Mouse Model Recapitulating Human Fcγ Receptor Structural and Functional Diversity

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Model Recapitulating Human Fcγ Receptor Structural and Functional Diversity Mouse model recapitulating human Fcγ receptor structural and functional diversity Patrick Smith1, David J. DiLillo1, Stylianos Bournazos, Fubin Li, and Jeffrey V. Ravetch2 Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10021 Contributed by Jeffrey V. Ravetch, March 7, 2012 (sent for review March 2, 2012) The in vivo biological activities of IgG antibodies result from their a particular species, such that the absolute affinities of IgG sub- bifunctional nature, in which antigen recognition by the Fab is classes for their cognate FcγRs cannot be extrapolated between coupled to the effector and immunomodulatory diversity found in species, even for recently diverged human and primate species (1, the Fc domain. This diversity, resulting from both amino acid and 12). This situation is further complicated by the existence of poly- γ γ glycan heterogeneity, is translated into cellular responses through morphisms in the human population for Fc RIIA and Fc RIIIA γ γ that result in different affinities for huIgGs (13–16), as well as Fc receptors (Fc Rs), a structurally and functionally diverse family γ of cell surface receptors found throughout the immune system. polymorphisms in Fc RIIB regulating its level of expression or Although many of the overall features of this system are main- signaling (17). Attempts to model huIgG interactions with human FcγR-expressing cells in vitro fail to mirror the diversity of cellular tained throughout mammalian evolution, species diversity has pre- populations that may be required for an in vivo response. There- cluded direct analysis of human antibodies in animal species, and, fore, new systems to study the in vivo function of the huFcγRsystem thus, detailed investigations into the unique features of the human γ and the biological effects of engaging the activating and inhibitory IgG antibodies and their Fc Rs have been limited. We now report huFcγRs by IgG are required. Furthermore, the increasing number γ the development of a mouse model in which all murine Fc Rs have of Ab-based therapeutics being developed for the treatment of been deleted and human FcγRs, encoded as transgenes, have been neoplastic, infectious, and autoimmune diseases requires a system inserted into the mouse genome resulting in recapitulation of the in which evaluation of the consequences of huFcγR interactions be unique profile of human FcγR expression. These human FcγRs are addressed. We describe the generation and characterization of shown to function to mediate the immunomodulatory, inflamma- an FcγR humanized mouse generated through the transgenic ex- tory, and cytotoxic activities of human IgG antibodies and Fc engi- pression of the entire huFcγR family, under the control of their neered variants and provide a platform for the detailed mechanistic human regulatory elements, on a genetic background lacking all analysis of therapeutic and pathogenic IgG antibodies. mouse FcγRs. These mice are viable, breed normally, demonstrate normal lymphoid tissue development, and generate normal im- γ γ he IgG Fc receptor (FcγR) system is composed of both acti- mune responses. The Fc R humanized mice recapitulate huFc R expression patterns and expression levels and are functional in a Tvating and inhibitory receptors expressed on a diversity of im- fl mune cells whose signals must be appropriately integrated to variety of huIgG-mediated models of in ammation, cytotoxicity, regulate the outcome of inflammation and immunity and to main- and tumor clearance. HuIgG1 mAbs engineered for selectively enhanced Fc-huFcγRaffinities demonstrate enhanced in vivo tain tolerance (1). Defects in the correct functioning of this complex γ system can result in a variety of autoimmune and inflammatory responses in the Fc