Unexpected Variation of Hox Genes' Homeodomains in Cephalopods

Total Page:16

File Type:pdf, Size:1020Kb

Unexpected Variation of Hox Genes' Homeodomains in Cephalopods Molecular Phylogenetics and Evolution 40 (2006) 872–879 www.elsevier.com/locate/ympev Short communication Unexpected variation of Hox genes’ homeodomains in cephalopods Mathieu Pernice b, Jean S. Deutsch a, Aude Andouche b, Renata Boucher-Rodoni b, Laure Bonnaud b,¤ a Développement et Evolution, UMR 7622, CNRS et Université P et M Curie (Paris 6), Case 24, 9 quai St Bernard, 75252 Paris Cedex 05, France b Muséum National d’Histoire Naturelle, Département Milieux et Peuplements Aquatiques, Biologie des Organismes Marins et Ecosystèmes (UMR 5178 CNRS), 55 rue BuVon, CP51, 75005 Paris, France Received 2 September 2005; revised 24 February 2006; accepted 4 April 2006 Available online 26 April 2006 1. Introduction derived from the foot, a condensed nervous system associ- ated with several sensory structures and a speciWc direct Hox genes encode a family of transcription factors con- development. Among the eight recognised classes of extant taining a homeodomain-binding motif of 60 aminoacids molluscs six have been explored, few Hox genes have been (Gehring et al., 1994). They are extensively conserved identiWed and the number of genes in each cluster is far throughout Eu-metazoans (de Rosa et al., 1999). As they from being determined. The amount of available data have a role in the determination of the anterior-posterior recently increased with the characterisation of 11 Hox par- axis during development, they may give information about alogues in a bivalve, Pecten maximus, the highest number the history of bilaterian lineages (de Rosa et al., 1999; Bal- found at present (Canapa et al., 2005). In gastropods, con- avoine et al., 2002). In bilaterians, they are organised in sidered as the sister group of cephalopods, six Hox genes clusters, the last common ancestor of protostomes and have been characterised in Patella vulgata (de Rosa et al., deuterostomes having a cluster of 8–10 Hox genes (Cook 1999). In cephalopods, nine genes have been identiWed in et al., 2004). They appear to have undergone various inde- Euprymna scolopes, a sepiolid (Callaerts et al., 2002). The pendent duplications in the three clades Ecdysozoa, Lopho- aim of the present work was to compare Hox genes trochozoa and Deuterostomia. They present some between cephalopod species issued from the basal lineage conserved features that allowed determining lophotrocho- Nautiloidea ( D Tetrabranchiata) and those issued from the zoan signatures (de Rosa et al., 1999) but they have not derived lineage Coleoidea ( D Dibranchiata). In the present been used to distinguish between the main phyla within the study, we identiWed Hox genes in Sepia oYcinalis, a cuttle- Lophotrochozoa yet. Wsh belonging to the Decabrachia group like E. scolopes, To study Hox gene evolution it is crucial to include more and two nautiloids, Nautilus macromphalus and Nautilus sequences from lophotrochozoan species. Among them, the pompilius. The latter have preserved a number of ancestral phylum Mollusca is a Cambrian lineage showing a great morphological characters (e.g. external shell, numerous ten- diversity of body plans. It is considered as a monophyletic tacles without suckers) that were present in the Ammonites, group based on shared derived characters such as a foot, a a lineage