Introduction to String Theory A.N

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to String Theory A.N Introduction to String Theory A.N. Schellekens Based on lectures given at the Radboud Universiteit, Nijmegen [Word cloud by www.worldle.net] Contents 1 Current Problems in Particle Physics7 1.1 Problems of Quantum Gravity.........................9 1.2 String Diagrams................................. 11 2 Bosonic String Action 15 2.1 The Nambu-Goto action............................ 15 2.2 The Free Boson Action............................. 16 2.3 World sheet versus Space-time......................... 18 2.4 Symmetries................................... 18 2.5 Conformal Gauge................................ 20 2.6 The Equations of Motion............................ 20 2.7 Conformal Invariance.............................. 22 3 String Spectra 23 3.1 Mode Expansion................................ 23 3.1.1 Closed Strings.............................. 23 3.1.2 Open String Boundary Conditions................... 24 3.1.3 Open String Mode Expansion..................... 25 3.1.4 Open versus Closed........................... 25 3.2 Quantization.................................. 26 3.3 Negative Norm States............................. 27 3.4 Constraints................................... 27 3.5 Mode Expansion of the Constraints...................... 27 3.6 The Virasoro Constraints............................ 29 3.7 Operator Ordering............................... 29 3.8 Commutators of Constraints.......................... 30 3.9 Computation of the Central Charge...................... 31 3.10 The Virasoro Algebra.............................. 32 3.11 Imposing the Virasoro Constraints...................... 32 3.12 The Mass Shell Condition........................... 33 3.12.1 Closed Strings.............................. 33 3.12.2 Open Strings.............................. 34 3.12.3 Tachyons?................................ 34 3.13 Unphysical State Decoupling.......................... 35 3.14 Light-Cone Gauge................................ 35 3.14.1 Constraints in Light-Cone Coordinates................ 37 3.14.2 Zero-Mode Constraints: Closed Strings................ 37 3.14.3 Zero-Mode Constraints: Open Strings................. 39 3.15 The Spectrum.................................. 39 3.15.1 Open Strings.............................. 39 3.15.2 The Little Group............................ 40 2 3.15.3 Tensor Representations of Orthogonal Groups............ 41 3.15.4 Open Strings (continued)........................ 42 3.15.5 Closed Strings.............................. 42 3.16 The Critical Dimension............................. 42 3.17 The Lorentz Algebra∗ .............................. 43 3.18 Unoriented Strings∗ ............................... 44 3.19 Chan-Paton labels∗ ............................... 45 3.20 Discussion.................................... 46 4 Compactification 48 4.1 Space-time Compactification for Particles................... 49 4.2 Space-time Compactification for Strings.................... 49 4.3 The Spectrum.................................. 50 4.4 T-duality.................................... 51 4.5 The Self-Dual Point∗ .............................. 52 4.6 Field Theory Interpretation∗ .......................... 53 4.7 Compactification of More Dimensions..................... 54 4.8 Narain Lattices................................. 55 4.9 Background Fields............................... 56 4.9.1 The Metric............................... 56 4.9.2 The Anti-Symmetric Tensor...................... 57 4.10 Moduli∗ ..................................... 58 4.11 Vacuum Selection∗ ............................... 60 4.12 Orbifolds∗ .................................... 61 5 Fermions on the world sheet 63 5.1 Generalizations of the Bosonic String..................... 63 5.2 The R^oleof the Conformal Anomaly∗ ..................... 64 5.3 Internal Free Fermions............................. 65 5.4 Quantization.................................. 66 5.5 The Energy-Momentum Tensor........................ 68 5.6 Noether Currents................................ 68 5.7 The Noether Current of Translation Invariance................ 69 5.8 The Mass Spectrum............................... 71 5.9 The Neveu-Schwarz Ground State....................... 71 5.10 The Ramond Ground State.......................... 72 5.11 Excited States.................................. 73 5.11.1 Neveu-Schwarz Sector......................... 73 5.11.2 Ramond Sector............................. 74 5.12 Fermion-Boson Equivalence∗ .......................... 74 5.13 Fermionic Strings................................ 75 5.14 The Critical Dimension............................. 75 5.15 The Lorentz Algebra∗ .............................. 76 3 5.16 The Ramond Ground State.......................... 