Conditioned Eyeblink Learning Is Formed and Stored Without Cerebellar Granule Cell Transmission

Total Page:16

File Type:pdf, Size:1020Kb

Conditioned Eyeblink Learning Is Formed and Stored Without Cerebellar Granule Cell Transmission Corrections NEUROSCIENCE. For the article ‘‘Conditioned eyeblink learning is published October 8, 2007; 10.1073͞pnas.0708165104), the formed and stored without cerebellar granule cell transmis- authors note that in Fig. 2a, the same trace was inadvertently sion,’’ by Norio Wada, Yasushi Kishimoto, Dai Watanabe, used for the electrophysiological records of RNB (DOX- Masanobu Kano, Tomoo Hirano, Kazuo Funabiki, and untreated) and RNB (DOX-withdrawn). This error does not Shigetada Nakanishi, which appeared in issue 42, October 16, affect the conclusions of the article. The corrected figure and 2007, of Proc Natl Acad Sci USA (104:16690–16695; first its legend appear below. Fig. 2. Action potential firing of Purkinje cells in awake WT and RNB transgenic mice. (a) Spontaneous activities of Purkinje cells consisted of simple spikes and complex spikes (red asterisks) in WT, DOX-untreated, and DOX-withdrawn RNB mice, but no simple spikes were evoked in DOX-treated RNB mice. (b) Traces of simple spikes shown in a were superimposed. (c) Interspike interval histogram of simple spikes shown in b.(d) Traces of five complex spikes were superimposed. (e and f) Mean Ϯ SEM of firing rates of simple spikes (e) and complex spikes (f) are shown with columns and bars, respectively. ***, P Ͻ 0.001 (comparison between DOX-treated RNB mice and all five other animals by the Scheffe´ test). (g) The extracellular recording site (red) was confirmed at the Purkinje cell layer by CORRECTIONS fluorescent Nissl staining. ML, molecular layer; PL, Purkinje cell layer; GL, granule cell layer. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0711631105 www.pnas.org PNAS ͉ January 22, 2008 ͉ vol. 105 ͉ no. 3 ͉ 1097 Downloaded by guest on September 26, 2021 Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission Norio Wada*†, Yasushi Kishimoto‡§, Dai Watanabe†, Masanobu Kano‡, Tomoo Hirano¶, Kazuo Funabiki*, and Shigetada Nakanishi*†ʈ *Department of Systems Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan; †Department of Molecular and System Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; ‡Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; and ¶Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Contributed by Shigetada Nakanishi, August 29, 2007 (sent for review August 15, 2007) Classical conditioning of the eyeblink reflex is elicited by paired responses (CRs) are properly evoked in response to CS by a presentation of a conditioned stimulus and an unconditioned timing signal from Purkinje cells (1, 3, 27, 28). Eyeblink condi- stimulus and represents a basic form of cerebellum-dependent tioning involves multiple learning processes, at least acquisition, motor learning. Purkinje cells and the deep nuclei receive conver- expression, and storage of motor learning. Once the expression gent information of conditioned stimulus and unconditioned stim- process of memory traces is impaired, it becomes difficult to ulus through the mossy fiber and climbing fiber projections, define the key neural circuits responsible for expression, forma- respectively. To explore the relative importance of these neural tion, and storage of memory traces. circuits and the underlying mechanism in associative eyeblink In this investigation, we adopted a novel reversible neuro- learning, we adopted a novel gene-manipulating technique, transmission blocking (RNB) technique to explore the role of termed reversible neurotransmission blocking (RNB). In this tech- Purkinje cells and the interpositus nucleus in associative eyeblink nology, cerebellar granule cells specifically expressed neurotrans- conditioning. In the RNB transgenic mice, the tetanus toxin light mission-blocking tetanus toxin in a doxycycline (DOX)-dependent chain is restrictedly expressed in granule cells under the control manner. Extracellular recording of Purkinje cells in awake RNB mice of a tetracycline-controlled reverse transactivator (rtTA) (29). revealed that DOX treatment and withdrawal reversibly turned off Tetanus toxin specifically cleaves synaptic vesicle VAMP2 (30), and on simple spikes elicited by granule cell inputs, respectively, resulting in blockade of transmitter release from synaptic vesicles without interference with complex spikes evoked by climbing fiber (Fig. 1b) (29). Consequently, granule cell inputs to Purkinje cells