close to extant nautiloids, which became extinct in radula, a mantle secreting the shell and a palleal cavity har- the Mesozoic era. We then compared our homeodomain bouring gills (Brusca and Brusca, 1990). sequences with those of available data from other molluscs Here we report the cloning of Hox genes from three and metazoans. cephalopod species. Cephalopods are distinct from other molluscs in numerous features. Cephalopoda is a mono- 2. Materials and methods phyletic group based on common derived characters (syna- pomorphies): a funnel and a brachial crown probably 2.1. Biological material and DNA extraction Nautilus pompilius was collected on the east coast of * Corresponding author. Fax: +33 1 40 79 57 34. Cebu island (Philippines), N. macromphalus in New Cale- E-mail address: [email protected] (L. Bonnaud). donia and S. oYcinalis oV the coast of Banyuls (France). 1055-7903/$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2006.04.004 Table 1 Species name, taxonomic position and Hox genes analysed with their accession numbers in EMBL database (except ¤ in Swissprot database) Phylum Species Abr. Hox1 lab Hox2 pb Hox3 zen Hox4 Dfd Hox5 Scr Hox6 ftz/Lox5 Hox7 Antp Hox8 Ubx/ Hox9 Post1 Hox10 AbdB/Post2 Cdx cad Xlox Lox2 abdA/Lox4 Mollusca Cephalopoda Euprymna Esc AY052753 AY052755 AF127335 AY052756 AY052757 AY052758 AY052759 AY052760 AY052761 AF127341 scolopes Sepia Sof AJ937220 AJ937221 AJ937222 AJ937223 AM050636 AJ937224 oYcinalis Nautilus pompilius Npo AJ937214 AJ937215 AJ937216 AJ937219 AJ937217 Nautilus macromphalus Nma AM050632 AM050631 AM050634 AM050633 AM050630 Gastropoda M. Pernice Molecular etal./ Phylogenetics and Evolution40 (2006)872–879 Patella vulgata Pvu AF144666 AF144667 AF144669 AF144668 AF144670 AJ518062 AF144671 Ilyanassa obsoleta Iob AF118831 AY736276 AF118833 AF118832 AY736274 Haliotis asinina Has AF327746 AF327747 AF328863 Haliotis rufescens Hru X79374 X79372 X79377 AF275310 X79371 Bivalvia Yoldia eightsi Yei YEI534462 YEI534464 YEI534463 Ensis ensis Een EEN534448 EEN534449 EEN534450 Ruditapes philippinarum Rph TPH534460 TPH534459 TPH534461 Mytilus galloprovincialis Mga AJ629073 MGA534452 AJ629072 AJ629071 Pecten maximus Pma AJ876619 AJ876620 AJ876621 AJ876622 AJ876623 PMA534457 AJ876625 AJ876626 AJ876628 AJ876629 AJ575213 AJ876631 AJ876627 Annelida Polychaeta Nereis virens Nvi AF151663 AF151664 AF151665 AF151666 AF151667 AF151671 AF151668 AF151672 AF151673 AY117546 AF151669 Ctenodrilus serratus Cse U26539 U26625 U26626 U26627 U26629 U26628 U26635 U26633 Chaetopterus variopedatus Cva AF163856 AF163857 AF163858 CVU68284 AF163860 AF163859 Oligochaeta Eisenia andrei Ean AF400169 AF400165 AF400167 AF400164 AF400162 AF400166 AF400180 AF400181 AF00168 AF400163 AF400170 AF400177 AF400175 Perionyx excavatus Pex AY439315 AY439318 AY439319 AY439321 AY439323 AY439325 AY439324 AY439326 AY439328 AY439329 AY439316 AY439320 AY439327 AY439330 AY439317 AY439322 Stylaria lacustris Sla S76355 S76357 S76361 S76354 Hirudinida Hellobdella robusta Hro AF004386 AF004387 Hellobdella triserialis Htr AF006638 Y10888 AF137385 Hirudo medicinalis Hme AF017253 LO7298 S79240 X17566 Nemerta Anopla Lineus sanguineus Lsa Y16570 Y16571 Y16572 Y16573 Y16574 P81193¤ Ectoprocta Bugula turrita Btu AY497421 AY497422 AY497423 AY497425 AY497426 AY497424 Brachiopoda Lingula anatina Lan AF144672 AF144673 AF144674 AF144676 AF144675 AF144677 AF144679 AF144680 AF144678 Plathyhelmintha Polycelis nigra