Analysis of the Resuscitation-Availability of Viable-But-Nonculturable

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Resuscitation-Availability of Viable-But-Nonculturable bioRxiv preprint doi: https://doi.org/10.1101/294751; this version posted April 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Research article 3 4 Analysis of the Resuscitation-Availability of Viable-But-Nonculturable 5 Cells of Vibrio parahaemolyticus upon Exposure to the Refrigerator 6 Temperature 7 8 Running title: Determining the resuscitation-availability of VBNC V. parahaemolyticus 9 a a b a 10 Jae-Hyun Yoon , Young-Min Bae , Buom-Young Rye , Chang-Sun Choi , Sung-Gwon 11 Moona, and Sun-Young Leea* 12 13 Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Daedeok- 14 myeon, Anseong-si, Gyeonggi-do 456-756, Republic of Koreaa*, Department of Animal 15 Science and Technology, Chung-Ang University, 72-1 Nae-ri, Daedeok-myeon, Anseong-si, 16 Gyeonggi-do 456-756, Republic of Koreab 17 18 *Corresponding author. Mailing address: Department of Food Science and Technology, 19 Chung-Ang University, 72-1 Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi-do 456-756, 20 Republic of Korea. Phone: +82 31-676-8741. E-mail: [email protected]. 21 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/294751; this version posted April 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 26 ABSTRACT 27 28 Major pathogenic strains of Vibrio parahaemolyticus can enter into the viable-but- 29 nonculturable (VBNC) state when subjected to environmental conditions commonly 30 encountered during food processing. Especially, VBNC cells can be recovered to the 31 culturable state reversibly by removing the causative stress, expressing higher levels of 32 virulence factors. Therefore, the aim of this study was to determine if VBNC V. 33 parahaemolyticus strains retain the resuscitation-availability upon eliminating the adverse 34 condition, followed by the enrichment in developed resuscitation-facilitating buffers. 35 Bacterial cells were shown to enter into the VBNC state in artificial sea water (ASW, pH 6) 36 microcosms at 4oC within 70 days. VBNC cells were harvested, inoculated in formulated 37 resuscitation-buffers, and then incubated at 25oC for several days. TSB (pH 8) supplemented 38 with 3% NaCl (TSBA) exhibited the higher resuscitation-availability of VBNC cells. It was 39 also shown that TSBA containing 10,000 U/mg/protein catalase, 2% sodium pyruvate, 20 mM 40 MgSO4, 5 mM ethylenediaminetetraacetic acid (EDTA), and cell free supernatants extracted 41 from the pure cultures of V. parahaemolyticus was more effective in resuscitating VBNC cells 42 of V. parahaemolyticus, showing by 7.69-8.91 log10 CFU/ml. 43 44 IMPORTANCE 45 46 Generally, higher concentrations (≤40%) of NaCl are used for preserving different sorts of 47 food products from bacterial contaminations. However, it was shown from the present study 48 that strains of V. parahaemolyticus were able to persist in maintaining the cellular viability, 49 thereby entering into the VBNC state upon exposure to the refrigerator temperature for 80 2 bioRxiv preprint doi: https://doi.org/10.1101/294751; this version posted April 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 50 days. Hence, the ability of VBNC V. parahaemolyticus to re-enter into the culturable state 51 was examined, using various resuscitation buffers that were formulated in this study. VBNC 52 cells re-gained the culturability successfully when transferred onto the resuscitation-buffer D, 53 and then incubated at 25oC for several days. Resuscitation-facilitating agent D is consisting of 54 antioxidizing agents, mineral, an emulsifier, and cell free supernatants from the actively 55 growing cells of V. parahaemolyticus. It appeared that such a reversible conversion of VBNC 56 cells to the culturable state would depend on multiple resuscitation-related channels. 57 58 KEYWORDS cell free supernatant, pathogen, resuscitation, ROS-detoxifying, viable-but- 59 nonculturable 60 3 bioRxiv preprint doi: https://doi.org/10.1101/294751; this version posted April 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 61 62 INTRODUCTION 63 64 Major food-borne pathogens, including Vibrio parahaemolyticus, Vibrio vulnificus, 65 Camphylobacter jejuni, Escherichia coli O157:H7, Salmonella enterica serovar Enteritidis, 66 and Shigella dysenteriae, are known to become the viable-but-nonculturable (VBNC) state 67 when challenged by various environmental stresses such as low temperatures (≤15oC), 68 starvation, copper, and CO2 (1-3). It should be noted that VBNC cells of these pathogens are 69 incapable of producing their own colonies on culture media on which these organisms can 70 grow routinely, thereby escaping from the cultivation-based surveillances and diagnosis tools. 