inputs. Blockade of granule cell inputs to Purkinje cells abolished are blocked and reversibly recovered by administration and eyeblink conditioned responses (CRs) in a DOX-dependent manner. omission, respectively, of doxycycline (DOX) (29). These RNB Importantly, when granule cell inputs recovered by removal of mice were thus used based on the following rationale: when DOX, normal CRs were immediately produced in the DOX-treated, granule cell inputs to Purkinje cells are selectively blocked, the CR-negative RNB mice from the beginning of reconditioning. This CS signal is not transmitted to Purkinje cells but still conveyed learning process in RNB mice during DOX treatment was com- to the interpositus nucleus via the direct mossy fiber pathway pletely abolished by bilateral lesion of the interpositus nucleus (Fig. 1a). The reversible blockade of granule cell transmission before eyeblink conditioning. These results indicate that the con- can thus delineate distinct roles of the direct mossy fiber- vergent information at the interpositus nucleus is critical for mediated information and the indirect granule cell-mediated acquisition and storage of learning in intimate association with the information in acquisition, expression, and storage of CRs in Purkinje cell circuit for expression of CRs in eyeblink conditioning. associative eyeblink conditioning. eyeblink conditioning ͉ interpositus nucleus ͉ Purkinje cell ͉ Results reversible neurotransmission blockade ͉ synaptic plasticity Specific and Reversible Blockade of Granule Cell Transmission. Our previous study showed that tetanus toxin was fully induced in lassical conditioning of the eyeblink reflex is elicited by RNB mice 5 days after DOX treatment and remained at maximal Cpaired presentation of conditioned stimulus (CS) with re- levels thereafter (29). This study showed that the tetanus toxin inforcing unconditioned stimulus (US) (1–4). This associative expression completely disappeared in RNB mice when DOX was motor learning is a basic form of cerebellum-dependent leaning. withdrawn for 14 days and that the toxin was restrictedly In eyeblink conditioning, the CS pathway includes the pontine expressed in granule cells and specifically cleaved VAMP2 nucleus and mossy fibers, whereas the US pathway includes the among neuronal proteins. In addition, the DOX-treated RNB inferior olive and the climbing fibers (1–5). The mossy fibers mice showed no abnormal motor behaviors such as ataxia or project directly to the interpositus nucleus and indirectly to the tremor under the ordinary condition, nor was there any alter- cerebellar cortex via granule cells (1–5). The CS and US signals ation in the cerebellar architecture with respect to the cell are thus conveyed to both the cerebellar cortex and the inter- positus nucleus (Fig. 1a). The localization and underlying mech- anisms of eyeblink conditioning have been extensively studied by Author contributions: N.W., Y.K., D.W., K.F., and S.N. designed research; N.W. and Y.K. performed research; N.W., Y.K., M.K., and T.H. contributed new reagents/analytic tools; different approaches including gene targeting (6–11), lesioning N.W., Y.K., and K.F. analyzed data; and N.W. and S.N. wrote the paper. (12–15), mutant analysis (16), and pharmacological inactivation The authors declare no conflict of interest. analyses (17–23). On the basis of these studies, one model Abbreviations: CR, conditioned response; CS, conditioned stimulus; US, unconditioned stim- proposes an essential role of the cerebellar Purkinje cell circuit ulus; RNB, reversible neurotransmission blocking; DOX, doxycycline; EMG, electromyogram. in memory traces (24–26). According to this model, convergence §Present address: Graduate School of Pharmaceutical Sciences, Tokushima Bunri University, of the CS and US signals induces long-term depression at the Sanuki 769-2193, Japan. parallel fiber–Purkinje cell synapses. Because Purkinje cells are ʈTo whom correspondence should be addressed at: Osaka Bioscience Institute, 6-2-4, inhibitory, long-term depression causes a disinhibition of the Furuedai, Suita, Osaka 565-0874, Japan. E-mail: [email protected]. interpositus nucleus and an increased input in the downstream This article contains supporting information online at www.pnas.org/cgi/content/full/ motor pathways. The other model proposes that the memory 0708165104/DC1. trace is located in the interpositus nucleus and that conditioned © 2007 by The National Academy of Sciences of the USA 16690–16695 ͉ PNAS ͉ October 16, 2007 ͉ vol. 104 ͉ no. 42 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0708165104 DOX-treated RNB mice [P Ͻ 0.001, cells of DOX-treated (n ϭ 6) vs. DOX-untreated (n ϭ 6) mice] (Fig. 2 a and e). When DOX was withdrawn for 14 days after 14-day DOX treatment, these simple spikes reversibly recovered to their normal levels in DOX-withdrawn mice (P Ͼ 0.99) (Fig. 2 a and e). Importantly, complex spikes remained unchanged in RNB mice, irrespective of administration and omission of DOX [P Ͼ 0.99, cells of WT (n ϭ 7) vs. RNB (n ϭ 6) mice] (Fig. 2 a and f). There was no difference
