Fcγ Receptors As Regulators of Immune Responses

Total Page:16

File Type:pdf, Size:1020Kb

Fcγ Receptors As Regulators of Immune Responses REVIEWS Fcγ receptors as regulators of immune responses Falk Nimmerjahn* and Jeffrey V. Ravetch‡ Abstract | In addition to their role in binding antigen, antibodies can regulate immune responses through interacting with Fc receptors (FcRs). In recent years, significant progress has been made in understanding the mechanisms that regulate the activity of IgG antibodies in vivo. In this Review, we discuss recent studies addressing the multifaceted roles of FcRs for IgG (FcγRs) in the immune system and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases. Regulatory T cells A productive immune response results from the effec- of antigenic peptides that are presented on the surface A T cell subset that is capable tive integration of positive and negative signals that of DCs to cytotoxic T cells, T helper cells, and regulatory of suppressing the activity have an impact on both innate and adaptive immune T cells. Thus, FcγRs are involved in regulating a multitude of other antigen-specific T cells cells. When positive signals dominate, cell activation of innate and adaptive immune responses, which makes including autoreactive T cells. Depletion of regulatory and pro-inflammatory responses ensue, resulting in the them attractive targets for the development of novel T cells results in the loss of elimination of pathogenic microorganisms and viruses. immunotherapeutic approaches (FIG. 1). peripheral tolerance and the In the absence of such productive stimulation, cell activa- In this Review, we summarize our current under- development of autoimmune tion is blocked and active anti-inflammatory responses standing of the role of different members of the FcγR disease. can occur. Modulation of this binary system occurs family in regulating immune responses. Our focus is through the action of cytokines, downstream signal- largely based on results obtained in mouse knockout ling pathways and cell–cell contact. The perturbation of model systems and genetic linkage and association these thresholds can result in aberrant responses that are studies in human patients with autoimmune disease or either insufficient to deal with pathogenic microorgan- cancer. Moreover, we address recent insights into how isms or result in the loss of tolerance and the induction differential antibody glycosylation influences FcγR bind- of autoimmune responses. The family of Fc receptors ing and the maintenance of an anti-inflammatory envi- (FcRs) for IgG (FcγRs) provides a prime example of how ronment during the steady state. Finally, we will discuss simultaneous triggering of activating and inhibitory how these results might be useful for improving human signalling pathways sets thresholds for cell activation immunotherapy and how predictions can be tested in 1 *Laboratory of Experimental and thus generates a well-balanced immune response . novel humanized mouse models. Immunology and Indeed, in a variety of human autoimmune diseases, such Immunotherapy, Nikolaus- as arthritis and systemic lupus erythematosus (SLE), The family of Fcγ receptors Fiebiger-Center for Molecular aberrant expression or the presence of allelic variants of To date, four different classes of FcγRs, known as Medicine, University of Erlangen-Nuremberg, FcγRs with altered functionality have been observed that FcγRI, FcγRIIB, FcγRIII and FcγRIV, have been rec- 2 Glueckstr. 6, 91054 Erlangen, contribute to the pathogenesis of these diseases . In addi- ognized in mice (FIG. 2). Orthologous proteins corre- Germany. tion to their well-defined roles in triggering activation sponding to the mouse FcγRs have been identified in ‡Laboratory for Molecular of innate effector cells, FcγRs function in antigen pres- other mammalian species. In humans, monkeys and Genetics and Immunology, Rockefeller University, 1230 entation and immune-complex-mediated maturation mice, most of the corresponding genes are clustered in York Avenue, New York, of dendritic cells (DCs), and in the regulation of B-cell close proximity on chromosome 1 next to the family of New York 10021, USA. activation and plasma-cell survival3. Thus, FcγRs not only FcR homologous genes4. The human and primate FcγR e-mails: fnimmerj@molmed. control innate immune effector cell activation but are also systems are the most complex, as is exemplified by the uni-erlangen.de; involved in regulating the production and specificity of existence of an FcγRI gene family (which includes [email protected] doi:10.1038/nri2206 their ligands (that is, antibodies). Moreover, by regulat- Fcgria, Fcgrib and Fcgric) and an FcγRII gene family Published online ing DC activity, FcγRs control whether an immunogenic (which includes Fcgriia and Fcgriic) and the presence 7 December 2007 or tolerogenic response is initiated after the recognition of several allelic FcγR variants5 (FIG. 2). Based on the 34 | JANUarY 2008 | volUme 8 www.nature.com/reviews/immunol © 2008 Nature Publishing Group REVIEWS • Release of chemoattractants • Release of cytotoxic substances • Release of vasoactive substances • Phagocytosis • Release of chemoattractants Neutrophil Mast cell Basophil • Oxidative burst Monocyte or • Cytotoxicity macrophage • Release of pro-inflammatory mediators • Modulation of cell activation • Antigen presentation (T cells and B cells) Immune • Regulation of peripheral tolerance complex Antigen Antibody TReg cell CD8+ T cell Dendritic cell CD4+ T cell B cell Plasma cell • Modulation of cell • Apoptosis activation Activating Inhibitory • Shaping the B-cell FcR FcR repertoire Figure 1 | Regulatory functions of immune complexes. Immune complexes bind to activating Fc receptors (FcR) and inhibitory FcRs that are expressed by innate immune effector cells such as basophils, mast cells,Na turneutrophils,e Reviews |monocytes Immunolog y and macrophages, in which they trigger the indicated effector responses. Binding of immune complexes to FcRs on dendritic cells results in phagocytosis and presentation of antigenic peptides on MHC class I and class II molecules. + + Antigen-specific CD8 cytotoxic T cells, CD4 helper T cells or regulatory T cells (TReg cells) that recognize these peptide– MHC complexes become activated and mediate various effector functions such as killing of virus-infected cells, modulation of immune responses or providing T-cell help for antigen-specific B cells. B cells only express the inhibitory low-affinity FcR for IgG (FcγRIIB), which regulates activating signals transduced by the B-cell receptor (BCR). On plasma cells, which produce high levels of antigen-specific antibodies, BCR expression is very low or absent, resulting in exclusive triggering of inhibitory signalling pathways. genomic localization and sequence similarity in the significantly lower compared with their mouse coun- extracellular portion, mouse FcγRIV seems to be the terparts. Nonetheless, results obtained in mouse model orthologue of human FcγRIIIA, and mouse FcγRIII is systems have been, and will continue to be, invalu- most closely related to human FcγRIIA4. Despite these able to decipher the role of FcγRs in the activity of similarities, there are differences in the intracellular the different antibody isotypes in vivo. Many of the Immunoreceptor tyrosine- based activation motif domains and the cellular expression pattern of these basic principles and mechanisms underlying these (ITAM). A short peptide motif receptors that have to be taken into account when activities have been identified in mice and have been containing tyrosine residues extrapolating data from animal studies to the human recapitulated in humans5. that is found in the cytoplasmic system. Human FcγRIIA, for example, contains an The complexity in the FcγR family is mirrored by tail of several signalling adaptor immunoreceptor tyrosine-based activation motif proteins such as the common (ITAM) the presence of four different IgG subclasses in humans γ- or CD3ζ-chain. It is in its intracellular domain that is not present in mouse (IgG1–IgG4) and mice (IgG1, IgG2a, IgG2b and IgG3), necessary to recruit proteins FcγRIII. In addition to the FcγRI and FcγRII gene which bind with varying affinity and specificity to differ- that are involved in triggering families, there is a unique human receptor, known as ent FcγR receptors6,7. In general, the number of IgG sub- activating signalling proteins. FcγRIIIB, that is only expressed by neutrophils and classes varies widely between different species, ranging The consensus sequence is that is attached to the cell membrane by a glycosyl- from one subclass in rabbits to seven subclasses in horses, Tyr-X-X-(Leu/Ile)-X6–8-Tyr-X-X- (Leu/Ile), where X denotes any phosphatidylinositol (GPI) anchor. The affinity of making it difficult to find orthologues. In humans, for amino acid. the human FcγRs for the different IgG subclasses is example, IgG1 and IgG3 are the most pro-inflammatory NatUre reviews | IMMUNOLOGY volUme 8 | JANUarY 2008 | 35 © 2008 Nature Publishing Group REVIEWS IgG subclasses2,6. In mice, however, IgG2a and IgG2b are B cells functions as an important regulator of the activating the most pro-inflammatory IgG molecules, and these signals that are transmitted by the B-cell receptor (BCR). show a greater activity than mouse IgG1 and IgG3 in Although the lack of inhibitory FcγR expression by NK many in vivo model systems4. cells suggests that these cells might be potent mediators FcγRs are widely expressed throughout the haemat- of antibody-dependent cytotoxicity (ADCC) reactions, a opoietic
Recommended publications
  • The Ligands for Human Igg and Their Effector Functions
    antibodies Review The Ligands for Human IgG and Their Effector Functions Steven W. de Taeye 1,2,*, Theo Rispens 1 and Gestur Vidarsson 2 1 Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 2 Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Received: 26 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases.