71 Once bacterial cells were induced to the dormant and nonculturable state upon exposure to 72 adverse environmental stresses (nutrient-deprivation and cold temperature) VBNC cells 73 exerted some metabolic activities, including hydrolysis of energy sources, adenosine 74 triphosphate (ATP) synthesis, and maintenance of the membrane integrity, displaying better 75 resistances to environmental conditions commonly encountered during food processing (4-6). 76 Of much importance, it has been well-reported that VBNC V. parahaemolyticus can be 77 recovered back to the culturable state by eliminating the causative environmental conditions. 78 Several studies showed that strains of V. parahaemolyticus and V. vulnificus in such a 79 dormant state were converted to the culturable state on solid agar plates, followed by 80 culturing these long-term-stressed cells in liquid nutrient-rich media at ambient temperatures 81 for several days (4, 7-8). In particular, it was demonstrated that pathogenic bacteria, including 82 V. parahaemolyticus and Shig. dysenteriae, remained constant in possessing potential 83 virulence factors even after entering into the VBNC state, retaining the serious infectivity to 84 animal cell lines (9-10). Thus, VBNC pathogens should be closely implicated with causing 85 the food-borne disease outbreaks. Until now, many studies have been conducted to determine 4 bioRxiv preprint doi: https://doi.org/10.1101/294751; this version posted April 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 86 a way of restoring stressed cells of bacteria from the VBNC state. In a study conducted by 87 Zhao et al. (3), VBNC E. coli O157:H7 was transferred into a nutrient-rich culture broth such 88 as tryptic soy broth, and then incubated at 37oC for ≤24 hrs, thereby re-gaining the colony- 89 forming capability. Coutard et al. (11) also showed that VBNC cells of V. parahaemolyticus 90 VP5 were resuscitated reversibly when further incubated in artificial sea water (ASW) 91 microcosms at 25oC for several days. In contrast, some VBNC bacteria could not be restored 92 from the VBNC state under controlled favorable conditions where these organisms prefer to 93 grow primarily (12-13). Such a failure to recover VBNC bacteria back to the culturable state 94 did not indicate that the environmental challenges used in these studies deprived bacterial 95 cells of the resuscitation-availability completely. It seemed plausible that these resuscitation 96 approaches would not be effective for recovering the culturability of VBNC cells. Bacteria in 97 such a dormant state will be resuscitated opportunely under a favorable environmental 98 condition for their survivals. Considering that bacterial cells in the VBNC state are capable of 99 evading from conventional cultivation-based techniques the incidence of VBNC pathogens 100 on food products could threaten public health concerns potentially. Until now, a preliminary 101 research establishing an optimal resuscitation method of VBNC cells is still unsubstantial. 102 Therefore, the present study aimed at examining the resuscitation-availability of VBNC V. 103 parahaemolyticus using by developed resuscitation-facilitating buffers. 104 105 RESULTS AND DISCUSSION 106 107 Formation of the viable-but-nonculturable cells 108 109 It appeared that strains of V. parahaemolyticus ATCC 17082, V. parahaemolyticus ATCC 110 33844, and V. parahaemolyticus ATCC 27969 were divested of their own culturable 5 bioRxiv preprint doi: https://doi.org/10.1101/294751; this version posted April 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 111 capability within 70 days when incubated in ASW microcosms (pH 6) at 4oC, regardless of 112 the excessive amounts of NaCl (Fig. 1). Populations of V. parahaemolyticus ATCC 17082 in 113 ASW microcosms containing 0.75%, 5%, 10%, and 30% NaCl declined remarkably below o 114 the detection limits (<1.0 log10 CFU/ml) as being measured at 4 C for 50, 24, 20, and 12 days, 115 respectively. Especially, such a cold-starvation environment enabled cells of V. 116 parahaemolyticus ATCC 33844 and V. parahaemolyticus ATCC 27969 to be converted into 117 the nonculturable state in ASW microcosms amended with 30%
Recommended publications
  • Viable but Non-Culturable Bacteria: Clinical Practice and Future Perspective