R humanized mouse. This mouse model, thus, provides an in vivo system to address the functional contributions conditions, on the one hand, or defective host defense responses on γ the other. Importantly, the biological activities of the various IgG Fc of huFc Rs to Ab-mediated biological responses. fi subclasses are critically dependent on their relative af nities for Results activating and inhibitory FcγRs (2). Thus, the in vivo activity of an γ γ γ α−/− Ab in mediating antitumor responses or conventional neutraliza- huFc R Expression in Fc R Humanized Mice. Fc R mice lacking mouse FcγRIIB, FcγRIII, and FcγRIV were generated by condi- tion of a virus or toxin, for example, requires Ab engagement of fi γ α both the appropriate epitope and FcγR. For example, activating tionally targeting the low and intermediate af nity mouse Fc R FcγRs are vital during cancer immunotherapy using mAbs such as locus found on chromosome 1 (Fig. 1A) using a sequential strategy – of integration of loxP sites into the mouse Fcgr3 and Fcgr2b genes anti-CD20 mAb, anti-Her2neu, and anti-EGFR (3 6). Fc inter- fl actions with activating FcγRs are also critical for the neutralization which ank this locus. Cre recombinase-mediated deletion in the of bacterial toxins by mAb (7) and during Ab-mediated neutrali- C57BL/6 ES cells harboring this dual loxP integration resulted in zation of viral pathogens (8–10). By contrast, inhibitory FcγRen- an intragenic deletion of 95 kb with resulting inactivation of the gagement by passively-administered agonistic anti-CD40 mAb or murine Fcgr2b, Fcgr3,andFcgr4 genes. Flow cytometric analysis confirmed that mouse FcγRIIB, FcγRIII, and FcγRIV were un- similar antibodies reactive with other members of the TNFR su- + + detectable on the surface of CD11b cells or B220 Bcellsin IMMUNOLOGY perfamily are required for their ability to enhance cellular immune − − FcRα / mice (Fig. 1B). To generate a strain lacking all mouse responses by inducing adjuvant or apoptotic effects (11). − − FcγR α-chain genes, the FcRα / mice were crossed to a strain It has not been possible to accurately predict the consequences fi γ α of engaging activating or inhibitory human (hu)FcγRs by IgGs for deleted for the mouse high af nity Fc RI -chain found on mouse chromosome 4, and the resulting mice were bred to homozygosity a particular biological response, either for its therapeutic or ad- α α verse effects, using currently available in vitro or in vivo model and named FcR null mice. These FcR null mice were than bred to a series of human transgenic lines expressing either huFCGR1A systems. Although murine and nonhuman primate models can be R131 I232 informative, they do not mirror the structural diversity or unique (18), huFCGR2A (19), huFCGR2B (generated for the expression patterns observed for huFcγRs on human cells (12). purposes of this current study; see materials and methods), For example, humans express a single-chain activation receptor, FcγRIIA, on dendritic cells (DCs), monocytes, and neutrophils, as well as a glycosylphosphatidylinositol (GPI)-anchored FcγRIIIB Author contributions: P.S., D.J.D., S.B., F.L., and J.V.R. designed research; P.S., D.J.D., S.B., exclusively on neutrophils. Both of these receptors are lacking in and F.L. performed research; and P.S., D.J.D., and J.V.R. wrote the paper. mice (1). Expression patterns of FcγRs also differ between mice The authors declare no conflict of interest. and humans; for example, monocyte-derived DCs from mice ex- 1P.S. and D.J.D. contributed equally to this work. press FcγRI, FcγRIIB, FcγRIII, and FcγRIV, whereas human 2To whom correspondence should be addressed. E-mail: [email protected]. monocyte-derived DCs express only FcγRIIA and FcγRIIB. It is This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. also apparent that the IgG subclasses and FcγRs has coevolved for 1073/pnas.1203954109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1203954109 PNAS | April 17, 