    [Show full text]
  • Primer the Complement System
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE providedMagazine by ElsevierR259 - Publisher Connector vascular permeability and the infection. The second category Primer extravasation of plasma. This is in which there is persistent accompanied by the adhesion of formation of immune complexes is leukocytes to vascular endothelium autoimmune disease, in which, by The complement and their emigration into definition, the antigen is a system surrounding tissue. Complement permanent feature of the host. plays an important part in An understanding of how immune Philip Taylor, Marina inflammation, in helping to recruit complexes cause tissue injury effector cells and in promoting the developed from study of such Botto and Mark Walport killing and clearance of pathogens. diseases in humans and animals, and But complement can be both from the induction of experimental The system of plasma proteins called friend and foe. In some immune complex disease. In these complement was so-named because circumstances the activation of situations, immune complexes were it complements the activity of complement in response to immune shown to cause tissue injury through antibody in the lysis of bacteria. It complexes may cause harm: acutely activation of complement, as opsonin has a central role in host defence in the context of massive (binding to complement receptors on against many micro-organisms and in complement activation occurring in leukocytes) and as the source of the modulation of inflammatory patients with overwhelming Gram- anaphylatoxins (stimulating leukocyte reactions, an activity that has been negative bacterial sepsis, and chemotaxis and degranulation). But illuminated by the study of humans chronically, when an antibody the development of gene-targeted with naturally occurring deficiencies response develops in the context of mice with deficiencies of complement of complement.
    [Show full text]
  • 1 ICAM3-Fc Outperforms Receptor-Specific Antibodies
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2019 doi:10.20944/preprints201904.0118.v1 Peer-reviewed version available at Molecules 2019, 24, 1825; doi:10.3390/molecules24091825 ICAM3-Fc outperforms receptor-specific antibodies targeted nanoparticles to dendritic cells for cross-presentation Luis J. Cruz,1* Paul J. Tacken,2 Johan S. van der Schoot,2 Felix Rueda,3 Ruurd Torensma,2 Carl G. Figdor2* 1Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands. 2Department of Tumor Immunology, Radboud Insititute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands. 3Department of Biochemistry and Molecular Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain. Running title: ICAM3-Fc- versus antibody-targeted NP vaccines to human DCs Keywords: Delivery system; nanoparticle; targeting. AUTHOR INFORMATION Corresponding Author *Dr. Luis J. Cruz Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg.1, C5-60. Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, The Netherlands Tel: +31 71 5263025 Email: [email protected] *Prof. Dr. Carl G. Figdor Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Postbox 9101, 6500 HB Nijmegen, The Netherlands. Fax: +31-24-3540339; Tel.: +31-24-3617600; E-mail: [email protected] 1 © 2019 by the author(s). Distributed
    [Show full text]
  • Foundation Block Lecture Three Cell Mediated Immunity