Recommended publications
  • Eyeblink Conditioning in 12-Day-Old Rats Using Pontine Stimulation As the Conditioned Stimulus
    Eyeblink conditioning in 12-day-old rats using pontine stimulation as the conditioned stimulus Matthew M. Campolattaro and John H. Freeman* Department of Psychology, University of Iowa, E11 Seashore Hall, Iowa City, IA 52242 Edited by Richard F. Thompson, University of Southern California, Los Angeles, CA, and approved April 7, 2008 (received for review December 19, 2007) A fundamental issue in developmental science is whether ontoge- neurons might be fully capable of establishing learning-specific netic changes in memory are caused by the development of cellular plasticity in vivo during the first 2 postnatal weeks (12). plasticity mechanisms within the brain’s memory systems or mat- In vivo neurophysiological analyses of the ontogeny of eyeblink uration of sensory inputs to the memory systems. Here, we provide conditioning suggest that the PN receive weaker afferent input evidence that the development of eyeblink conditioning, a form of from sensory nuclei in younger rats (nonlearners), which results associative learning that depends on the cerebellum, is driven by in weaker mossy fiber input to the cerebellum (13). Stimulation the development of sensory inputs rather than the development of of the pontine mossy fibers may be able to overcome the neuronal plasticity mechanisms. We find that rats as young as 12 developmental limitations in eyeblink conditioning in younger days old show associative eyeblink conditioning when pontine rats by providing sufficient mossy fiber input to the cerebellum stimulation is used in place of an external (e.g., a tone) conditioned (14). The current study pushed the limits of this hypothesis by stimulus. Eyeblink-conditioned responses established with pontine examining whether PN stimulation could be an effective CS in stimulation in 12-day-old rats were reversibly abolished by an 12-day-old rats.
    [Show full text]
  • Trace Eyeblink Conditioning Is Impaired in Α7 but Not in Β2 Nicotinic Acetylcholine Receptor Knockout Mice
    ORIGINAL RESEARCH ARTICLE published: 08 October 2010 BEHAVIORAL NEUROSCIENCE doi: 10.3389/fnbeh.2010.00166 Trace eyeblink conditioning is impaired in α7 but not in β2 nicotinic acetylcholine receptor knockout mice Kevin L. Brown1, David M. Comalli 1, Mariella De Biasi 2 and Diana S. Woodruff-Pak1* 1 Neuroscience Program and Department of Psychology, Temple University, Philadelphia, PA, USA 2 Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA Edited by: Nicotinic acetylcholine receptors (nAChRs) are essentially involved in learning and memory. A Jeansok J. Kim, University of neurobiologically and behaviorally well-characterized measure of learning and memory, eyeblink Washington, USA classical conditioning, is sensitive to disruptions in acetylcholine neurotransmission. The two most Reviewed by: Jeansok J. Kim, University of common forms of eyeblink classical conditioning – the delay and trace paradigms – differentially Washington, USA engage forebrain areas densely-populated with nAChRs. The present study used genetically June-Seek Choi, Korea University, modified mice to investigate the effects of selective nAChR subunit deletion on delay and trace South Korea eyeblink classical conditioning. α7 and β2 nAChR subunit knockout (KO) mice and their wild- *Correspondence: type littermates were trained for 10 daily sessions in a 500-ms delay or 500-ms trace eyeblink Diana S. Woodruff-Pak, Temple University, 1701 North 13th Street/ conditioning task, matched for the interstimulus interval between conditioned stimulus and Weiss Hall, Philadelphia, PA 19122, unconditioned stimulus onset. Impairments in conditioned responding were found in α7 KO USA. mice trained in trace – but not delay – eyeblink conditioning. Relative to littermate controls, β2 e-mail: [email protected] KO mice were unimpaired in the trace task but displayed higher levels of conditioned responding in delay eyeblink conditioning.