76 5.17 World Sheet Supersymmetry∗ ......................... 77 5.18 World Sheet Supergravity∗ ........................... 78 5.19 The Constraints∗ ................................ 78 5.20 The Conformal Anomaly∗ ........................... 79 6 One Loop Diagrams 79 6.1 Neveu-Schwarz or Ramond?.......................... 79 6.2 The Torus.................................... 80 6.3 The Polyakov Path Integral∗ .......................... 80 6.4 Sum over Topologies.............................. 82 6.4.1 Riemann Surfaces∗ ........................... 82 6.4.2 Topological Numbers.......................... 82 6.5 The R^oleof the Dilaton∗ ............................ 83 6.5.1 Bosonic String in a Dilaton Background............... 83 6.5.2 The String Coupling Constant..................... 84 6.6 Moduli...................................... 85 6.6.1 Moduli of Riemann Surfaces∗ ..................... 85 6.6.2 Moduli of the Torus.......................... 85 6.7 Complex Coordinates.............................. 86 6.8 Modular Transformations............................ 87 6.9 Integration over Moduli............................ 89 6.10 Computing the Path Integral......................... 90 6.11 The Bosonic String Partition Function.................... 91 6.11.1 Partition Functions and Physical State Counting........... 91 6.11.2 Assembling the Bosonic String Partition Function.......... 92 6.11.3 The Contribution of Momenta..................... 93 6.12 Modular Invariance of the Bosonic String................... 94 6.13 Strings versus Particles∗ ............................ 94 6.14 Partition Function for Compactified Strings................. 98 7 Superstrings 100 7.1 Free Fermion Partition Functions....................... 101 7.1.1 Neveu-Schwarz states.......................... 101 7.1.2 Ramond States............................. 102 7.2 Boundary Conditions.............................. 102 7.3 Modular Transformations............................ 104 7.4 The Modular Invariant Partition Function.................. 105 7.5 Multi-loop Modular Invariance∗ ........................ 107 7.6 Superstrings................................... 108 7.7 Supersymmetry and Supergravity∗ ...................... 108 7.8 Supersymmetry for the Massive States.................... 109 7.9 Ramond-Ramond Particles∗ .......................... 110 4 7.10 Other Modular Invariant String Theories................... 110 7.11 Internal Fermions................................ 110 7.11.1 Modular Invariant Partition Functions for Internal Free Fermions. 111 7.11.2 Factorized Partition Functions..................... 111 7.11.3 Symmetries of Free Fermions...................... 112 7.11.4 The 18- and 10-Dimensional Theories................. 113 7.11.5 Relation with Even Selfdual Lorentzian Lattices........... 113 8 Heterotic Strings 114 8.1 The Massless Spectrum............................. 114 8.2 Supersymmetry∗ ................................ 115 8.3 Gauge symmetry∗ ................................ 115 8.4 Compactification∗ ................................ 116 8.4.1 Breaking the Lorentz Group∗ ..................... 116 8.4.2 Decomposition of Spinors∗ ....................... 117 8.4.3 Reduction of the Dirac Equation∗ ................... 118 8.5 Calabi-Yau Compactification∗ ......................... 120 8.6 The Standard Model in String Theory∗ .................... 120 8.7 Other Ten-dimensional Heterotic Strings................... 123 8.8 Four-dimensional Strings∗ ........................... 124 9 The String Theory Landscape and the Multiverse∗ 125 9.1 Moduli and Supersymmetry Breaking..................... 125 9.1.1 Space-time Supersymmetry...................... 125 9.1.2 Moduli Stabilization.......................... 126 9.2 A Proliferation of Vacua............................ 126 9.2.1 Vacuum Energy............................. 127 9.2.2 Anthropic Arguments.......................... 127 9.2.3 Eternal Inflation............................ 128 9.3 A Change of Perspective............................ 128 10 Dualities∗ 129 10.1 Open Strings.................................. 129 10.2 Finiteness.................................... 129 10.3 Dual Models................................... 131 10.4 Historical Remarks............................... 134 10.5 T-duality.................................... 135 10.6 Perturbative and Non-perturbative Physics.................. 135 10.7 D-branes..................................... 136 10.8 S-duality..................................... 138 Appendices 140 5 A Functional Methods 140 A.1 The Euclidean Action.............................. 143 B Path Integrals 143 C Self-dual Lattices 145 D Lie Algebra Dictionary 147 D.1 The Algebra................................... 147 D.2 Exponentiation................................. 147 D.3 Real Forms................................... 148 D.4 The Classical Lie Groups...........................