    Foundation Block Lecture Five Hypersensitivity Objectives: • To know that hypersensitivity reactions are over and excessive immune responses that can be harmful to body in four different ways • To be familiar with inflammatory processes in type I hypersensitivity reaction that mediates allergic inflammation • To recognize that type II hypersensitivity deals with immune responses against antigens that are integral part of cell membrane and are usually associated with autoimmune disorders • To know that type III hypersensitivity reactions are mediated by immune complexes and cause vasculitis • To describe type IV hypersensitivity is a purely cell mediated immune response associated with chronic inflammation ● Important. ● Extra notes. ● Females notes ● Males notes. What is hypersensitivity? Protective immunity: desirable reaction. Hypersensitivity: undesirable damaging reaction produced by excessive immune reactions. - Undesirable responses can be mediated by: - Antibody binding to antigens (Types I-III). - Cell mediated reaction to chemicals or proteins (Type IV). Types of hypersensitivity: 4 Types of hypersensitivity responses are classified by GEL AND COOMBS (names of scientists) according to the responding mechanisms, NOT the responding antigens: *From 433 team Type I: 1- Also termed as: - Immediate Hypersensitivity. - Allergic reactions. (e.g. asthma and eczema) - Anaphylactic reactions: severe and rapidly progressing systemic forms which can be quickly life threatening. …..............(causes.vasodilation and hypovolemia which causes heart stop then death) 2- Most people will not react to these allergens but some individuals “atopic” respond by producing large amounts of IgE in …........response to those otherwise harmless substances. 3- Non-allergic individuals respond to these allergens by producing IgG antibodies. 4- Features: - Antibody type: IgE - Cellular components: Mast cells, basophiles & eosinophils - Antigens: Also known as allergens ( antigens with low molecular weight & highly soluble).
    [Show full text]
  • FCGR2B) Is Associated with the Production of Anti-Cyclic Citrullinated Peptide Autoantibodies in Taiwanese RA
    Genes and Immunity (2008) 9, 680–688 & 2008 Macmillan Publishers Limited All rights reserved 1466-4879/08 $32.00 www.nature.com/gene ORIGINAL ARTICLE A transmembrane polymorphism in FcgRIIb (FCGR2B) is associated with the production of anti-cyclic citrullinated peptide autoantibodies in Taiwanese RA J-Y Chen1, C-M Wang2, C-C Ma1, L-A Hsu3, H-H Ho1, Y-JJ Wu1, S-N Kuo1 and J Wu4 1Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, Republic of China; 2Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, Republic of China; 3Department of Medicine, Division of First Cardiovascular, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, Republic of China and 4Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA The aim of the current study was to determine whether the FcgRIIb 187-Ile/Thr polymorphism is a predisposition factor for subtypes of RA defined by disease severity and production of autoantibodies against cyclic citrullinated peptides (anti-CCPs) in Taiwanese RA patients. Genotype distributions and allele frequencies of FcgRIIb 187-Ile/Thr were compared between 562 normal healthy controls and 640 RA patients as stratified by clinical parameters and autoantibodies. Significant enrichment of 187-Ile allele was observed in RA patients positive for anti-CCP antibodies as compared with the anti-CCP negative RA patients (P ¼ 0.001, OR 1.652 (95% CI 1.210–2.257)) or as compared with the normal controls (P ¼ 0.005, OR 1.348 (95% CI 1.092–1.664)).