Pni L41847 L41850 L41852 L41854 L41849 L41848 L41851 L41846 (continued on next page) 873 874 M. Pernice et al. / Molecular Phylogenetics and Evolution 40 (2006) 872–879 Tissue samples (mantle and brain) were either frozen or preserved in alcohol and stored at 4 °C. DNA was extracted using the Dneasy Tissue Kit (Qiagen) and stored in aliquots at ¡20 °C. 2.2. PCR ampliWcation The central part of the homeodomain Hox gene was ampliWed by PCR from Nautilus and Sepia DNA using degenerate primers HoxA and HoxB (5Ј-GARY TNGARAARGARTT-3Ј corresponding to amino acids sequence ELEKEF and 3Ј-CKNCKRTTYTGRAACCA- 5Ј corresponding to WFQNRR, respectively). Lox2 was ampliWed in N. pompilius using HoxB and 5Ј-CCNAAYT CNTMNCARAGRAGRAAR-3Ј corresponding to amino Hox9 Post1 Hox10 AbdB/Post2 Cdx cad Xlox acids sequence PNS(S/Y)QRRK. Post2 homeodomain gene was ampliWed in S. oYcinalis only using 5Ј-MGNTAYCA RACNATGGTNYTNGARAAYGARTTY-3Ј corre- AJ007434 AJ007436 AF241657 X54453 AF017415 AJ005422 Lox2 abdA/Lox4 sponding to amino acids sequence RYQTMVLENEF and 3Ј-YTTYTTNCKYTTCATNCKNCKRTTYTGRAACC A-5Ј corresponding to amino acids sequence WFQNRR MKRKK. The reaction mixture contained 0.6 mol of each primer, 0.4 mmol of each deoxynucleoside triphosphate, 1X SuperTaq buVer and 2.5 U of SuperTaq polymerase 4 M20704 X76210 X51663 X03062 (ATGC) in a total volume of 50 l. PCR were conducted with an initial denaturing step (94 °C for 5 min) followed by 40 cycles at 94°C for 1min, 42°C for 2min and 72°C for 1 min and a Wnal elongation step at 72 °C for 7 min. PCR products of the expected size (150 bp) were puriWed with a Qiaquick gel extraction Kit (Qiagen). 2.3. Cloning and sequencing PuriWed PCR products were then cloned by insertion into the plasmid vector PCR 2.1 TOPO TA Cloning (Invitrogen) following the manufacturer’s instructions. Plasmids were pre- pared from pelleted cells with a QIAprep Miniprep kit (Qiagen). A total of 30 clones for each species, i.e. S. oYcinalis, N. pompilius and N. macromphalus, were sequenced. AF362086 AF3620892.4. AF362092 AF362094 Alignments and sequence comparison The central part of the homeodomain (aminoacids) Z35142 Z35143 X68045 AB028208sequences Z35145 Z35146 of Z35147lophotrochozoans, Z35148 Z35150 ecdysozoans AF052465 AF052464 and deuter- X ostomes were aligned using the Bioedit program. Species Alo AF071407 Csa AJ007431B Pma AJ005643Omy AJ007432 AJ007433 AJ007435 AAM19473 AY567802 CSA131397 Z35149 ScaSla U79468 AF148935 U79469 AF148936 AF148937 U79476 AF1011431 AF393441 AF393444 AF393443 AF393442 AF241662 AF241661 AF481736 AY779183 U79471 Tdo AF104008Tca AF104009 AF231104 AY456922 AF187068Dme X97819 X13103 AF104005 AF104010 X63728 AAB393556 AAK16422 AF321227 X05136 AF104003 AF104001 AY074761 X14475 X0085 AF104002 AF227923 AJ005421 Lfo AF362084 AF362085 AF362087 AF362088 AF362090 AF362091 AF362093name,
Recommended publications
  • Feeding, Anatomy and Digestive Enzymes of False Limpet Siphonaria Guamensis