2012 | vol. 109 | no. 16 | 6181–6186 Downloaded by guest on September 25, 2021 Fcgr3 Fcgr4 Fcgr2b 1 4 A 5 1 7 3 6 Exon 5 Exon Exon 2 Exon Exon 2 Exon Exon 4 Exon 3 Exon Exon 1 Exon 3 Exon 5 Exon Exon 8 Exon Exon 4 Exon Exon 2 Exon Exon Exon R2,R3,R4 α chain locus 22.5 kb 40 kb 10 kb 10.5 kb 16 kb Fcgr2b Fcgr3 floxed RI RV RV RI RI RI Fcgr2 targeted S1S2 EC1EC2 TM/IC S1 S2 EC1EC2 TM IC1 IC2IC3 Fcgr3 Fcgr2b floxed RV RV targeted RI RI RI RI Fcgr3 NEO S1 S2 EC1EC2 TM IC1 IC2IC3 targeted S1S2 EC1 EC2TM/IC + cre recombinase R3 loxp -5primer RI RI RI Δ R2,R3,R4 α Chain S1S2 EC1 IC1 IC2IC3 R2Δ4.2primer B CD11b- CD11b+ CD11b- CD11b+ B Cells C57Bl/6 WT C57Bl/6 WT FcRα-/- FcRα-/- CD11b FSC msFcγRIIB/III msFcγRIV FSCB220 msFcγRIIB/III huFc R huFc R huFc RI huFc RIIA huFc RIIB C IIIA/B IIIB − − Fcγ α / γ Null Fig. 1. Generation of FcR mice and huFc R γ R expression analysis in Fc R humanized mice. (A) α Conditional targeting of Fcgr2b and Fcgr3 genes F4/80 + (arrows indicate the coding and noncoding regions of the genes) on the murine α-chain locus and Spleen Monocytes deletion by Cre recombinase of 95 kb of genomic + CD11b DNA between the two most distal LoxP sites (tri- angles). RI and RV indicate the EcoRI and EcoRV restriction sites, respectively, used in the Southern blotting analysis. (B) Mouse FcγRIIB, FcγRIII, and Fc DC BM- γ α−/− γ Fc RIV are not detectable in FcR mice. Spleen Derived Derived 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 R Humanized CD11b+ cells and B220+ B cells from C57BL/6 wild- −/− + + type (upper graphs) and FcRα (lower graphs) mice were stained for surface mouse FcγR expres- B220 Spleen B Cells sion. Representative flow cytometric histograms are shown. (C) HuFcγR expression in FcγR human- + + ized mice. The indicated cell types from the in- dicated tissues were analyzed for huFcγR NK1.1 Spleen CD49b fl NK Cells expression (heavy lines) by immuno uorescence hi staining and flow cytometric analysis.
Recommended publications
  • The Ligands for Human Igg and Their Effector Functions
    antibodies Review The Ligands for Human IgG and Their Effector Functions Steven W. de Taeye 1,2,*, Theo Rispens 1 and Gestur Vidarsson 2 1 Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 2 Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Received: 26 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases.
    [Show full text]
  • FCGR2B) Is Associated with the Production of Anti-Cyclic Citrullinated Peptide Autoantibodies in Taiwanese RA
    Genes and Immunity (2008) 9, 680–688 & 2008 Macmillan Publishers Limited All rights reserved 1466-4879/08 $32.00 www.nature.com/gene ORIGINAL ARTICLE A transmembrane polymorphism in FcgRIIb (FCGR2B) is associated with the production of anti-cyclic citrullinated peptide autoantibodies in Taiwanese RA J-Y Chen1, C-M Wang2, C-C Ma1, L-A Hsu3, H-H Ho1, Y-JJ Wu1, S-N Kuo1 and J Wu4 1Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, Republic of China; 2Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, Republic of China; 3Department of Medicine, Division of First Cardiovascular, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, Republic of China and 4Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA The aim of the current study was to determine whether the FcgRIIb 187-Ile/Thr polymorphism is a predisposition factor for subtypes of RA defined by disease severity and production of autoantibodies against cyclic citrullinated peptides (anti-CCPs) in Taiwanese RA patients. Genotype distributions and allele frequencies of FcgRIIb 187-Ile/Thr were compared between 562 normal healthy controls and 640 RA patients as stratified by clinical parameters and autoantibodies. Significant enrichment of 187-Ile allele was observed in RA patients positive for anti-CCP antibodies as compared with the anti-CCP negative RA patients (P ¼ 0.001, OR 1.652 (95% CI 1.210–2.257)) or as compared with the normal controls (P ¼ 0.005, OR 1.348 (95% CI 1.092–1.664)).