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Class II MHC Cytoplasmic Domain-Mediated Signaling in B Cells a Tail of Two Signals
    Human Immunology 80 (2019) 32–36 Contents lists available at ScienceDirect Human Immunology journal homepage: www.elsevier.com/locate/humimm Class II MHC cytoplasmic domain-mediated signaling in B cells: A tail of two T signals Jonathan A. Harton Department of Immunology & Microbial Disease, Albany Medical College, 47 New Scotland Avenue, MC-151, Albany, NY 12208, USA ARTICLE INFO ABSTRACT Keywords: In addition to their role in antigen presentation, class II MHC molecules also transmit signals to B lymphocytes. MHC class II Class II MHC-mediated signals initiate a range of events in B cells, including induction of cell surface proteins, HLA-D initiation of cell-cycle progression/proliferation, activation of or protection from apoptosis, and antigen-de- Signaling pendent plasma cell differentiation. Although various transmembrane signaling proteins associate with classII B cells MHC molecules, the class II MHC cytoplasmic domains are essential for signals leading to increased intracellular cAMP and activation of protein kinase C (PKC). Although truncation and mutagenesis studies have provided considerable information about the cytoplasmic domain sequences required, how class II MHC molecules elicit cAMP and PKC activation is not known. Further, appropriate T-dependent B cell responses require intact cAMP and PKC signaling, but the extent to which class II MHC signals are involved is also unknown. This review details our current knowledge of class II MHC cytoplasmic domain signaling in B cells with an emphasis on the likely importance of class II MHC signals for T-dependent antibody responses. 1. Introduction complex, is only found on CD4+ T cells which are dependent upon thymic MHC class II for their development.
    [Show full text]
  • Different Types of FC Gamma-Receptors Are Involved In
    British Journal of Cancer (2000) 82(2), 441–445 © 2000 Cancer Research Campaign Article no. bjoc.1999.0940 Different types of FCγ-receptors are involved in anti- Lewis Y antibody induced effector functions in vitro M Dettke1,2 and H Loibner2 1Clinic for Blood Group Serology and Transfusion Medicine, University Hospital of Vienna, Austria; 2NOVARTIS Forschungsinstitut, Vienna, Austria Summary Stimulation of monocytes by interaction of monoclonal antibodies (mAbs) with Fc gamma receptors (FcγRs) results in the activation of various monocyte effector functions. In the present investigation we show that the anti-Lewis Y (LeY) anti-tumour mAb ABL 364 and its mouse/human IgG1 chimaera induce both antibody-dependent cellular cytotoxicity (ADCC) and the release of tumour necrosis factor α (TNF-α) during mixed culture of monocytes with LeY+ SKBR5 breast cancer cells in vitro. Although anti-LeY mAb-mediated TNF-α release paralleled ADCC activity, cytokine release required a higher concentration of sensitizing mAb than the induction of cytolysis. The determination of the FcγR classes involved in the induction of the distinct effector functions showed that anti-LeY mAb-induced cytolysis was triggered by interaction between anti-LeY mAbs and FcγRI. In contrast, mAb-induced TNF-α release mainly depended on the activation of monocyte FcγRII. Neutralization of TNF-α showed no influence on monocyte ADCC activity towards SKBR5 target cells. Our data indicate an independent regulation of anti-LeY mAb induced effector functions of ADCC and TNF-α release
    [Show full text]
  • Cell Biology from an Immune Perspective in This Lecture We Will
    Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Cell Biology from an Immune Perspective In this lecture we will very briefly review some aspects of cell biology which are required as background knowledge in order to understand how the immune system works. These will include: 1. A brief overview of protein trafficking 2. Signal transduction 3. The cell cycle Some of these issues will be treated in greater depth in later lectures. Protein Trafficking/The Secretory Pathway: From an immune perspective the secretory compartment and structures enclosed by vesicles are “seen” in different ways from proteins that reside in the cytosol or the nucleus. We will briefly review the secretory and endocytic pathways and discuss the biogenesis of membrane proteins. Some of the issues that will be discussed are summarized in Figures 1-3. Early endosomes Late endosomes Lysosomes Golgi Vesiculo-Tubular Compartment ER Figure 1. An overview of the secretory pathway Early endosomes Late endosomes Multivesicular and multilamellar bodies Golgi ER Proteasomes Figure 2. Protein degradation occurs mainly in lysosomes and proteasomes Proteins that enter the cell from the environment are primarily degraded in lysosomes. Most cytosolic and nuclear proteins are degraded in organelles called proteasomes. Intriguingly these two sites of degradation are each functionally linked to distinct antigen presentation pathways, different kinds of MHC molecules and the activation of different categories of T cells. Integral membrane proteins maybe inserted into the membrane in a number of ways, the two most common of these ways being considered in Figure 3.