    Editorial Article 2017, Vol: 5, Issue: 2, Pages: 1-2 DOI: 10.18869/acadpub.rmm.5.2.1 Research in Molecular Medicine Viable but Non-culturable Bacteria: Clinical Practice and Future Perspective Amin Talebi Bezmin Abadi Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Phone: +98-2182884883, E-mail: [email protected] Received: 20 Feb 2017 Revised: 19 Mar 2017 Accepted: 30 Mar 2017 Please cite this article as: Talebi Bezmin Abadi A. Viable but Non-culturable Bacteria: Clinical Practice and Future Perspective. Res Mol Med. 2017; 5 (2): 1-2 Due to intolerable environmental conditions, bacteria learnt to mechanisms to survive VBNC cells in human and environment are adopt a useful strategy to survive longer which these organisms welcomed. generally is termed "viable but non-culturable". In the case of exposure to certain stresses (e.g., antibiotics, low metabolites, Current debate heavy metal and high pH environment, etc.), bacteria enter into the In clinical practices, we should examine possible molecular VBNC stage. In similar, having the starvation mode of physiology approaches for rapid detection of those crucial infectious agents. can be called VBNC model. In fact, viable but non-culturable cells Recently, the potential of microorganisms to enter into the VBNC (VBNC) are live bacteria, however, they are unable to be phase raised the cautious attention of microbiologists and also cultivated on conventional culture media (1). Because of clinicians to rethink about current strategies in hospitals and complexities in culture, observation of normal colonies on solid environmental hygiene. The raised central scientific issue is about and broth media is almost impossible for VBNCs.
    [Show full text]
  • Bacterial Dormancy: a Subpopulation of Viable but Non-Culturable Cells Demonstrates Better Fitness for Revival
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216283; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bacterial dormancy: a subpopulation of viable but non-culturable cells demonstrates better fitness for revival. Sariqa Wagley1*, Helen Morcrette1, Andrea Kovacs-Simon1, Zheng R. Yang1, Ann Power2, Richard K. Tennant2, John Love2, Neil Murray3, Richard W. Titball1 and Clive S. Butler1* 1 Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK 2 BioEconomy Centre, The Henry Wellcome Building for BioCatalysis, Biosciences, Stocker Road, Exeter, Devon, EX4 4QD, UK 3 Lyons Seafoods, Fairfield House, Fairfield Road, Warminster, Wiltshire, BA12 9DA. *Corresponding authors: [email protected]; [email protected] Key words: Viable but non culturable cells, Vibrio parahaemolyticus, FACS, IFC, Proteomics Running title: characterisation of subpopulations of VBNC cells bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216283; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium.
    [Show full text]
  • Discovery and Control of Culturable and Viable but Non-Culturable Cells
    www.nature.com/scientificreports OPEN Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus Received: 20 February 2018 Accepted: 2 July 2018 harbinensis strain from spoiled beer Published: xx xx xxxx Junyan Liu1,3, Yang Deng4, Lin Li1,2,5, Bing Li1,5, Yanyan Li6, Shishui Zhou7, Mark E. Shirtlif8, Zhenbo Xu 1,4,8 & Brian M. Peters3, Occasional beer spoilage incidents caused by false-negative isolation of lactic acid bacteria (LAB) in the viable but non-culturable (VBNC) state, result in signifcant proft loss and pose a major concern in the brewing industry. In this study, both culturable and VBNC cells of an individual Lactobacillus harbinensis strain BM-LH14723 were identifed in one spoiled beer sample by genome sequencing, with the induction and resuscitation of VBNC state for this strain further investigated. Formation of the VBNC state was triggered by low-temperature storage in beer (175 ± 1.4 days) and beer subculturing (25 ± 0.8 subcultures), respectively, and identifed by both traditional staining method and PMA-PCR. Resuscitated cells from the VBNC state were obtained by addition of catalase rather than temperature upshift, changing medium concentration, and adding other chemicals, and both VBNC and resuscitated cells retained similar beer-spoilage capability as exponentially growing cells. In addition to the frst identifcation of both culturable and VBNC cells of an individual L. harbinensis strain from spoiled beer, this study also for the frst time reported the VBNC induction and resuscitation, as well as verifcation of beer-spoilage capability of VBNC and resuscitated cells for the L.