    [Show full text]
  • Extinction and Renewal of Conditioned Eyeblink Responses in Focal Cerebellar Disease
    The Cerebellum (2019) 18:166–177 https://doi.org/10.1007/s12311-018-0973-y ORIGINAL PAPER Extinction and Renewal of Conditioned Eyeblink Responses in Focal Cerebellar Disease Katharina M. Steiner1 & Yvonne Gisbertz1 & Dae-In Chang1,2 & Björn Koch1 & Ellen Uslar1 & Jens Claassen1 & Elke Wondzinski3 & Thomas M. Ernst1 & Sophia L. Göricke4 & Mario Siebler3 & Dagmar Timmann1 Published online: 28 August 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Extinction of conditioned aversive responses (CR) has been shown to be context-dependent. The hippocampus and prefrontal cortex are of particular importance. The cerebellum may contribute to context-related processes because of its known connections with the hippocampus and prefrontal cortex. Context dependency of extinction can be demonstrated by the renewal effect. When CR acquisition takes place in context A and is extinguished in context B, renewal refers to the recovery of the CR in context A (A-B-A paradigm). In the present study acquisition, extinction and renewal of classically conditioned eyeblink responses were tested in 18 patients with subacute focal cerebellar lesions and 18 age- and sex-matched healthy controls. Standard delay eyeblink conditioning was performed using an A-B-A paradigm. All cerebellar patients underwent a high-resolution T1-weighted brain MRI scan to perform lesion- symptom mapping. CR acquisition was not significantly different between cerebellar and control participants allowing to draw conclusions on extinction. CR extinction was significantly less in cerebellar patients. ReductionofCRextinctiontendedtobemore likely in patients with lesions in the lateral parts of lobule VI and Crus I. A significant renewal effect was present in controls only.
    [Show full text]
  • Long Trace Eyeblink Conditioning Is Largely Preserved in Essential Tremor
    The Cerebellum (2019) 18:67–75 https://doi.org/10.1007/s12311-018-0956-z ORIGINAL PAPER Long Trace Eyeblink Conditioning Is Largely Preserved in Essential Tremor Kasja Solbach1 & Simba-Joshua Oostdam1 & Martin Kronenbuerger2,3 & Dagmar Timmann1 & Marcus Gerwig1 Published online: 18 June 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The cerebellum and the prefrontal cortex are assumed to play a role in the pathophysiology of essential tremor (ET). Trace eyeblink conditioning with a long interstimulus interval relies on an intact function of the hippocampus, prefrontal cortex (PFC), and, although marginally, of the cerebellum. The aim of the present study was to evaluate whether long trace eyeblink conditioning is impaired in patients with ET. In 18 patients with ET and 18 controls, a long trace conditioning paradigm was applied. Following 100 paired conditioned response-unconditioned response trials, 30 con- ditioned response alone trials were given as extinction trials. The degree of tremor and the presence of accompanying cerebellar signs were determined based on clinical scales. The acquisition of conditioned eyeblink responses was not impaired in the group of all patients compared to controls (mean total incidences of conditioned responses in patients 23.3 ± 14.5%, in controls 24.1 ± 13.9%; P = 0.88). In the subgroup of six patients with cerebellar signs, incidences of conditioned responses were numerically but not significantly lower (16.4 ± 9.9%) compared to patients without cerebel- lar signs (26.8 ± 15.5%; P = 0.16). Trace eyeblink conditioning with a long interstimulus interval was not impaired in subjects with ET.
