1 Dynamic Modulation of Activity in Cerebellar Nuclei Neurons during 2 Pavlovian Eyeblink Conditioning in Mice 3 M.M. ten Brinke1,4, S.A. Heiney2,4, X. Wang1,4, M. Proietti-Onori1, H.J. Boele1, J. Bakermans1, 4 J.F. Medina2,*, Z. Gao1,* and C.I. De Zeeuw1,3, 5 1 Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The 6 Netherlands 7 2 Department of Neuroscience, Baylor College of Medicine, Houston, Texas, 77030, USA 8 3 Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 9 BA Amsterdam, The Netherlands 10 4 These authors contributed equally 11 *Correspondence:
[email protected] and
[email protected] 12 13 Abstract 14 While research on the cerebellar cortex is crystallizing our understanding of its function in 15 learning behavior, many questions surrounding its downstream targets remain. Here, we 16 evaluate the dynamics of cerebellar interpositus nucleus (IpN) neurons over the course of 17 Pavlovian eyeblink conditioning. A diverse range of learning-induced neuronal responses was 18 observed, including increases and decreases in activity during the generation of conditioned 19 blinks. Trial-by-trial correlational analysis and optogenetic manipulation demonstrate that 20 facilitation in the IpN drives the eyelid movements. Adaptive facilitatory responses are often 21 preceded by acquired transient inhibition of IpN activity that, based on latency and effect, 22 appear to be driven by complex spikes in cerebellar cortical Purkinje cells. Likewise, during 23 reflexive blinks to periocular stimulation, IpN cells show excitation-suppression patterns that 24 suggest a contribution of climbing fibers and their collaterals.