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Different Types of FC Gamma-Receptors Are Involved In
    British Journal of Cancer (2000) 82(2), 441–445 © 2000 Cancer Research Campaign Article no. bjoc.1999.0940 Different types of FCγ-receptors are involved in anti- Lewis Y antibody induced effector functions in vitro M Dettke1,2 and H Loibner2 1Clinic for Blood Group Serology and Transfusion Medicine, University Hospital of Vienna, Austria; 2NOVARTIS Forschungsinstitut, Vienna, Austria Summary Stimulation of monocytes by interaction of monoclonal antibodies (mAbs) with Fc gamma receptors (FcγRs) results in the activation of various monocyte effector functions. In the present investigation we show that the anti-Lewis Y (LeY) anti-tumour mAb ABL 364 and its mouse/human IgG1 chimaera induce both antibody-dependent cellular cytotoxicity (ADCC) and the release of tumour necrosis factor α (TNF-α) during mixed culture of monocytes with LeY+ SKBR5 breast cancer cells in vitro. Although anti-LeY mAb-mediated TNF-α release paralleled ADCC activity, cytokine release required a higher concentration of sensitizing mAb than the induction of cytolysis. The determination of the FcγR classes involved in the induction of the distinct effector functions showed that anti-LeY mAb-induced cytolysis was triggered by interaction between anti-LeY mAbs and FcγRI. In contrast, mAb-induced TNF-α release mainly depended on the activation of monocyte FcγRII. Neutralization of TNF-α showed no influence on monocyte ADCC activity towards SKBR5 target cells. Our data indicate an independent regulation of anti-LeY mAb induced effector functions of ADCC and TNF-α release
    [Show full text]
  • Functional and Selective Targeting of Adenovirus to High-Affinity Fc
    JOURNAL OF VIROLOGY, Jan. 2001, p. 480–489 Vol. 75, No. 1 0022-538X/01/$04.00ϩ0 DOI: 10.1128/JVI.75.1.480–489.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Functional and Selective Targeting of Adenovirus to High-Affinity Fc␥ Receptor I-Positive Cells by Using a Bispecific Hybrid Adapter CHRISTINA EBBINGHAUS,1 AHMED AL-JAIBAJI,1 ELISABETH OPERSCHALL,2 ANGELIKA SCHO¨ FFEL,1 ISABELLE PETER,1 URS F. GREBER,3 1 AND SILVIO HEMMI * Institute of Molecular Biology1 and Institute of Zoology,3 University of Zu¨rich, CH-8057 Zu¨rich, and Institute of Medical Virology, University of Zu¨rich, CH-8028 Zu¨rich,2 Switzerland Received 1 June 2000/Accepted 29 September 2000 Adenovirus (Ad) efficiently delivers its DNA genome into a variety of cells and tissues, provided that these cells express appropriate receptors, including the coxsackie-adenovirus receptor (CAR), which binds to the terminal knob domain of the viral capsid protein fiber. To render CAR-negative cells susceptible to Ad infection, we have produced a bispecific hybrid adapter protein consisting of the amino-terminal extracellular domain of the human CAR protein (CARex) and the Fc region of the human immunoglobulin G1 protein, comprising the hinge and the CH2 and CH3 regions. CARex-Fc was purified from COS7 cell supernatants and mixed with Ad particles, thus blocking Ad infection of CAR-positive but Fc receptor-negative cells. The functionality of the CARex domain was further confirmed by successful immunization of mice with CARex-Fc followed by selection of a monoclonal anti-human CAR antibody (E1-1), which blocked Ad infection of CAR-positive cells.
