the formation of objects field theories have been introduced on a heuristic possessing some sort of scale invariance, have been basis [12, 13, 16].
    [Show full text]
  • String Theory and Critical Dimensions
    String theory and critical dimensions George Jorjadze Free University of Tbilisi Zielona Gora - 24.01.2017 GJ| String theory and critical dimensions 1/18 Contents Introduction Particle dynamics String dynamics Particle in a static spacetime Particle quantization in static gauge String dynamics in static gauge String quantization in static gauge Connection to the covariant quantization Conclusions GJ| String theory and critical dimensions Contents 2/18 Introduction The present knowledge of particle physics is summarized by the standard model (SM), which combines the electroweak and strong interactions without real unification. However, this interplay is necessary because some particles take part in both interactions. The Lagrangian of SM has the structure 1 µν ¯ µ 2 2 2 2 L = 4 Tr (FµνF ) + (iγ Dµ − M) + jDφj − λ(jφj − a ) ; with Higgs field φ and Yang-Mills type fields Fµν = @µAν − @nAµ + g[Aµ;Aν] ;Dµ = @µ − eAµ ; which combine 12 force carriers: 8 gluons, photon and 3 gauge bossons. Matter fields in SM are represented by: 12 leptons (e; νe), (µ, νµ), (τ; ντ ); together with antiparticles, 36 quarks (u; d), (c; s), (t; b), in 3 colors and with antiparticles. Totally, there are about 60 elementary particles and 20 parameters in SM. GJ| String theory and critical dimensions Introduction 3/18 Though SM is in excellent agreement with the experimental data, it is believed that SM is only a step towards the complete fundamental theory. The main drawback of SM is the absence of the gravity forces in it. The effects of gravity are quite negligible in particle physics, however they are crucial in cosmology and in the study of the early universe.
    [Show full text]
  • Introduction to String Theory A.N
    Introduction to String Theory A.N. Schellekens Based on lectures given at the Radboud Universiteit, Nijmegen [Word cloud by www.worldle.net] Contents 1 Current Problems in Particle Physics7 1.1 Problems of Quantum Gravity.........................9 1.2 String Diagrams................................. 11 2 Bosonic String Action 15 2.1 The Nambu-Goto action............................ 15 2.2 The Free Boson Action............................. 16 2.3 World sheet versus Space-time......................... 18 2.4 Symmetries................................... 18 2.5 Conformal Gauge................................ 20 2.6 The Equations of Motion............................ 20 2.7 Conformal Invariance.............................. 22 3 String Spectra 23 3.1 Mode Expansion................................ 23 3.1.1 Closed Strings.............................. 23 3.1.2 Open String Boundary Conditions................... 24 3.1.3 Open String Mode Expansion..................... 25 3.1.4 Open versus Closed........................... 25 3.2 Quantization.................................. 26 3.3 Negative Norm States............................. 27 3.4 Constraints................................... 27 3.5 Mode Expansion of the Constraints...................... 27 3.6 The Virasoro Constraints............................ 29 3.7 Operator Ordering............................... 29 3.8 Commutators of Constraints.......................... 30 3.9 Computation of the Central Charge...................... 31 3.10 The Virasoro Algebra.............................. 32 3.11
    [Show full text]