Recommended publications
  • Orthogonal Symmetric Affine Kac-Moody Algebras
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7133–7159 http://dx.doi.org/10.1090/tran/6257 Article electronically published on April 20, 2015 ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS WALTER FREYN Abstract. Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification. 1. Introduction Riemannian symmetric spaces are fundamental objects in finite dimensional dif- ferential geometry displaying numerous connections with Lie theory, physics, and analysis. The search for infinite dimensional symmetric spaces associated to affine Kac-Moody algebras has been an open question for 20 years, since it was first asked by C.-L. Terng in [Ter95]. We present a complete solution to this problem in a series of several papers, dealing successively with the functional analytic, the algebraic and the geometric aspects. In this paper, building on work of E. Heintze and C. Groß in [HG12], we introduce and classify orthogonal symmetric affine Kac- Moody algebras (OSAKAs). OSAKAs are the central objects in the classification of affine Kac-Moody symmetric spaces as they provide the crucial link between the geometric and the algebraic side of the theory.
    [Show full text]
  • Moduli Spaces
    spaces. Moduli spaces such as the moduli of elliptic curves (which we discuss below) play a central role Moduli Spaces in a variety of areas that have no immediate link to the geometry being classified, in particular in alge- David D. Ben-Zvi braic number theory and algebraic topology. Moreover, the study of moduli spaces has benefited tremendously in recent years from interactions with Many of the most important problems in mathemat- physics (in particular with string theory). These inter- ics concern classification. One has a class of math- actions have led to a variety of new questions and new ematical objects and a notion of when two objects techniques. should count as equivalent. It may well be that two equivalent objects look superficially very different, so one wishes to describe them in such a way that equiv- 1 Warmup: The Moduli Space of Lines in alent objects have the same description and inequiva- the Plane lent objects have different descriptions. Moduli spaces can be thought of as geometric solu- Let us begin with a problem that looks rather simple, tions to geometric classification problems. In this arti- but that nevertheless illustrates many of the impor- cle we shall illustrate some of the key features of mod- tant ideas of moduli spaces. uli spaces, with an emphasis on the moduli spaces Problem. Describe the collection of all lines in the of Riemann surfaces. (Readers unfamiliar with Rie- real plane R2 that pass through the origin. mann surfaces may find it helpful to begin by reading about them in Part III.) In broad terms, a moduli To save writing, we are using the word “line” to mean problem consists of three ingredients.
    [Show full text]
  • Notes on Statistical Field Theory
    Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)..........................
    [Show full text]
  • Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
    Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively.
    [Show full text]
  • Jhep05(2019)105
    Published for SISSA by Springer Received: March 21, 2019 Accepted: May 7, 2019 Published: May 20, 2019 Modular symmetries and the swampland conjectures JHEP05(2019)105 E. Gonzalo,a;b L.E. Ib´a~neza;b and A.M. Urangaa aInstituto de F´ısica Te´orica IFT-UAM/CSIC, C/ Nicol´as Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain bDepartamento de F´ısica Te´orica, Facultad de Ciencias, Universidad Aut´onomade Madrid, 28049 Madrid, Spain E-mail: [email protected], [email protected], [email protected] Abstract: Recent string theory tests of swampland ideas like the distance or the dS conjectures have been performed at weak coupling. Testing these ideas beyond the weak coupling regime remains challenging. We propose to exploit the modular symmetries of the moduli effective action to check swampland constraints beyond perturbation theory. As an example we study the case of heterotic 4d N = 1 compactifications, whose non-perturbative effective action is known to be invariant under modular symmetries acting on the K¨ahler and complex structure moduli, in particular SL(2; Z) T-dualities (or subgroups thereof) for 4d heterotic or orbifold compactifications. Remarkably, in models with non-perturbative superpotentials, the corresponding duality invariant potentials diverge at points at infinite distance in moduli space. The divergence relates to towers of states becoming light, in agreement with the distance conjecture. We discuss specific examples of this behavior based on gaugino condensation in heterotic orbifolds. We show that these examples are dual to compactifications of type I' or Horava-Witten theory, in which the SL(2; Z) acts on the complex structure of an underlying 2-torus, and the tower of light states correspond to D0-branes or M-theory KK modes.