    [Show full text]
  • GP130 Cytokines in Breast Cancer and Bone
    cancers Review GP130 Cytokines in Breast Cancer and Bone Tolu Omokehinde 1,2 and Rachelle W. Johnson 1,2,3,* 1 Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA; [email protected] 2 Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA 3 Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA * Correspondence: [email protected]; Tel.: +1-615-875-8965 Received: 14 December 2019; Accepted: 29 January 2020; Published: 31 January 2020 Abstract: Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
    [Show full text]
  • Fc Receptor Cross-Linking Stimulates
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 6, pp. 4232–4242, February 5, 2010 © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Fc␥ Receptor Cross-linking Stimulates Cell Proliferation of Macrophages via the ERK Pathway* Received for publication, June 23, 2009, and in revised form, November 16, 2009 Published, JBC Papers in Press, December 8, 2009, DOI 10.1074/jbc.M109.037168 Yong Luo‡1, Jeffrey W. Pollard§¶2, and Arturo Casadevall‡ʈ3 From the Departments of ‡Microbiology and Immunology, ʈMedicine, §Developmental and Molecular Biology, and ¶Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York 10461 Macrophage proliferation can be stimulated by phagocytosis antibody-mediated effects. FcR, which recognizes the immuno- and by cross-linking of Fc␥ receptors (Fc␥R). In this study, we globulin Fc domain, bridges two major host defense mecha- investigated the role of Fc␥R and the signaling cascades that link nisms, innate immunity and adaptive immunity, through Fc- Fc␥R activation to cell cycle progression. This effect was medi- mediated phagocytosis (1). As the first step of Fc-mediated ated by the activating Fc␥R, including Fc␥RI and III, via their phagocytosis, antibodies opsonize microbes, which can then Downloaded from Fc␥ subunit. Further investigation revealed that the cell cycle cross-link FcR on the cell membrane. FcR cross-linking triggers machinery was activated by Fc␥R cross-linking through down- complicated signaling transduction pathways that promote stream signaling events. Specifically, we identified the extracel- phagocytosis and induces the transcription of numerous genes lular signal-regulated kinase (ERK) signaling pathway as a medi- in macrophages that contribute to subsequent inflammatory ␥ ator of signals from Fc R activation to cyclin D1 expression, and immune responses.
    [Show full text]
  • Recombinant Cynomolgus Monkey FCAR/CD89 Catalog Number: 9516-FA
    Recombinant Cynomolgus Monkey FCAR/CD89 Catalog Number: 9516-FA DESCRIPTION Source Mouse myeloma cell line, NS0-derived cynomolgus monkey FCAR/CD89 protein Gln22-Asn227, with a C-terminal 6-His tag Accession # XP005590398 N-terminal Sequence No reults obtained. Gln 22 inferred from enzymatic pyroglutamate treatment revealing Glu23 Analysis Predicted Molecular 24 kDa Mass SPECIFICATIONS SDS-PAGE 33-70 kDa, reducing conditions Activity Measured by its binding ability in a functional ELISA. When Human IgA is immobilized at 5 μg/mL, 100 μL/well, the concentration of Recombinant Cynomolgus Monkey FCAR/CD89 that produces 50% of the optimal binding response is 0.5-2.5 μg/mL. Endotoxin Level <0.10 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining. Formulation Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details. PREPARATION AND STORAGE Reconstitution Reconstitute at 200 μg/mL in PBS. Shipping The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below. Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution. 3 months, -20 to -70 °C under sterile conditions after reconstitution. DATA Bioactivity Recombinant Cynomolgus Monkey FCAR/CD89 Protein Bioactivity When Human IgA is coated at 5 µg/mL (100 μL/well), Recombinant Cynomolgus Monkey FCAR/CD89 (Catalog # 9516-FA) binds with an ED50of 0.5-2.5 μg/mL.