    World Journal of Fish and Marine Sciences 5 (1): 104-109, 2013 ISSN 2078-4589 © IDOSI Publications, 2013 DOI: 10.5829/idosi.wjfms.2013.05.01.66144 Feeding, Anatomy and Digestive Enzymes of False Limpet Siphonaria guamensis K.V.R. Murty, A. Shameem and K. Umadevi Department of Marine Living Resources Andhra University, Visakhapatnam 530 003, A.P., India Abstract: Very little information has been available in the literature on the feeding habits, anatomy and histology of digestive system of siphonariid limpets. The present study revealed Siphonaria guamensis feeds on the crustose red alga Hildenbrandia prototypus browsing on the rocks by rasping action of radula. The anatomy of digestive system of Siphonaria guamensis is similar with that of the other siphonariid limpets but the length of gut and colon are shorter than the patellogastropod limpets like Cellana radiata, patella vulgata, Fissurella barbadensis and species of Acmaea. The salivary glands are the main source of the enzyme system of Siphonaria guamensis. They contained enzymes which can act on carbohydrates, proteins and polysaccharides. The enzyme which can act on proteins was found only in salivary glands and not detected in any other part of the digestive system. No lypolytic activity was seen in any part of the digestive system of the animal. Key words: False Limpet Feeding Anatomy Digestive Enzymes INTRODUCTION tridentatum and C. minimum, where he described the morphology and histology of the digestive system at Little work has been done on the feeding, digestion length. anatomy and histology of the digestive organs of limpets Very little information has been available in the with an exception of patella vulgata (Davies and Fleure literature on the feeding methods, anatomy and histology [1], Graham [2], Stone and Morton [3], Fretter and Graham of the digestive system of siphonariid limpets.
    [Show full text]
  • Zoology Department, University of Cape Town. Patella Vulgata and P. Aspersa Are Attacked by Haematopus Ostralegus, P. Aspersa Be
    THE RESPONSES OF SOUTH AFRICAN PATELLID LIMPETS TO INVERTEBRATE PREDATORS G M BRANCH Zoology Department, University of Cape Town. Accepted: February 1978 ABSTRACT The starfISh Marthasterias glacialis is a generalized predator, feeding particularly on Choromytillis meridiOflalis, but also on several limpets, notably Patella longicosta. T1Iais d"bia (Gastropoda) feeds mainly on barnacles, mussels, and Patella gran"laris. The gastropods BumUJH!na delalandii and B. cincta are principally scavengers, feeding on damaged or dead animals. The responses of Patella spp. to these predators are described. P. gran"laris. P. concolor. P. compressa and P. miniata all retreat rapidly on contact. Small P. grallQtina and P. oculus respond similarly, but larger specimens react aggressively, smashing their shells downwards and often damaging the predator. The territorial species (P.longicosta. P. coch/ear and P. tablilaris) all retreat to their scan and remain clamped there. P. argenvillei and P. tablilaris are usually unresponsive, possibly because they are too large to fall prey. Cellana capensis rolls its mantle upwards to cover the shell, preventing predators from attaching. The responses and their effectiveness are discussed in relation to other behavioural patterns displayed by limpets. There is no correlation between the intensity of a prey's response to a predator and the degree of contact . ) 0 between the two in the field. 1 0 2 d e INTRODUCTION t a d A variety of limpet predators has been recorded. Several birds attack limpets by knocking ( r them off the rock, and either picking out the flesh or consuming the whole limpet and e h s regurgitating the shell: oyster catchers (Haemlltopus spp.), various gulls (LaTUS spp.) and the i l b u sheathbill (Chionus alba) (Test 1945; Feare 1971; Walker 1972).
    [Show full text]
  • Where Can We Find Limpets?