    [Show full text]
  • Trace Eyeblink Conditioning in Mice Is Dependent Upon the Dorsal Medial
    New Research Cognition and Behavior Trace Eyeblink Conditioning in Mice Is Dependent upon the Dorsal Medial Prefrontal Cortex, Cerebellum, and Amygdala: Behavioral Characterization and Functional Circuitry1,2,3 Richard Gray,1 Brian Kalmbach,1 Boris V. Zemelman,1,2 Niraj ء,William Taylor,1 ء,Jennifer J. Siegel,1 S. Desai,1 Daniel Johnston,1,2 and Raymond A. Chitwood1,2 DOI:http://dx.doi.org/10.1523/ENEURO.0051-14.2015 1Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712, and 2Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712 Abstract Trace eyeblink conditioning is useful for studying the interaction of multiple brain areas in learning and memory. The goal of the current work was to determine whether trace eyeblink conditioning could be established in a mouse model in the absence of elicited startle responses and the brain circuitry that supports this learning. We show here that mice can acquire trace conditioned responses (tCRs) devoid of startle while head-restrained and permitted to freely run on a wheel. Most mice (75%) could learn with a trace interval of 250 ms. Because tCRs were not contaminated with startle-associated components, we were able to document the development and timing of tCRs in mice, as well as their long-term retention (at 7 and 14 d) and flexible expression (extinction and reacquisition). To identify the circuitry involved, we made restricted lesions of the medial prefrontal cortex (mPFC) and found that learning was prevented. Furthermore, inactivation of the cerebellum with muscimol completely abolished tCRs, demonstrating that learned responses were driven by the cerebellum.
    [Show full text]
  • Locomotor Activity Modulates Associative Learning in Mouse Cerebellum
    bioRxiv preprint doi: https://doi.org/10.1101/099721; this version posted January 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Locomotor activity modulates associative learning in mouse cerebellum Catarina Albergaria, N. Tatiana Silva, Dominique Pritchett, and Megan R. Carey* Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal * Correspondence Megan R. Carey, PhD Champalimaud Neuroscience Program Av. Brasília, Doca de Pedrouços 1400-038 Lisbon, Portugal [email protected] bioRxiv preprint doi: https://doi.org/10.1101/099721; this version posted January 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Albergaria et al., 11 Jan 2017 – preprint copy – bioRxiv Abstract Changes in behavioral state are associated with modulation of sensory responses across visual, auditory and somatosensory cortices. Here we show that locomotor activity independently modulates performance in delay eyeblink conditioning, a cerebellum- dependent form of associative learning. Increased locomotor speed in head-fixed mice was associated with earlier onset of learning and trial-by-trial enhancement of learned responses. The influence of locomotion on conditioned responses was dissociable from changes in arousal and was independent of the sensory modality of the conditioned stimulus. Eyelid responses evoked by optogenetic stimulation of mossy fiber terminals within the cerebellar cortex, but not at sites downstream, were also positively modulated by ongoing locomotion. We conclude that locomotor activity modulates delay eyeblink conditioning through mechanisms acting on the mossy fiber pathway within the cerebellar cortex.
    [Show full text]
  • Examination of Bilateral Eyeblink Conditioning in Rats
    Behavioral Neuroscience © 2009 American Psychological Association 2009, Vol. 123, No. 6, 1346–1352 0735-7044/09/$12.00 DOI: 10.1037/a0017314 BRIEF COMMUNICATIONS Examination of Bilateral Eyeblink Conditioning in Rats Matthew M. Campolattaro and John H. Freeman University of Iowa This experiment monitored eyelid responses bilaterally during delay eyeblink conditioning in rats. Rats were given paired or unpaired training with a tone or light conditioned stimulus (CS) and a unilateral periorbital shock unconditioned stimulus (US). Rats given paired training acquired high levels of conditioned responses (CRs), which occurred in both eyelids. However, acquisition was faster, and the overall percentage of CRs was greater in the eyelid that was ipsilateral to the US. CRs in the eyelid ipsilateral to the US also had shorter onset latencies and larger amplitudes than CRs in the contralateral eyelid. Both eyelids consistently showed high percentages of unconditioned responses (UR) to the US, and the UR amplitude decreased across training sessions in the paired group. The present study demonstrated that CRs occur robustly in both eyelids of rats given eyeblink conditioning, which is similar to previous findings in humans and monkeys. The results also showed that conditioning occurs more prominently in the eyelid that is ipsilateral to the US, which is similar to previous findings in humans, monkeys, dogs, and rabbits. Keywords: learning, Pavlovian conditioning, cerebellum, timing Pavlovian eyeblink conditioning procedures have been used (e.g., Ivarsson
    [Show full text]
  • Axonal Sprouting and Formation of Terminals in the Adult Cerebellum During Associative Motor Learning
