The Inhibitory Effects of Green Tea (Camellia Sinensis) on the Growth and Proliferation of Oral Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

The Inhibitory Effects of Green Tea (Camellia Sinensis) on the Growth and Proliferation of Oral Bacteria THE INHIBITORY EFFECTS OF GREEN TEA (CAMELLIA SINENSIS) ON THE GROWTH AND PROLIFERATION OF ORAL BACTERIA Margaret Axelrod, Sean Berkowitz, Raina Dhir, Veronica Gould, Arjun Gupta, Eric Li, Jane Park, Amar Shah, Kevin Shi, Christelle Tan, Ming-Ming Tran Advisor: Mrs. Rachel Sandler Assistant: Tina Varghese ABSTRACT Camellia sinensis, commonly known as green tea, has been shown to possess antimicrobial properties and to lower the risk of cardiovascular disease and periodontal diseases. This study investigates the effects of brewing green tea at varying concentrations and durations on its antimicrobial activity against common oral bacteria, such as Streptococcus mutans, Porphyromonas gingivalis, and Staphylococcus epidermis. Gram stain tests revealed that our bacteria cultures had a mixture of Gram-positive and Gram-negative bacteria. A paper disk diffusion test revealed that increasing the concentration of green tea and decreasing brewing time increased the zones of inhibition; the tea brewed at a concentration of 80 mg/mL for 20 minutes had the greatest antibacterial effect. In the mouthwash paper disk diffusion test, a new bottle of Scope® was found to be most effective against common oral bacteria, while Listerine® was found to have little effect. The minimum inhibitory concentration test implied a positive correlation between the concentration of green tea and bacterial growth. Tests indicated that Scope® had a considerable effect against bacterial growth, green tea had minimal effect, and water had no effect; however, these results were inconclusive due to small sample size. As confirmed by the study, green tea does have antibacterial properties, but further investigations are required to make a definitive conclusion. INTRODUCTION Green tea is a beverage made from the evergreen plant Camellia sinensis and has been enjoyed for thousands of years. Generally, Camellia sinensis leaves are added to hot water and allowed to brew for several minutes. The resulting beverage lowers the risk for cardiovascular disease and periodontal diseases, and it also has antibacterial and antimicrobial properties1. However, many of its health benefits are not well known since studies on green tea have been conducted only fairly recently. Green tea has long been believed to be beneficial to one’s health and has a long history of widespread consumption. Evidence shows that green tea was consumed as early as the third century AD, yet multiple stories suggest it was brewed much earlier. One legend says that in 2737 B.C. an herbalist named Shen Nung was boiling water to drink while resting under a tree. A breeze caused green tea leaves to fall into his steaming water. When he drank the resulting liquid, Shen Nung was pleasantly surprised by the stimulating taste, and the tradition of tea consumption began. Since the third century, green tea has been used for medicinal purposes, such as depression, stomach problems, and anxiety. The cultivation of green tea rapidly increased during the Tang Dynasty2, and Lu Yu wrote a famous book called Tea Classic, which [3-1] discussed the production, consumption, and culture of green tea3. Around 1211, a Buddhist name Eisai wrote Kissa Yohjoh Ki, the first book discussing the health benefits of green tea on the “five vital organs4.” During the Ming Dynasty in China, green tea became a common drink of the Chinese populace and helped to prevent scurvy in Chinese seamen due to its vitamin C concentration. Today, China and Japan are the world’s leading producers of green tea2, the second most popular drink in the world after water3. Publicized studies on the health benefits of green tea have only been available since the 1990’s. However, green tea’s popularity in the West can be attributed to the growing interest in its potential health benefits2. Green tea’s numerous health benefits are the result of the large percentage of polyphenols found within the tea, even though the polyphenol content varies due to environmental factors like rainfall and season. The major polyphenols are the catechins: epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epigallate (EG), and catechin (C). EGCG, the most active component of green tea, provides most of its properties because it contains multiple chemically reactive hydroxyl groups (Fig. 1). In one study where green tea leaves were kept in the mouth for several minutes, high concentrations of catechins remained in the mouth after rinsing. These results suggest that tea leaves are a dependable natural source of catechins8. Green tea also contains a myriad of other compounds including gallic acid, quercetin, kaempferol, myricetin, caffeic acid, and chlorogenic acid1. In addition to green tea, black and oolong tea are also common beverages derived from Camellia sinensis that contain polyphenols. However, black tea is fully fermented, while oolong tea is partially fermented. The fermentation process oxidizes many of polyphenols catalyzed by polyphenol oxidase, degrading EGCG and reducing tea’s antibacterial potency. Unlike black and oolong tea, green tea is unfermented, thus containing the highest concentrations of polyphenols and most likely possessing the greatest antibacterial effect1. Fig. 1. Chemical structures of major catechins1. The most common polyphenols in green tea. [3-2] Many conditions, including high cholesterol, diabetes, liver and kidney complications, aging and related