    We See Sea Shells by the Seashore Where can we find limpets? Isabella and Evangeline Burns Introduction On holidays our family often goes to the town of Ulladulla on the New South Wales south coast. When we do we always visit the rock pools and rock platform. We always look forward to these trips. We look for pretty starfish and gooey limpets and dead, dried-out blue bottles that pop when we step on them. We enjoy these expeditions so much that we wanted to learn more about some of the animals that live on the rock platform. Many animals live on the rock platform. There are starfish, sea snails and crabs. We decided to look at limpets because they have a pretty shell with many different coloured stripes and the rock platform is covered in them. Also, limpets are well known for being very strong and very difficult to pull off the rocks. This was an animal worth knowing about. Aim We wanted to find out where on the rock platform limpets live. Do they live in the wet or the dry areas of the rock platform? 2 Background Research The animal we are looking at is called the Variegated Limpet. Its scientific name is Cellana tramoserica. It is found on the south-eastern coast of Australia from Queensland to South Australia. Source: www.mesa.edu.au Limpets are gastropods. This means that that they are like snails. They have oval shells shaped like a tent to protect their soft squishy body. The soft squishy part is called their foot! They also have gills to breathe underwater.
    [Show full text]
  • Gastropoda, Mollusca)
    bioRxiv preprint doi: https://doi.org/10.1101/087254; this version posted November 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An annotated draft genome for Radix auricularia (Gastropoda, Mollusca) Tilman Schell 1,2 *, Barbara Feldmeyer 2, Hanno Schmidt 2, Bastian Greshake 3, Oliver Tills 4, Manuela Truebano 4, Simon D. Rundle 4, Juraj Paule 5, Ingo Ebersberger 3,2, Markus Pfenninger 1,2 1 Molecular Ecology Group, Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany 2 Adaptation and Climate, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany 3 Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe- University, Frankfurt am Main, Germany 4 Marine Biology and Ecology Research Centre, Marine Institute, School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom 5 Department of Botany and Molecular Evolution, Senckenberg Research Institute, Frankfurt am Main, Germany * Author for Correspondence: Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany. Tel.: +49 (0)69 75 42 18 30, E-mail: [email protected] Data deposition: BioProject: PRJNA350764, SRA: SRP092167 1 bioRxiv preprint doi: https://doi.org/10.1101/087254; this version posted November 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Habitat Preference and Population Ecology of Limpets Cellana
    Hindawi Publishing Corporation Journal of Ecosystems Volume 2014, Article ID 874013, 6 pages http://dx.doi.org/10.1155/2014/874013 Research Article Habitat Preference and Population Ecology of Limpets Cellana karachiensis (Winckworth) and Siphonaria siphonaria (Sowerby) at Veraval Coast of Kathiawar Peninsula, India Julee Faladu, Bhavik Vakani, Paresh Poriya, and Rahul Kundu Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005, India Correspondence should be addressed to Rahul Kundu; [email protected] Received 7 May 2014; Revised 6 July 2014; Accepted 20 July 2014; Published 17 August 2014 Academic Editor: Wen-Cheng Liu Copyright © 2014 Julee Faladu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Present study reports the habitat preference and spatiotemporal variations in the population abundance of limpets Cellana karachiensis and Siphonaria siphonaria inhabiting rocky intertidal zones of Veraval coast, Kathiawar Peninsula, India. The entire intertidal zone of the Veraval coast was divided into five microsampling sites based on their substratum type and assemblage structure. Extensive field surveys were conducted every month in these microsampling sites and the population abundance of two limpet species was analyzed using belt transect method. The results revealed that C. karachiensis was the dominating species at microsampling Site-1 (having rocky substratum) possibly due to its ability to tolerate high desiccation, salinity, and temperature fluctuations, while the S. siphonaria was found to be the most dominating species at microsampling Site-2 (having rocky substratum with abundant algal population) possibly due to their preference for the perpetual wet areas.