    [Show full text]
  • The Viable but Nonculturable State and Cellular Resuscitation
    To Grow or Not to Grow: Nonculturability Revisited The viable but nonculturable state and cellular resuscitation J.D. Oliver University of North Carolina, Charlotte, NC 28223 USA ABSTRACT Aquatic microbial ecologists have long recognized that portions of bacterial populations seem to disappear from natural water bodies during certain times of the year, only to reappear at other times. In the case of V. vulnificus, numerous studies have documented the difficulty researchers experience in culturing this bacterium during cold months, presumably due to “die-off” of the population. This decrease in culturability is thought to be due to the entrance of the cells into a viable but nonculturable (VBNC) state, reported to occur in at east 30 other bacterial species. It is thought that the VBNC state may represent a survival response of bacteria exposed to stressful environmental conditions and, in the case of V. vulnificus, is induced by temperatures below 10 oC. The ability of any bacterium to resuscitate from this dormant state would appear to be essential if the VBNC state were truly a survival strategy. Whether the culturable cells, which appear following stress removal, are a result of true resuscitation, or from re-growth of a few residual culturable cells, has long been debated. Our research, including dilution studies, time required for resuscitation to occur, and the effects of nutrient on recovery, indicates that, at least for V. vulnificus, true resuscitation does occur. Our studies have further suggested that nutrient is in some way inhibitory to the resuscitation of cells in the VBNC state, and that studies which add nutrient in an attempt to detect resuscitation are only able to detect culturable cells which might be present.
    [Show full text]
  • The Puzzle of Coccoid Forms of Helicobacter Pylori: Beyond Basic Science
    antibiotics Review The Puzzle of Coccoid Forms of Helicobacter pylori: Beyond Basic Science 1, , 1,2, 1 1 3 Enzo Ierardi * y , Giuseppe Losurdo y , Alessia Mileti , Rosa Paolillo , Floriana Giorgio , Mariabeatrice Principi 1 and Alfredo Di Leo 1 1 Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy; [email protected] (G.L.); [email protected] (A.M.); [email protected] (R.P.); [email protected] (M.P.); [email protected] (A.D.L.) 2 Ph.D. Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy 3 THD S.p.A., 42015 Correggio (RE), Italy; fl[email protected] * Correspondence: [email protected]; Tel.: +39-08-05-593-452; Fax: +39-08-0559-3088 G.L. and E.I. contributed equally and are co-first Authors. y Academic Editor: Nicholas Dixon Received: 20 April 2020; Accepted: 29 May 2020; Published: 31 May 2020 Abstract: Helicobacter pylori (H. pylori) may enter a non-replicative, non-culturable, low metabolically active state, the so-called coccoid form, to survive in extreme environmental conditions. Since coccoid forms are not susceptible to antibiotics, they could represent a cause of therapy failure even in the absence of antibiotic resistance, i.e., relapse within one year. Furthermore, coccoid forms may colonize and infect the gastric mucosa in animal models and induce specific antibodies in animals and humans. Their detection is hard, since they are not culturable. Techniques, such as electron microscopy, polymerase chain reaction, loop-mediated isothermal amplification, flow cytometry and metagenomics, are promising even if current evidence is limited.