degenerative diseases, can be traced back to free radicals, which are extremely reactive in the body. The polyphenols in green tea, mainly EGCG, display anti-oxidative properties by acting as free radical scavengers. The flavonoids can react with free radicals and effectively eliminate possible negative health effects. The presence of three hydroxyl moieties at 3’, 4’, and 5’ on the B ring in the EGCG are primarily responsible for this inhibitory activity5. Previous studies have found that green tea polyphenols can decrease LDL cholesterol levels, thereby increasing the ratio of good cholesterol (HDL) to bad cholesterol (LDL)1. In addition, EGCG has been found to lower plasma cholesterol and triglyceride levels, consequently reducing the risk of cardiovascular disease and inhibiting the growth of abnormal blood clots6. Several studies testing green tea’s anticarcinogenic effects have concluded that green tea prevents and inhibits several forms of cancer, including biliary tract, bladder, breast, colon, esophageal, prostate, and skin cancers. Cancer is the uncontrolled growth and division of cells, which interferes with normal body processes. Cancer cells rely on inflammation to promote tumor angiogenesis. The polyphenols reduce this form of inflammation, effectively inhibiting cancer progression7. In addition, the polyphenols in green tea prevent the growth of blood vessels, slowing down metastasis by inhibiting the distribution of nutrients to the cancer cells6. Green tea also slows the release of tumor necrosis kappa-B function, which is critical for tumor growth (Fig. 2). Furthermore, EGCG and other polyphenols found in green tea promote cell cycle arrest and induce apoptosis in cancerous cells. The polyphenols, which contain strong nucleophilic centers, react with the electrophilic carcinogenic species in order to prevent tumorigenesis. In addition to activating killer caspases, this reaction changes the expression of cell cycle proteins, specifically the Bax/Bc12 function. Moreover, polyphenols can arrest tumor growth internally because EGCG regulates signal transduction pathways involved in cell proliferation, transformation, and metastasis. These polyphenols affect the cancer cells without harming normal body cells, making green tea viable for cancer research. Although the anticarcinogenic effects of green tea have been widely observed, much research has yet to be done in order to determine specific mechanisms that inhibit cancer growth7. Fig. 2: Anticarcinogenic property of green tea1. Various effects of green tea polyphenols in the body that either directly or indirectly inhibit cancer. [3-3] In addition to the health benefits of the polyphenols, these compounds also exhibit powerful antimicrobial and antiviral properties. For instance, green tea actively strengthens the immune system by preventing the binding of HIV to human T-cells. Evidence shows that the EGCG inhibits the infection of human CD4 lymphocytes by HIV. However, further research is required to fully understand green tea’s antiviral effects1. Many studies have shown EGCG to be the most effective antibacterial polyphenol at typical or slightly lower concentrations than found in regular brewed green tea8. The exact mechanisms of EGCG’s antibacterial activity are unknown, but it is believed that EGCG disrupts the cell membrane and prevents DNA supercoiling, ultimately leading to the destruction of the bacterial cell. In vitro experiments suggest that EGCG affects fungal pathogens, Gram-positive bacteria, and Gram-negative bacteria, but Gram-positive bacteria are particularly vulnerable to the polyphenols. The difference between Gram-positive and Gram-negative bacteria lies in the cell wall. The Gram-positive cell wall has several layers of peptidoglycans that are joined together to form a thick, rigid wall, whereas the Gram-negative cell wall has an additional membrane covering the thinner wall of peptidoglycans. This outer membrane contains lipopolysaccharides and lipoproteins, which are vital to the bacteria’s survival under enormous bacterial pressure (Fig. 3)9. Fig. 3: Bacterial
Recommended publications
  • (Coffea Arabica) Beans: Chlorogenic Acid As a Potential Bioactive Compound
    molecules Article Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound Muchtaridi Muchtaridi 1,2,* , Dwintha Lestari 2, Nur Kusaira Khairul Ikram 3,4 , Amirah Mohd Gazzali 5 , Maywan Hariono 6 and Habibah A. Wahab 5 1 Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung-Sumedang KM 21, Jatinangor 45363, Indonesia 2 Department of Pharmacy, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Jl. Soekarno-Hatta No. 752, Bandung 40614, Indonesia; [email protected] 3 Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 4 Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia 5 School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; [email protected] (A.M.G.); [email protected] (H.A.W.) 6 Faculty of Pharmacy, Campus III, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282, Indonesia; [email protected] * Correspondence: [email protected]; Tel.: +62-22-8784288888 (ext. 3210) Abstract: Coffee has been studied for its health benefits, including prevention of several chronic Citation: Muchtaridi, M.; Lestari, D.; diseases, such as type 2 diabetes mellitus, cancer, Parkinson’s, and liver diseases. Chlorogenic acid Khairul Ikram, N.K.; Gazzali, A.M.; (CGA), an important component in coffee beans, was shown to possess antiviral activity against Hariono, M.; Wahab, H.A. viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach Decaffeination and Neuraminidase irritation, and increase heart rate and respiration rate.