    [Show full text]
  • Rocky Shore Snails As Material for Projects (With a Key for Their Identification)
    Field Studies, 10, (2003) 601 - 634 ROCKY SHORE SNAILS AS MATERIAL FOR PROJECTS (WITH A KEY FOR THEIR IDENTIFICATION) J. H. CROTHERS Egypt Cottage, Fair Cross, Washford, Watchet, Somerset TA23 0LY ABSTRACT Rocky sea shores are amongst the best habitats in which to carry out biological field projects. In that habitat, marine snails (prosobranchs) offer the most opportunities for individual investigations, being easy to find, to identify, to count and to measure and beng sufficiently robust to survive the experience. A key is provided for the identification of the larger species and suggestions are made for investigations to exploit selected features of individual species. INTRODUCTION Rocky sea shores offer one of the best habitats for individual or group investigations. Not only is there de facto public access (once you have got there) but also the physical factors that dominate the environment - tides (inundation versus desiccation), waves, heat, cold, light, dark, salinity etc. - change significantly over a few metres in distance. As a bonus, most of the fauna and flora lives out on the open rock surface and patterns of distribution may be clearly visible to the naked eye. Finally, they are amongst the most ‘natural’ of habitats in the British Isles; unless there has been an oil spill, rocky sea shores are unlikely to have been greatly affected by covert human activity. Some 270 species of marine snail (Phylum Mollusca, Class Gastropoda; Sub-Class Prosobranchia) live in the seas around the British Isles (Graham, 1988) and their empty shells may be found on many beaches. Most of these species are small (less than 3 mm long) or live beneath the tidemarks.
    [Show full text]
  • MOLLUSCS Species Names – for Consultation 1
    MOLLUSCS species names – for consultation English name ‘Standard’ Gaelic name Gen Scientific name Notes Neologisms in italics der MOLLUSC moileasg m MOLLUSCS moileasgan SEASHELL slige mhara f SEASHELLS sligean mara SHELLFISH (singular) maorach m SHELLFISH (plural) maoraich UNIVALVE SHELLFISH aon-mhogalach m (singular) UNIVALVE SHELLFISH aon-mhogalaich (plural) BIVALVE SHELLFISH dà-mhogalach m (singular) BIVALVE SHELLFISH dà-mhogalaich (plural) LIMPET (general) bàirneach f LIMPETS bàirnich common limpet bàirneach chumanta f Patella vulgata ‘common limpet’ slit limpet bàirneach eagach f Emarginula fissura ‘notched limpet’ keyhole limpet bàirneach thollta f Diodora graeca ‘holed limpet’ china limpet bàirneach dhromanach f Patella ulyssiponensis ‘ridged limpet’ blue-rayed limpet copan Moire m Patella pellucida ‘The Virgin Mary’s cup’ tortoiseshell limpet bàirneach riabhach f Testudinalia ‘brindled limpet’ testudinalis white tortoiseshell bàirneach bhàn f Tectura virginea ‘fair limpet’ limpet TOP SHELL brùiteag f TOP SHELLS brùiteagan f painted top brùiteag dhotamain f Calliostoma ‘spinning top shell’ zizyphinum turban top brùiteag thurbain f Gibbula magus ‘turban top shell’ grey top brùiteag liath f Gibbula cineraria ‘grey top shell’ flat top brùiteag thollta f Gibbula umbilicalis ‘holed top shell’ pheasant shell slige easaig f Tricolia pullus ‘pheasant shell’ WINKLE (general) faochag f WINKLES faochagan f banded chink shell faochag chlaiseach bhannach f Lacuna vincta ‘banded grooved winkle’ common winkle faochag chumanta f Littorina littorea ‘common winkle’ rough winkle (group) faochag gharbh f Littorina spp. ‘rough winkle’ small winkle faochag bheag f Melarhaphe neritoides ‘small winkle’ flat winkle (2 species) faochag rèidh f Littorina mariae & L. ‘flat winkle’ 1 MOLLUSCS species names – for consultation littoralis mudsnail (group) seilcheag làthaich f Fam.