    [Show full text]
  • Induction and Resuscitation of Viable but Nonculturable Corynebacterium Diphtheriae
    microorganisms Communication Induction and Resuscitation of Viable but Nonculturable Corynebacterium diphtheriae Takashi Hamabata 1, Mitsutoshi Senoh 2,*, Masaaki Iwaki 3, Ayae Nishiyama 1, Akihiko Yamamoto 3 and Keigo Shibayama 2 1 Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; [email protected] (T.H.); [email protected] (A.N.) 2 Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; [email protected] 3 Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; [email protected] (M.I.); [email protected] (A.Y.) * Correspondence: [email protected]; Tel.: +81-42-561-0771 Abstract: Many pathogenic bacteria, including Escherichia coli and Vibrio cholerae, can become vi- able but nonculturable (VBNC) following exposure to specific stress conditions. Corynebacterium diphtheriae, a known human pathogen causing diphtheria, has not previously been shown to enter the VBNC state. Here, we report that C. diphtheriae can become VBNC when exposed to low tem- peratures. Morphological differences in culturable and VBNC C. diphtheriae were examined using scanning electron microscopy. Culturable cells presented with a typical rod-shape, whereas VBNC cells showed a distorted shape with an expanded center. Cells could be transitioned from VBNC to culturable following treatment with catalase. This was further evaluated via RNA sequence-based transcriptomic analysis and reverse-transcription quantitative PCR of culturable, VBNC, and resusci- Citation: Hamabata, T.; Senoh, M.; tated VBNC cells following catalase treatment. As expected, many genes showed different behavior Iwaki, M.; Nishiyama, A.; Yamamoto, A.; Shibayama, K.
    [Show full text]
  • VBNC) Listeria Monocytogenes: a Review
    microorganisms Review Detection and Potential Virulence of Viable but Non-Culturable (VBNC) Listeria monocytogenes: A Review Nathan E. Wideman 1, James D. Oliver 2, Philip Glen Crandall 3,* and Nathan A. Jarvis 4 1 Corporate Laboratory, Tyson Foods, 3609 Johnson Rd, Springdale, AR 72762, USA; [email protected] 2 Department of Biological Sciences, UNC Charlotte, Charlotte, NC 28223, USA; [email protected] 3 Department of Food Science and Center for Food Safety, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA 4 Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, 122 Heiman Street, San Antonio, TX 78205, USA; [email protected] * Correspondence: [email protected]; Fax: +1-479-575-6936 Abstract: The detection, enumeration, and virulence potential of viable but non-culturable (VBNC) pathogens continues to be a topic of discussion. While there is a lack of definitive evidence that VBNC Listeria monocytogenes (Lm) pose a public health risk, recent studies suggest that Lm in its VBNC state remains virulent. VBNC bacteria cannot be enumerated by traditional plating methods, so the results from routine Lm testing may not demonstrate a sample’s true hazard to public health. We suggest that supplementing routine Lm testing methods with methods designed to enumerate VBNC cells may more accurately represent the true level of risk. This review summarizes five methods for enumerating VNBC Lm: Live/Dead BacLightTM staining, ethidium monoazide and propidium monoazide-stained real-time polymerase chain reaction (EMA- and PMA-PCR), direct viable count 0 (DVC), 5-cyano-2,3-ditolyl tetrazolium chloride-4 ,6-diamidino-2-phenylindole (CTC-DAPI) double staining, and carboxy-fluorescein diacetate (CDFA) staining.