    [Show full text]
  • Camellia Sinensis): a Review
    Review articles Hepatotoxicity due to green tea consumption (Camellia Sinensis): A review Eliana Palacio Sánchez,1 Marcel Enrique Ribero Vargas,1, Juan Carlos Restrepo Gutiérrez.2 1 Student at the Medicine Faculty of the Universidad Abstract de Antioquia in Medellín, Colombia. Member of the Gastro-hepatology Group at the Universidad de As consumption of green tea has increased in recent years, so too have reports of its adverse effects. Antioquia in Medellín, Colombia Hepatotoxicity is apparently caused by enzymatic interaction that leads to cellular damage and interference 2 Internist and Hepatologist in the Hepatology and with biological response systems and metabolic reactions. This review article introduces the morphological Liver Transplant Unit of the Hospital Pablo Tobón Uribe in Medellín, Colombia. Tenured Professor in characteristics and biochemical components of the green tea plant, camellia sinensis. Analysis of clinical trials, the Medicine Faculty of the Universidad de Antioquia in-vitro trials and pharmacodynamic and pharmacokinetic studies then shed light on some of the mechanisms in Medellín, Colombia. Mail: [email protected]; by which green tea causes hepatic damage. Examples are the chemical interactions with enzymes such as [email protected] UDPGT, alcohol dehydrogenase and cytochrome P450 and interactions with the mitochondrial enzyme and ......................................... immune systems. These forms of cellular lesions are correlated with case reports in the scientific literature Received: 27-06-12 which clarify the spectrum of hepatic damage associated with the consumption of green tea. This analysis Accepted: 18-12-12 finds that even though the mechanisms by which green tea causes hepatic toxicity are still a mystery, certain catechins of camellia sinensis and interactions at the cellular and mitochondrial levels may be responsible for this toxicity.
    [Show full text]
  • Tea Drinking Culture in Russia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hosei University Repository Tea Drinking Culture in Russia 著者 Morinaga Takako 出版者 Institute of Comparative Economic Studies, Hosei University journal or Journal of International Economic Studies publication title volume 32 page range 57-74 year 2018-03 URL http://hdl.handle.net/10114/13901 Journal of International Economic Studies (2018), No.32, 57‒74 ©2018 The Institute of Comparative Economic Studies, Hosei University Tea Drinking Culture in Russia Takako Morinaga Ritsumeikan University Abstract This paper clarifies the multi-faceted adoption process of tea in Russia from the seventeenth till nineteenth century. Socio-cultural history of tea had not been well-studied field in the Soviet historiography, but in the recent years, some of historians work on this theme because of the diversification of subjects in the Russian historiography. The paper provides an overview of early encounters of tea in Russia in the sixteenth and seventeenth century, comparing with other beverages that were drunk at that time. The paper sheds light on the two supply routes of tea to Russia, one from Mongolia and China, and the other from Europe. Drinking of brick tea did not become a custom in the 18th century, but tea consumption had bloomed since 19th century, rapidly increasing the import of tea. The main part of the paper clarifies how Russian- Chines trade at Khakhta had been interrelated to the consumption of tea in Russia. Finally, the paper shows how the Russian tea culture formation followed a different path from that of the tea culture of Europe.