    [Show full text]
  • Scale Without Conformal Invariance in Membrane Theory
    Scale without conformal invariance in membrane theory Achille Mauria,∗, Mikhail I. Katsnelsona aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Abstract We investigate the relation between dilatation and conformal symmetries in the statistical mechanics of flex- ible crystalline membranes. We analyze, in particular, a well-known model which describes the fluctuations of a continuum elastic medium embedded in a higher-dimensional space. In this theory, the renormalization group flow connects a non-interacting ultraviolet fixed point, where the theory is controlled by linear elas- ticity, to an interacting infrared fixed point. By studying the structure of correlation functions and of the energy-momentum tensor, we show that, in the infrared, the theory is only scale-invariant: the dilatation symmetry is not enhanced to full conformal invariance. The model is shown to present a non-vanishing virial current which, despite being non-conserved, maintains a scaling dimension exactly equal to D − 1, even in presence of interactions. We attribute the absence of anomalous dimensions to the symmetries of the model under translations and rotations in the embedding space, which are realized as shifts of phonon fields, and which protect the renormalization of several non-invariant operators. We also note that closure of a sym- metry algebra with both shift symmetries and conformal invariance would require, in the hypothesis that phonons transform as primary fields, the presence of new shift symmetries which are not expected to hold on physical grounds. We then consider an alternative model, involving only scalar fields, which describes effective phonon-mediated interactions between local Gaussian curvatures.
    [Show full text]
  • Gauge/Gravity Duality and Field Theories at Strong Coupling
    Th`ese de Doctorat Pr´esent´ee`al'Universit´eParis{Sud XI Sp´ecialit´e:Physique Th´eorique P´eriode acad´emique 2008{2011 Gauge/Gravity Duality and Field Theories at Strong Coupling Gregory C. Giecold Institut de Physique Th´eorique,CNRS{URA 2306 CEA/Saclay, F{91191 Gif{sur{Yvette, France Th`esesoutenue le 17 juin 2011 devant le jury compos´ede: Iosif Bena Directeur de Th`ese Emilian Dudas Membre du Jury Edmond Iancu Directeur de Th`ese Henning Samtleben Rapporteur Kostas Skenderis Rapporteur Acknowledgements I would like to thank my advisors Iosif Bena and Edmond Iancu for giving much leeway for exploring alleyways of my own interest in the maze of string theory and field theory. I am beholden for fast{paced, illuminating discussions with them and their careful guidance with non{scientific matters. I am grateful to Mariana Gra~naand Al Mueller for being sharp yet very kind collaborators. Special credit is due to Nick Halmagyi from whom I have learnt so much, Aussie vernacular included. Many thanks to Ruben Minasian and Robi Peschanski for their interest in my research orientations and for tips on relocating to Stony Brook. I am grateful to Emilian Dudas and Henning Samtleben for agreeing to be part of the jury of my PhD defense. Special thanks to Kostas Skenderis whose research has been very important to my work. Discussions with Michael Bon, Gaetan Borot, Roberto Bondesan, J´eromeDubail, Hadi Go- dazgar, Mahdi Godazgar, Andrea Puhm, Bruno Sciolla and Piotr Tourkine were appreciated. As for those conversations that have been of direct relevance to my field of research interests, I am grateful to Guillaume Beuf, Paul Chesler, Sheer El{Showk, Yoshitaka Hatta, Akikazu Hashimoto, Jan Manschot, Diego Marqu`es, Carlos Nu~nez,Hagen Triendl, Pierre Vanhove and Bert Vercnocke.