    [Show full text]
  • Population Characteristics of the Limpet Patella Caerulea (Linnaeus, 1758) in Eastern Mediterranean (Central Greece)
    water Article Population Characteristics of the Limpet Patella caerulea (Linnaeus, 1758) in Eastern Mediterranean (Central Greece) Dimitris Vafidis, Irini Drosou, Kostantina Dimitriou and Dimitris Klaoudatos * Department of Ichthyology and Aquatic Environment, School of Agriculture Sciences, University of Thessaly, 38446 Volos, Greece; dvafi[email protected] (D.V.); [email protected] (I.D.); [email protected] (K.D.) * Correspondence: [email protected] Received: 27 February 2020; Accepted: 19 April 2020; Published: 21 April 2020 Abstract: Limpets are pivotal for structuring and regulating the ecological balance of littoral communities and are widely collected for human consumption and as fishing bait. Limpets of the species Patella caerulea were collected between April 2016 and April 2017 from two sites, and two samplings per each site with varying degree of exposure to wave action and anthropogenic pressure, in Eastern Mediterranean (Pagasitikos Gulf, Central Greece). This study addresses a knowledge gap on population characteristics of P. caerulea populations in Eastern Mediterranean, assesses population structure, allometric relationships, and reproductive status. Morphometric characteristics exhibited spatio-temporal variation. Population density was significantly higher at the exposed site. Spatial relationship between members of the population exhibited clumped pattern of dispersion during spring. Broadcast spawning of the population occurred during summer. Seven dominant age groups were identified, with the dominant cohort in the third-year
    [Show full text]
  • Os Nomes Galegos Dos Moluscos 2020 2ª Ed
    Os nomes galegos dos moluscos 2020 2ª ed. Citación recomendada / Recommended citation: A Chave (20202): Os nomes galegos dos moluscos. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga /wp!content/up oads/achave_osnomesga egosdos"mo uscos"2020.pd# Fotografía: caramuxos riscados (Phorcus lineatus ). Autor: David Vilasís. $sta o%ra est& su'eita a unha licenza Creative Commons de uso a%erto( con reco)ecemento da autor*a e sen o%ra derivada nin usos comerciais. +esumo da licenza: https://creativecommons.org/ icences/%,!nc-nd/-.0/deed.g . Licenza comp eta: https://creativecommons.org/ icences/%,!nc-nd/-.0/ ega code. anguages. 1 Notas introdutorias O que cont!n este documento Neste recurso léxico fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas) ! primeira edición d" Os nomes galegos dos moluscos é do ano #$%& Na segunda edición (2$#$), adicionáronse algunhas especies, asignáronse con maior precisión algunhas das denominacións vernáculas galegas, corrixiuse algunha gralla, rema'uetouse o documento e incorporouse o logo da (have. )n total, achéganse nomes galegos para *$+ especies de moluscos A estrutura )n primeiro lugar preséntase unha clasificación taxonómica 'ue considera as clases, ordes, superfamilias e familias de moluscos !'uí apúntanse, de maneira xeral, os nomes dos moluscos 'ue hai en cada familia ! seguir
    [Show full text]
  • Cuttlefish Sepia Officinalis (Mollusca-Cephalopoda)
    Journal of Marine Science and Technology, Vol. 22, No. 1, pp. 15-24 (2014) 15 DOI: 10.6119/JMST-013-0820-1 NEUROGENESIS IN CEPHALOPODS: “ECO-EVO-DEVO” APPROACH IN THE CUTTLEFISH SEPIA OFFICINALIS (MOLLUSCA-CEPHALOPODA) Sandra Navet1, Sébastien Baratte2, 3, Yann Bassaglia2, 4, Aude Andouche2, Auxane Buresi2, and Laure Bonnaud1, 2 Key words: nervous system, cephalopods, development, evolution. from developmental processes and have been selected during evolution as they confer an adaptive advantage. In the general concern of Evo-Devo investigations, the ecological dimension ABSTRACT of the development is essential in the light of new knowledge Cephalopods are new evolutionary and ecological models. on genome plasticity [54]. Actually, since development is also By their phylogenetic position (Lophotrochozoa, Mollusca), influenced by non-genetic parameters, as environmental varia- they provide a missing master piece in the whole puzzle of tions or epigenetic processes, the functional and adaptive neurodevelopment studies. Their derived and specific nervous context of organisms to their environment has to be integrated system but also their convergence with vertebrates offer into a new field to study evolution of metazoans, called Eco- abundant materials to question the evolution and development Evo-Devo. of the nervous system of Metazoa (evo-devo studies). In Nervous system (NS) organisation of numerous metazoans addition, their various adaptions to different modes of life is well known but efforts on development are restricted to open new fields of investigation of developmental plasticity chordates and ecdysozoans: the mouse, Drosophila, Caenor- according to ecological context (eco-evo-devo approach). In habditis being the most extensively explored evo-devo models this paper, we review the recent works on cephalopod nervous [2].