    The Journal of Neuroscience, November 6, 2013 • 33(45):17897–17907 • 17897 Systems/Circuits Axonal Sprouting and Formation of Terminals in the Adult Cerebellum during Associative Motor Learning Henk-Jan Boele,1 Sebastiaan K. E. Koekkoek,1 Chris I. De Zeeuw,1,2 and Tom J. H. Ruigrok1 1Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands, and 2Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands Plastic changes in the efficacy of synapses are widely regarded to represent mechanisms underlying memory formation. So far, evidence for learning-dependent, new neuronal wiring is limited. In this study, we demonstrate that pavlovian eyeblink conditioning in adult mice can induce robust axonal growth and synapse formation in the cerebellar nuclei. This de novo wiring is both condition specific and region specific because it does not occur in pseudoconditioned animals and is particularly observed in those parts of the cerebellar nuclei that have been implicated to be involved in this form of motor learning. Moreover, the number of new mossy fiber varicosities in these parts of the cerebellar nuclei is positively correlated with the amplitude of conditioned eyelid responses. These results indicate that outgrowth of axons and concomitant occurrence of new terminals may, in addition to plasticity of synaptic efficacy, contribute to the formation of memory. Introduction the inferior olive to Purkinje cells (PCs) in distinctive eyeblink Synaptic and intrinsic plasticity are generally assumed to be the controlling zones of the cerebellar cortex (Hesslow, 1994; essential neuronal mechanisms for memory formation (Martin Mostofi et al., 2010) and, by way of climbing fiber collaterals, to et al., 2000; Zhang and Linden, 2003).
    [Show full text]
  • Feedback Control of Learning by the Cerebello-Olivary Pathway
    CHAPTER Feedback Control of Learning by the Cerebello- Olivary Pathway 5 Anders Rasmussen1, Germund Hesslow Department of Experimental Medical Science, Lund University, Lund, Sweden 1Corresponding author: Tel.: þ46 46 222 0638; Fax: þ46 46 211 04 37, e-mail address: [email protected] Abstract The ability to anticipate future events and to modify erroneous anticipatory actions is crucial for the survival of any organism. Both theoretical and empirical lines of evidence implicate the cerebellum in this ability. It is often suggested that the cerebellum acquires “expectations” or “internal models.” However, except in a metaphorical sense, the cerebellum, which consists of a set of interconnected nerve cells, cannot contain “internal models” or “have expectations.” In this chapter, we try to untangle these metaphors by translating them back into neurophysio- logical cause and effect relationships. We approach this task from within the paradigm of clas- sical conditioning, in which a subject, through repeated presentations of a conditional stimulus, followed by an unconditional stimulus, acquires a conditioned response. Impor- tantly, the conditioned response is timed so that it anticipates the unconditioned response. Available neurophysiological evidence suggests that Purkinje cells, in the cerebellar cortex, generate the conditioned response. In addition, Purkinje cells provide negative feedback to the inferior olive, which is a relay for the unconditional stimulus, via the nucleo-olivary path- way. Purkinje cells can therefore regulate the intensity of the signal derived from the uncon- ditional stimulus, which, in turn, decides subsequent plasticity. Hence, as learning progresses, the olivary signal will become weaker and weaker due to increasing negative feedback from Purkinje cells.
    [Show full text]
  • Learned Response Sequences in Cerebellar Purkinje Cells
    Learned response sequences in cerebellar Purkinje cells Dan-Anders Jirenheda,b,1, Anders Rasmussena,b, Fredrik Johanssona,b, and Germund Hesslowa,b aAssociative Learning Group, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; and bThe Linnaeus Centre Thinking in Time: Cognition, Communication and Learning, Lund University, 221 00 Lund, Sweden Edited by Peter L. Strick, University of Pittsburgh, Pittsburgh, PA, and approved April 26, 2017 (received for review January 4, 2017) Associative learning in the cerebellum has previously focused on profiles adapted to the ISIs (15, 16). Excitatory response patterns single movements. In eyeblink conditioning, for instance, a subject that match double-peaked blink responses have also been ob- learns to blink at the right time in response to a conditional served in the anterior interpositus nucleus, the downstream target stimulus (CS), such as a tone that is repeatedly followed by an of the blink controlling areas in the cerebellar cortex (17). unconditional corneal stimulus (US). During conditioning, the CS Several important questions are raised by these findings. First, it and US are transmitted by mossy/parallel fibers and climbing may be asked whether a Purkinje cell can learn more than one fibers to cerebellar Purkinje cells that acquire a precisely timed interval; that is, can the cell learn to respond to a uniform repetitive pause response that drives the overt blink response. The timing of CS containing no temporal code, with sequences corresponding to this conditional Purkinje cell response is determined by the CS–US the long-duration or double-peaked eyeblink CRs, after training interval and is independent of temporal patterns in the input sig- with alternating ISIs? There are data that suggest this is the case, nal.