    [Show full text]
  • Lattices and Vertex Operator Algebras
    My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Lattices and Vertex Operator Algebras Gerald H¨ohn Kansas State University Vertex Operator Algebras, Number Theory, and Related Topics A conference in Honor of Geoffrey Mason Sacramento, June 2018 Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List How all began From gerald Mon Apr 24 18:49:10 1995 To: [email protected] Subject: Santa Cruz / Babymonster twisted sector Dear Prof. Mason, Thank you for your detailed letter from Thursday. It is probably the best choice for me to come to Santa Cruz in the year 95-96. I see some projects which I can do in connection with my thesis. The main project is the classification of all self-dual SVOA`s with rank smaller than 24. The method to do this is developed in my thesis, but not all theorems are proven. So I think it is really a good idea to stay at a place where I can discuss the problems with other people. [...] I must probably first finish my thesis to make an application [to the DFG] and then they need around 4 months to decide the application, so in principle I can come September or October. [...] I have not all of this proven, but probably the methods you have developed are enough. I hope that I have at least really constructed my Babymonster SVOA of rank 23 1/2. (edited for spelling and grammar) Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Theorem (H.
    [Show full text]
  • Introduction to Quantum Q-Langlands Correspondence
    Introduction to Quantum q-Langlands Correspondence Ming Zhang∗ May 16{19, 2017 Abstract Quantum q-Langlands Correspondence was introduced by Aganagic, Frenkel and Okounkov in their recent work [AFO17]. Roughly speaking, it is a correspondence between q-deformed conformal blocks of the quantum affine algebra and the deformed W-algebra. In this mini-course, I will define these objects and discuss some results in quantum K-theory of the Nakajima quiver varieties which is the key ingredient in the proof of the correspondence (in the simply-laced case). It will be helpful to know the basic concepts in the theory of Lie algebras (roots, weights, etc.). Contents 1 Introduction 2 1.1 The geometric Langlands correspondence.............................2 1.2 A representation-theoretic statement and its generalization in [AFO17].............2 2 Lie algebras 2 2.1 Root systems.............................................3 2.2 The Langlands dual.........................................4 3 Affine Kac{Moody algebras4 3.1 Via generators and relations.....................................5 3.2 Via extensions............................................6 4 Representations of affine Kac{Moody algebras7 4.1 The extended algebra........................................7 4.2 Representations of finite-dimensional Lie algebras.........................8 4.2.1 Weights............................................8 4.2.2 Verma modules........................................8 4.3 Representations of affine Kac{Moody algebras...........................9 4.3.1 The category of representations.............................9 4.3.2 Verma modulesO........................................ 10 4.3.3 The evaluation representation................................ 11 4.3.4 Level.............................................. 11 ∗Notes were taken by Takumi Murayama, who is responsible for any and all errors. Please e-mail [email protected] with any more corrections. Compiled on May 21, 2017. 1 1 Introduction We will follow Aganagic, Frenkel, and Okounkov's paper [AFO17], which came out in January of this year.
    [Show full text]
  • Classification of Holomorphic Framed Vertex Operator Algebras of Central Charge 24
    Classification of holomorphic framed vertex operator algebras of central charge 24 Ching Hung Lam, Hiroki Shimakura American Journal of Mathematics, Volume 137, Number 1, February 2015, pp. 111-137 (Article) Published by Johns Hopkins University Press DOI: https://doi.org/10.1353/ajm.2015.0001 For additional information about this article https://muse.jhu.edu/article/570114/summary Access provided by Tsinghua University Library (22 Nov 2018 10:39 GMT) CLASSIFICATION OF HOLOMORPHIC FRAMED VERTEX OPERATOR ALGEBRAS OF CENTRAL CHARGE 24 By CHING HUNG LAM and HIROKI SHIMAKURA Abstract. This article is a continuation of our work on the classification of holomorphic framed vertex operator algebras of central charge 24. We show that a holomorphic framed VOA of central charge 24 is uniquely determined by the Lie algebra structure of its weight one subspace. As a consequence, we completely classify all holomorphic framed vertex operator algebras of central charge 24 and show that there exist exactly 56 such vertex operator algebras, up to isomorphism. 1. Introduction. The classification of holomorphic vertex operator alge- bras (VOAs) of central charge 24 is one of the fundamental problems in vertex operator algebras and mathematical physics. In 1993 Schellekens [Sc93] obtained a partial classification by determining possible Lie algebra structures for the weight one subspaces of holomorphic VOAs of central charge 24. There are 71 cases in his list but only 39 of the 71 cases were known explicitly at that time. It is also an open question if the Lie algebra structure of the weight one subspace will determine the VOA structure uniquely when the central charge is 24.