    [Show full text]
  • Alien Species in the Marine and Brackish Ecosystem: the Situation in Belgian Waters
    Aquatic Invasions (2007) Volume 2, Issue 3: 243-257 Open Access doi: http://dx.doi.org/10.3391/ai.2007.2.3.9 © 2007 The Author(s). Journal compilation © 2007 REABIC Research Article Alien species in the marine and brackish ecosystem: the situation in Belgian waters Francis Kerckhof 1, Jan Haelters1 and Stephan Gollasch2 1Management Unit of the North Sea Mathematical Models (MUMM), Royal Belgian Institute of Natural Sciences, 3e en 23e Linieregimentsplein, 8400 Oostende, Belgium 2GoConsult, Grosse Brunnenstr. 61, 22763 Hamburg, Germany E-mail: [email protected] (FK), [email protected] (SG) Received: 15 August 2007 / Accepted: 9 September 2007 Abstract In total 61 aquatic alien species (AAS) are known from Belgian marine and brackish waters, eight of which are considered as cryptogenic species. The majority of the Belgian AAS have established self-sustaining populations, although for some species the establishment is uncertain or in need of verification. Prime introduction vectors are shipping, including small recreational craft, and aquaculture. Most AAS originate from the temperate northwest Pacific. The invasion rate has been increasing during the last two decades. Key words: Belgium, aquatic species introductions, shipping, aquaculture Introduction some recognized cryptogenics. In our list we opted for a rather conservative approach, i.e. we Worldwide, many species have successfully did not attempt to prepare an exhaustive list of colonised new habitats as an ongoing all species of non-native origin that have ever phenomenon. Coastal waters are heavily exposed been recorded in Belgian marine waters, whether to introductions of alien species as a result of the established or not.
    [Show full text]
  • Microhabitats Choice in Intertidal Gastropods Is Species-, Temperature-And Habitat-Specific Emilie Moisez, Nicolas Spilmont, Seuront Laurent
    Microhabitats choice in intertidal gastropods is species-, temperature-and habitat-specific Emilie Moisez, Nicolas Spilmont, Seuront Laurent To cite this version: Emilie Moisez, Nicolas Spilmont, Seuront Laurent. Microhabitats choice in intertidal gastropods is species-, temperature-and habitat-specific. Journal of Thermal Biology, Elsevier, 2020, 94, pp.102785. 10.1016/j.jtherbio.2020.102785. hal-03096714 HAL Id: hal-03096714 https://hal.archives-ouvertes.fr/hal-03096714 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Microhabitats choice in intertidal gastropods is species-, temperature- and 2 habitat-specific 3 Emilie Moiseza, Nicolas Spilmonta, Laurent Seurontb,c,d* 4 a Univ. Lille, CNRS, Univ. Littoral Côte d’Opale, UMR 8187, LOG, Laboratoire d’Océanologie et de 5 Géosciences, F 62930 Wimereux, France 6 b CNRS, Univ. Lille, Univ. Littoral Côte d’Opale, UMR 8187, LOG, Laboratoire d’Océanologie et de 7 Géosciences, F 62930 Wimereux, France 8 c Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 9 Konan, Minato-ku, Tokyo 108-8477, Japan 10 d Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa 11 *E-mail address: [email protected] 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ABSTRACT 27 Understanding how behavioural adaptations can limit thermal stress for intertidal gastropods 28 will be crucial for climate models.
    [Show full text]