    [Show full text]
  • Suppression of Immune Complex-Induced Inflammation by the Chemotactic Factor Inactivator
    Suppression of immune complex-induced inflammation by the chemotactic factor inactivator. K J Johnson, … , T P Anderson, P A Ward J Clin Invest. 1977;59(5):951-958. https://doi.org/10.1172/JCI108717. Research Article Small amounts (10(-10) mol) of purified human chemotactic factor inactivator (CFI) suppress leukocytic infiltration, permeability changes, and hemorrhage associated with acute immune complex-induced injury in rats. The reversed passive dermal Arthus reaction and acute immune complex-induced alveolitis in rats have served as the model systems of inflammation. The mechanism of inhibition does not appear to relate to interference with formation and deposition of immune complexes, or with fixation of complement in vitro or iv vivo. Human CFI inhibits in vitro the chemotactic activity generated in complement-activated rat serum. The inhibitory effects of human CFI are not seen if it is first heat inactivated. The data provide the first direct support for the conclusion that CFI has anti-inflammatory activity. Find the latest version: https://jci.me/108717/pdf Suppression of Immune Complex-Induced Inflammation by the Chemotactic Factor Inactivator KENT J. JOHNSON, THOMAS P. ANDERSON, and PETER A. WARD From the Department of Pathology, University of Connecticut Health Center, Farmington, Connecticut 06032 A B S T RA C T Small amounts (10-10 mol) of purified fested by skin tests (7-10). These observations have human chemotactic factor inactivator (CFI) suppress suggested that CFI is an important regulator of the leukocytic infiltration, permeability changes, and inflammatory response. In this communication direct hemorrhage associated with acute immune complex- evidence is presented to show that purified human CFI induced injury in rats.
    [Show full text]
  • Functional and Selective Targeting of Adenovirus to High-Affinity Fc
    JOURNAL OF VIROLOGY, Jan. 2001, p. 480–489 Vol. 75, No. 1 0022-538X/01/$04.00ϩ0 DOI: 10.1128/JVI.75.1.480–489.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Functional and Selective Targeting of Adenovirus to High-Affinity Fc␥ Receptor I-Positive Cells by Using a Bispecific Hybrid Adapter CHRISTINA EBBINGHAUS,1 AHMED AL-JAIBAJI,1 ELISABETH OPERSCHALL,2 ANGELIKA SCHO¨ FFEL,1 ISABELLE PETER,1 URS F. GREBER,3 1 AND SILVIO HEMMI * Institute of Molecular Biology1 and Institute of Zoology,3 University of Zu¨rich, CH-8057 Zu¨rich, and Institute of Medical Virology, University of Zu¨rich, CH-8028 Zu¨rich,2 Switzerland Received 1 June 2000/Accepted 29 September 2000 Adenovirus (Ad) efficiently delivers its DNA genome into a variety of cells and tissues, provided that these cells express appropriate receptors, including the coxsackie-adenovirus receptor (CAR), which binds to the terminal knob domain of the viral capsid protein fiber. To render CAR-negative cells susceptible to Ad infection, we have produced a bispecific hybrid adapter protein consisting of the amino-terminal extracellular domain of the human CAR protein (CARex) and the Fc region of the human immunoglobulin G1 protein, comprising the hinge and the CH2 and CH3 regions. CARex-Fc was purified from COS7 cell supernatants and mixed with Ad particles, thus blocking Ad infection of CAR-positive but Fc receptor-negative cells. The functionality of the CARex domain was further confirmed by successful immunization of mice with CARex-Fc followed by selection of a monoclonal anti-human CAR antibody (E1-1), which blocked Ad infection of CAR-positive cells.
    [Show full text]
  • GP130 Cytokines in Breast Cancer and Bone
    cancers Review GP130 Cytokines in Breast Cancer and Bone Tolu Omokehinde 1,2 and Rachelle W. Johnson 1,2,3,* 1 Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA; [email protected] 2 Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA 3 Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA * Correspondence: [email protected]; Tel.: +1-615-875-8965 Received: 14 December 2019; Accepted: 29 January 2020; Published: 31 January 2020 Abstract: Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
    [Show full text]