    [Show full text]
  • The Topology of Moduli Space and Quantum Field Theory* ABSTRACT
    SLAC-PUB-4760 October 1988 CT) . The Topology of Moduli Space and Quantum Field Theory* DAVID MONTANO AND JACOB SONNENSCHEIN+ Stanford Linear Accelerator Center Stanford University, Stanford, California 9.4309 ABSTRACT We show how an SO(2,l) gauge theory with a fermionic symmetry may be used to describe the topology of the moduli space of curves. The observables of the theory correspond to the generators of the cohomology of moduli space. This is an extension of the topological quantum field theory introduced by Witten to -- .- . -. investigate the cohomology of Yang-Mills instanton moduli space. We explore the basic structure of topological quantum field theories, examine a toy U(1) model, and then realize a full theory of moduli space topology. We also discuss why a pure gravity theory, as attempted in previous work, could not succeed. Submitted to Nucl. Phys. I3 _- .- --- _ * Work supported by the Department of Energy, contract DE-AC03-76SF00515. + Work supported by Dr. Chaim Weizmann Postdoctoral Fellowship. 1. Introduction .. - There is a widespread belief that the Lagrangian is the fundamental object for study in physics. The symmetries of nature are simply properties of the relevant Lagrangian. This philosophy is one of the remaining relics of classical physics where the Lagrangian is indeed fundamental. Recently, Witten has discovered a class of quantum field theories which have no classical analog!” These topo- logical quantum field theories (TQFT) are, as their name implies, characterized by a Hilbert space of topological invariants. As has been recently shown, they can be constructed by a BRST gauge fixing of a local symmetry.
    [Show full text]
  • Donaldson Invariants and Moduli of Yang-Mills Instantons
    Donaldson Invariants and Moduli of Yang-Mills Instantons Jacob Gross Lincoln College Oxford University (slides posted at users.ox.ac.uk/ linc4221) ∼ The ASD Equation in Low Dimensions, 17 November 2017 Jacob Gross Donaldson Invariants and Moduli of Yang-Mills Instantons Moduli and Invariants Invariants are gotten by cooking up a number (homology group, derived category, etc.) using auxiliary data (a metric, a polarisation, etc.) and showing independence of that initial choice. Donaldson and Seiberg-Witten invariants count in moduli spaces of solutions of a pde (shown to be independent of conformal class of the metric). Example (baby example) f :(M, g) R, the number of solutions of → gradgf = 0 is independent of g (Poincare-Hopf).´ Jacob Gross Donaldson Invariants and Moduli of Yang-Mills Instantons Recall (Setup) (X, g) smooth oriented Riemannian 4-manifold and a principal G-bundle π : P X over it. → Consider the Yang-Mills functional YM(A) = F 2dμ. | A| ZM The corresponding Euler-Lagrange equations are dA∗FA = 0. Using the gauge group one generates lots of solutions from one. But one can fix aG gauge dA∗a = 0 Jacob Gross Donaldson Invariants and Moduli of Yang-Mills Instantons Recall (ASD Equations) 2 2 2 In dimension 4, the Hodge star splits the 2-forms Λ = Λ+ Λ . This splits the curvature ⊕ − + FA = FA + FA−. Have + 2 2 + 2 2 κ(P) = F F − YM(A) = F + F − , k A k − k A k ≤ k A k k A k where κ(P) is a topological invariant (e.g. for SU(2)-bundles, 2 κ(P) = 8π c2(P)).
    [Show full text]