    [Show full text]
  • Review the Role of the Cerebellum in Classical Conditioning of Discrete Behavioral Responses
    Neuroscience 162 (2009) 732–755 REVIEW THE ROLE OF THE CEREBELLUM IN CLASSICAL CONDITIONING OF DISCRETE BEHAVIORAL RESPONSES R. F. THOMPSONa AND J. E. STEINMETZb* Lesions 736 aUniversity of Southern California, 3641 Watt Way, HNB 522, Los Other conditioned skeletal muscle responses 736 Angeles, CA 90089-2520, USA Issues 737 b The CS, US and CR pathways 737 College of Liberal Arts and Sciences, University of Kansas, 200 The CS pathway 737 Strong Hall, 1450 Jayhawk Boulevard, Lawrence, KS 66045-7535, Issues 738 USA The CR pathway 738 Issues 739 Abstract—The cerebellum and its associated circuitry consti- The US pathway 739 tutes the entire essential neuronal system for classical con- Issues 739 ditioning of eye-blink and other discrete responses (e.g. limb Conjoint activation of CS and US pathways 739 flexion) learned with an aversive unconditioned stimulus (US) Localization of the essential memory trace 740 using the standard delay paradigm where the conditioned Issues 741 stimulus (CS) and the US coterminate. Evidence reviewed Cerebellar cortex 741 here strongly supports the following conclusions. The CS Lobule HVI and eye-blink classical conditioning 742 pathway involves sensory relay nuclei projections to the pon- Anatomical connectivity 742 tine nuclei and its mossy fiber projections to the cerebellar Issues 742 cortex and nuclei. The US pathway involves activation of the Lesions 742 inferior olive (dorsal accessory olive for eye blink) and its Issues 743 climbing fiber projections to the cerebellar cortex and nuclei. Chemical lesion and inactivation 743 The conditioned response (CR) pathway involves the cere- Brain recording 744 bellar interpositus nucleus, the superior cerebellar peduncle Cortical–nuclear interactions 745 pathway to the magnocellular red nucleus and rubral projec- Issues 745 tions to premotor and motor nuclei generating the behavioral Microstimulation 746 response.
    [Show full text]
  • Mechanisms of Cerebellar Learning Suggested by Eyelid Conditioning Javier F Medina, William L Nores, Tatsuya Ohyama and Michael D Mauk*
    717 Mechanisms of cerebellar learning suggested by eyelid conditioning Javier F Medina, William L Nores, Tatsuya Ohyama and Michael D Mauk* Classical eyelid conditioning has been used to great reinforcing unconditioned stimulus (US) such as a puff of air advantage in demonstrating that the cerebellum helps to in the eye. (To avoid jargon, we will use tone and puff improve movements through experience, and in identifying the instead of the more general CS and US, respectively, in underlying mechanisms. Results from recent studies support describing the stimuli used in eyelid conditioning. the hypotheses that learning occurs in both the cerebellar However, the reader should not assume that the results dis- nucleus and cortex, and that these sites make different cussed are necessarily specific to the use of these two contributions. Specifically, results indicate that the cerebellar stimuli.) Whereas initially the tone does not elicit an eyelid cortex is responsible for temporally specific learning. A response, after a few hundred tone+puff training trials the combination of experimental and computational studies has eyelid will close in response to the tone. A variety of tech- been important for arriving at these conclusions, which seem niques that include lesion [15–19,20••], recording [15,21], to be applicable to the broad range of movements to which the stimulation [22], reversible inactivation [23,24], brain-imag- cerebellum contributes. ing [25,26] and computer simulations [27••,28–30] indicate that the cerebellum is essential for the
    [Show full text]