    [Show full text]
  • And Chlorine- Induced Stress Running Title: P. Aeruginosa C
    Recovery of Pseudomonas aeruginosa culturability following copper- and chlorine- induced stress Running Title: P. aeruginosa culturability recovery after induced stress Key words: VBNC, drinking water, internal plumbing, hospital, opportunistic pathogen Article Type: Research letter NonTechnical Summary: The authors investigated the loss of culturability of P. aeruginosa in presence of copper and chlorine concentrations typically found in drinking water and demonstrated culturability recovery once stressors were removed. Authors: Emilie Bédard1,2, Dominique Charron2, Cindy Lalancette1, Eric Déziel1 and Michèle Prévost2 Affiliation of authors : 1Department of Civil Engineering, Polytechnique Montreal, Montreal, Qc, Canada 2INRS-Institut Armand-Frappier, Laval, Québec, H7V 1B7, Canada Corresponding author: Emilie Bédard NSERC Industrial Chair in Drinking Water Polytechnique Montréal P.O. Box 6079 Station Centre-ville Montréal (Qc), Canada H3C 3A7 Tel: 514-340-4711 x3711 Fax: 514-340-5918 Email: [email protected] 1 1 Abstract 2 This study investigated how quickly cells of the opportunistic pathogen Pseudomonas aeruginosa 3 recover culturability after exposure to two of the most common environmental stressors present in 4 drinking water, free chlorine and copper ions. Viable but non-culturable (VBNC) P. aeruginosa 5 undetected by direct culturing following exposure to free chlorine or copper ions can survive in 6 drinking water systems, with potential to recover, multiply and regain infectivity. Cells were 2+ -1 -1 7 exposed to copper sulphate (0.25 mg Cu L ) or free chlorine (initial dose of 2 mg Cl2 L ) for 24h. 8 Despite total loss of culturability and a reduction in viability from 1.2x107 to 4x103 cells mL-1 (3.5 9 log), cells exposed to chlorine recovered viability quickly after the depletion of free chlorine, while 10 culturability was recovered within 24 hours.
    [Show full text]
  • Detection of Viable but Nonculturable Escherichia Coli O157:H7 in Ground Beef by Propidium Monoazide Real-Time PCR
    Life Sciences Group International Journal of Agricultural Science and Food Technology ISSN: 2455-815X DOI CC By Jehan Mahmoud Mahmoud Ouf1, Yuan Yuan2, Prashant Singh2 and Research Article 2 Azlin Mustapha * Detection of Viable but Nonculturable 1Food Hygiene Department, Animal Health Research Institute, Dokki, Giza, Egypt 2Food Science Program, University of Missouri, Escherichia coli O157:H7 in Ground Beef Columbia, Missouri, USA Dates: Received: 06 April, 2017; Accepted: 19 May, by Propidium Monoazide real-time PCR 2017; Published: 20 May, 2017 *Corresponding author: Azlin Mustapha, Food Science Program, Division of Food Systems and Abstract Bioengineering, 246 William Stringer Wing, Eckles Hall, University of Missouri, Columbia, MO 65211, Escherichia coli O157:H7 can enter into a viable but nonculturable (VBNC) state under stress USA, Tel: +1-573-882-2649; Fax: +1-573-884-7964; conditions. Pathogens in this dormant state may escape detection if conventional methods are employed, E-mail: and potentially pose serious threats to human health. Studies have shown that many intervention and preservation processes that are commonly used in the food industry may instead induce a VBNC state Keywords: E. coli O157; qPCR; PMA; Lactic acid; rather than kill the intended pathogens. This study aimed to detect whether E. coli O157:H7, an important Stress and dangerous foodborne pathogen, could adapt to the stress caused by lactic acid exposure by entering the VBNC state. A propidium monoazide (PMA) quantitative PCR (qPCR) method was used for detection https://www.peertechz.com and quantifi cation of VBNC E. coli O157:H7 cells. The performance of this PMA-qPCR method was assessed using pure culture and ground beef samples inoculated with VBNC E.
    [Show full text]
  • 9 Methods to Identify and Enumerate Frank and Opportunistic Bacterial Pathogens in Water and Biofilms
    9 Methods to identify and enumerate frank and opportunistic bacterial pathogens in water and biofilms N.J. Ashbolt 9.1 INTRODUCTION The vast range of heterotrophic plate count (HPC)-detected bacteria are not considered to be frank or opportunistic pathogens, as discussed elsewhere in this book (chapters 4–7) and in previous reviews (Nichols et al. 1995; LeChevallier et al. 1999; Velazquez and Feirtag 1999; Szewzyk et al. 2000). The purpose of this chapter, however, is to highlight important methodological issues when considering “traditional” and emerging procedures for detecting bacterial pathogens in both water and biofilms, rather than giving specific methods for many pathogens. 2003 World Health Organization (WHO). Heterotrophic Plate Counts and Drinking-water Safety. Edited by J. Bartram, J. Cotruvo, M. Exner, C. Fricker, A. Glasmacher. Published by IWA Publishing, London, UK. ISBN: 1 84339 025 6. Methods to identify and enumerate bacterial pathogens in water 147 The focus of this book is on heterotrophic bacteria; nevertheless, many of the methods discussed can also be directed to other (viral and protozoan) frank and opportunistic pathogens. Furthermore, a number of heterotrophs are thought to cause disease via the expression of virulence factors (Nichols et al. 1995), such as the emerging bacterial superantigens (McCormick et al. 2001). Hence, pathogen detection is not necessarily one based on particular species, but may take the approach of identifying virulence gene(s), preferably by their active expression (possibly including a range of different genera of bacteria; see virulence factors in Table 9.1). As a consequence, many species contain pathogenic and non-pathogenic strains, so ways to “fingerprint” strains of importance (from the environment and human cases) are also discussed in detail.