    [Show full text]
  • Cx3cr1 Mediates the Development of Monocyte-Derived Dendritic Cells During Hepatic Inflammation
    CX3CR1 MEDIATES THE DEVELOPMENT OF MONOCYTE-DERIVED DENDRITIC CELLS DURING HEPATIC INFLAMMATION. Supplementary material Supplementary Figure 1: Liver CD45+ myeloid cells were pre-gated for Ly6G negative cells for excluding granulocytes and HDCs subsequently analyzed among the cells that were CD11c+ and had high expression of MHCII. Supplementary Table 1 low/- high + Changes in gene expression between CX3CR1 and CX3CR1 CD11b myeloid hepatic dendritic cells (HDCs) from CCl4-treated mice high Genes up-regulated in CX3CR1 HDCs Gene Fold changes P value Full name App 4,01702 5,89E-05 amyloid beta (A4) precursor protein C1qa 9,75881 1,69E-22 complement component 1, q subcomponent, alpha polypeptide C1qb 9,19882 3,62E-20 complement component 1, q subcomponent, beta polypeptide Ccl12 2,51899 0,011769 chemokine (C-C motif) ligand 12 Ccl2 6,53486 6,37E-11 chemokine (C-C motif) ligand 2 Ccl3 4,99649 5,84E-07 chemokine (C-C motif) ligand 3 Ccl4 4,42552 9,62E-06 chemokine (C-C motif) ligand 4 Ccl6 3,9311 8,46E-05 chemokine (C-C motif) ligand 6 Ccl7 2,60184 0,009272 chemokine (C-C motif) ligand 7 Ccl9 4,17294 3,01E-05 chemokine (C-C motif) ligand 9 Ccr2 3,35195 0,000802 chemokine (C-C motif) receptor 2 Ccr5 3,23358 0,001222 chemokine (C-C motif) receptor 5 Cd14 6,13325 8,61E-10 CD14 antigen Cd36 2,94367 0,003243 CD36 antigen Cd44 4,89958 9,60E-07 CD44 antigen Cd81 6,49623 8,24E-11 CD81 antigen Cd9 3,06253 0,002195 CD9 antigen Cdkn1a 4,65279 3,27E-06 cyclin-dependent kinase inhibitor 1A (P21) Cebpb 6,6083 3,89E-11 CCAAT/enhancer binding protein (C/EBP),
    [Show full text]
  • Immune Complexes Stimulate CCR7-Dependent Dendritic Cell Migration to Lymph Nodes
    LETTERS Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes Menna R Clatworthy1,2, Caren E Petrie Aronin2, Rebeccah J Mathews1, Nicole Y Morgan3, Kenneth G C Smith4 & Ronald N Germain2 Antibodies are critical for defense against a variety of microbes, or activating FcγR cross-linking9,10. FcγRIIB provides a basal level of but they may also be pathogenic in some autoimmune inhibition to DC maturation in the presence of ICs, thereby regulat- diseases. Many effector functions of antibodies are mediated ing immunogenic antigen presentation to T cells and providing an by Fcg receptors (FcgRs), which are found on most immune important tolerance checkpoint11–15. A number of stimuli preferen- cells, including dendritic cells (DCs)—important antigen- tially reduce FcγRIIB expression on monocytes, notably interferon-γ presenting cells that play a central role in inducing antigen- (IFN-γ)16, allowing these cells to be activated and matured by sub- specific tolerance or immunity1,2. Following antigen acquisition sequent encounters with ICs. Deficiency or dysfunction of FcγRIIB in peripheral tissues, DCs migrate to draining lymph nodes confers susceptibility to the IC-mediated autoimmune disease SLE in via the lymphatics to present antigen to T cells. Here we both mice and humans17–22. demonstrate that FcgR engagement by IgG immune complexes To permit interactions with T cells, tissue-resident DCs not only (ICs) stimulates DC migration from peripheral tissues to the need to be mature but also must relocate from peripheral tissues to paracortex of draining lymph nodes. In vitro, IC-stimulated lymph nodes23–26. Studies to date on the role of FcγRs in DCs have mouse and human DCs showed greater directional migration in focused on the effects of antibody and FcγR cross-linking on DC a chemokine (C-C) ligand 19 (CCL19) gradient and increased maturation, but none has addressed the question of how antibody chemokine (C-C) receptor 7 (CCR7) expression.
    [Show full text]
  • A Course on Basic Immunology
    1 B Cells and Antibodies Abul K. Abbas UCSF FOCiS 2 Lecture outline • Functions of antibodies • B cell activation; the role of helper T cells in antibody production • Therapeutic targeting of B cells 3 The Importance of Antibodies • Humoral immunity is the defense mechanism against extracellular microbes – Most current vaccines work by stimulating effective antibody responses • Antibodies are mediators of many immune/inflammatory diseases • Antibodies are used as therapeutic agents Take home messages 4 Principles of Humoral Immunity • Antibodies are produced only by B lymphocytes. • Humoral immune responses are initiated by binding of antigen to membrane bound antibody on B cells. • Activated B cells secrete soluble antibodies of the same specificity as the membrane receptors. • Antibody responses are specialized and enhanced by signals from helper T cells. Take home messages Structure of antibody molecules 5 Diverse immunoglobulin (Ig) molecules with different specificities are generated by recombination of gene segments and variations introduced at sites of recombination. 6 B cell activation and antibody production 7 The effector functions of antibodies 88 Leukocyte Fc receptors • Activating Fc receptors on phagocytes (macrophages, neutrophils) ingest opsonized microbes for destruction: FcγRI • Fc receptor on NK cells binds to opsonized cells and kill the cells (ADCC): FcγRIII • Fc receptors with other functions: FcγRII, neonatal Fc receptor (FcRn) Take home messages 9 IgG recycling by “neonatal” FcR (FcRn) 10 Antibody production: activation of B cells Helper T cells, other stimuli Naive IgG B cell Activated B cells Activated differentiate Microbe Proliferation B cell into antibody- secreting plasma cells T-dependent and T-independent antibody responses 1111 T-independent (TI) T-cell dependent (TD) Ag Ag Ag present T cell The image cannot be displayed.
    [Show full text]
  • CD47 Blockade Augmentation of Trastuzumab Antitumor Efficacy Dependent on Antibody- Dependent Cellular Phagocytosis
    CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody- dependent cellular phagocytosis Li-Chung Tsao, … , Herbert Kim Lyerly, Zachary C. Hartman JCI Insight. 2019;4(24):e131882. https://doi.org/10.1172/jci.insight.131882. Research Article Immunology Oncology The HER2-specific monoclonal antibody (mAb), trastuzumab, has been the mainstay of therapy for HER2+ breast cancer (BC) for approximately 20 years. However, its therapeutic mechanism of action (MOA) remains unclear, with antitumor responses to trastuzumab remaining heterogeneous and metastatic HER2+ BC remaining incurable. Consequently, understanding its MOA could enable rational strategies to enhance its efficacy. Using both murine and human versions of trastuzumab, we found its antitumor activity dependent on Fcg receptor stimulation of tumor-associated macrophages (TAMs) and antibody-dependent cellular phagocytosis (ADCP), but not cellular cytotoxicity (ADCC). Trastuzumab also stimulated TAM activation and expansion, but did not require adaptive immunity, natural killer cells, and/or neutrophils. Moreover, inhibition of the innate immune ADCP checkpoint, CD47, significantly enhanced trastuzumab-mediated ADCP and TAM expansion and activation, resulting in the emergence of a unique hyperphagocytic macrophage population, improved antitumor responses, and prolonged survival. In addition, we found that tumor- associated CD47 expression was inversely associated with survival in HER2+ BC patients and that human HER2+ BC xenografts treated with trastuzumab plus CD47 inhibition underwent complete tumor regression. Collectively, our study identifies trastuzumab- mediated ADCP as an important antitumor MOA that may be clinically enabled by CD47 blockade to augment therapeutic efficacy. Find the latest version: https://jci.me/131882/pdf RESEARCH ARTICLE CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis Li-Chung Tsao,1 Erika J.
    [Show full text]