    [Show full text]
  • A Microbiological Paradox: Viable but Nonculturable Bacteria with Special Reference to <I>Vibrio Cholerae</I>
    96 Journal of Food Protection, Vol. 59, No.1, Pages 96-101 Copyright©. International Association of Milk, Food and Environmental Sanitarians A Microbiological Paradox: Viable but Nonculturable Bacteria with Special Reference to Vibrio cholerae ANWARUL HUQl and RITA R. COLWELV,2* I Department of Microbiology, University of Maryland at College Park, College Park, Maryland 20742 USA Downloaded from http://meridian.allenpress.com/jfp/article-pdf/59/1/96/1661855/0362-028x-59_1_96.pdf by guest on 24 September 2021 and 2 University of Maryland Biotechnology Institute, 4321 Hartwick Road Suite 500, College Park, Maryland 20740 USA (MS# 95-172: Received 13 July 1995/Accepted 17 October 1995) ABSTRACT cells to respond to shifts in environmental parameters involves a variety of phenotypic and genotypic mechanisms, The observation that directly-detectable bacterial cells are most likely deriving from evolutionary processes (10, 12). unable to grow on bacteriological culture media under certain To remain viable, bacteria must utilize both constitutive and conditions raises questions regarding the viability of these cells. inducible enzyme synthesis, accommodate to growth- Various terminologies have been used to describe substrate- responsive and metabolically-active bacterial cells that cannot be limiting nutrients and adjust or reroute metabolic pathways cultured. The currently-accepted term is "viable but noncultur- to escape metabolic or structural disruption caused by able." During the past 15 years, the viable but nonculturable specific nutrient limitations. The adaptability of bacteria in phenomenon has been actively investigated. Bacterial pathogens in this regard is extraordinary and has been documented by the viable but nonculturable state can maintain virulence and many investigators over the past several decades.
    [Show full text]
  • Elucidating the Role of Oxygen and Biotype in the Environmental Persistence of Vibrio Cholerae
    University of Central Florida STARS Honors Undergraduate Theses UCF Theses and Dissertations 2019 Elucidating the Role of Oxygen and Biotype in the Environmental Persistence of Vibrio Cholerae Amy M. Freiberg University of Central Florida Part of the Biology Commons, and the Disorders of Environmental Origin Commons Find similar works at: https://stars.library.ucf.edu/honorstheses University of Central Florida Libraries http://library.ucf.edu This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Freiberg, Amy M., "Elucidating the Role of Oxygen and Biotype in the Environmental Persistence of Vibrio Cholerae" (2019). Honors Undergraduate Theses. 664. https://stars.library.ucf.edu/honorstheses/664 ELUCIDATING THE ROLE OF OXYGEN AND BIOTYPE ON THE ENVIRONMENTAL PERSISTENCE OF VIBRIO CHOLERAE by AMY M. FREIBERG A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Biological Sciences in the College of Medicine and the Burnett Honors College at the University of Central Florida Orlando, FL Spring Term, 2019 Thesis Chair: Salvador Almagro-Moreno, PhD ABSTRACT Vibrio cholerae is a facultative pathogen that represents the etiological agent of the severe diarrheal disease cholera. The first six cholera pandemics were caused by the classical biotype, which was then replaced by the El Tor biotype responsible for the seventh cholera pandemic. The pathogen encounters abiotic fluctuations within the aquatic environment throughout the year.
    [Show full text]