    [Show full text]
  • A Russian Tea Wedding an Interview with Katya & Denis
    Voices from the Hut A Russian Tea Wedding An Interview with Katya & Denis This growing community often blows our hearts wide open. It is the reason we feel so inspired to publish these magazines, build centers and host tea ceremonies: tea family! Connection between hearts is going to heal this world, one bowl at a time... Katya & Denis are tea family to us all, and so let’s share in the occasion and be distant witnesses at their beautiful tea wedding! 茶道 ne of the things we love the imagine this continuing in so many dinner, there was a party for the Bud- O most about Global Tea Hut is beautiful ways! dhists on the tour and Denis invited the growing community, and all the We very much want to foster Katya to share some puerh with him. beautiful family we’ve made through community here, and way beyond It was the first time she’d ever tried tea. As time passes, this aspect of be- just promoting our tea tradition. It such tea, and she loved it from the ing here, sharing tea with all of you, doesn’t matter if you practice tea in first sip. Then, in 2010, Katya moved starts to grow. New branches sprout our tradition or not, we’re family—in from her birthplace in Siberia, every week, and we hear about new our love for tea, Mother Earth and Komsomolsk-na-Amure, to Moscow and amazing ways that members are each other! If any of you have any to live with Denis (her hometown is connecting to each other.
    [Show full text]
  • What Every Dentist Should Know About Tea
    Nutrition What every dentist should know about tea Moshe M. Rechthand n Judith A. Porter, DDS, EdD, FICD n Nasir Bashirelahi, PhD Tea is one of the most frequently consumed beverages in the world, of drinking tea, as well as the potential negative aspects of tea second only to water. Repeated media coverage about the positive consumption. health benefits of tea has renewed interest in the beverage, particularly Received: August 23, 2013 among Americans. This article reviews the general and specific benefits Accepted: October 1, 2013 ea has been a staple of Chinese life for their original form.4 Epigallocatechin-3- known as reactive oxygen species (ROS) so long that it is considered to be 1 of galate (EGCG) is the principal bioactive are formed through normal aerobic cellular Tthe 7 necessities of Chinese culture.1 catechin left intact in green tea and the metabolism. During this process, oxygen is The popularity of tea should come as no one responsible for many of its health partially reduced to form a reactive radical surprise considering the recent studies benefits.3 By contrast, black tea is fully as a byproduct in the formation of water. conducted confirming tea’s remarkable oxidized/fermented during processing, ROS are helpful to the body because they health benefits.2,3 The drinking of tea dates which accounts for both its stronger flavor assist in the degradation of microbial back to the third millenium BCE, when and the fact that its catechin content is disease.5 However, ROS also contain free Shen Nong, the famous Chinese emperor lower than the other teas.2 Black tea’s fer- radical electrons that can wreak havoc on and herbalist, discovered the special brew.
    [Show full text]
  • Instructions for Making Kombucha
    Kombucha Want more? Dozens of eBooks, videos, & starter culture expert tips on our website: www.culturesforhealth.com Instructions m R You can make delicious kombucha at home! What You’ll Need Total time: 30+ days _ Active time: 15 minutes + 1 minute daily 1 dehydrated kombucha starter culture (SCOBY) Water free of chlorine and fluoride (bottled spring water) A kombucha starter culture consists of a sugar White or plain organic cane sugar (avoid harsh sugars) symbiotic colony of bacteria and yeast you Plain, unflavored black tea, loose or in bags (SCOBY). When combined with sweetened can do Distilled white vinegar tea and fermented, the resulting kombucha this 1 quart glass jar beverage has a tart zing. Coffee filter or tight-weave cloth and rubber band to secure Measuring cups and spoons Activating the SCOBY Thermometer 1. make sweet tea 2. add the scoby and vinegar 3. culture your kombucha A Combine 2-3 cups hot water and G Allow the mixture to > >D Add 1/2 cup vinegar to the cool tea. > culture 1/4 cup sugar in a jar. Stir to dissolve. undisturbed at 68°-85°F, out of >E Add the dehydrated SCOBY to the B 11/2 teaspoons loose tea or 2 tea direct sunlight, for 30 days. > Add tea mixture. bags. Steep at least 10 minutes. Apply vinegar to the cloth daily to help prevent mold growth. sugar 1/2 1/4 c. c. 68°-85°F 2-3 c. 2 F Dampen a cloth or coffee filter with > white vinegar; place it on the jar and secure it with a rubber band.
    [Show full text]
  • Assessment of Kombucha Tea Recipe and Food Safety Plan
    Environmental Health Services FFoooodd IIssssuuee Notes from the Field Food Safety Assessment of Kombucha Tea Recipe and Food Safety Plan Request received from: Regional Health Authority Date of request: January 27, 2015. Updated March 9, 2020. Issue (brief description): Assessment of kombucha tea recipe and food safety plan Disclaimer: The information provided in this document is based on the judgement of BCCDC’s Environmental Health Services Food Safety Specialists and represents our knowledge at the time of the request. It has not been peer-reviewed and is not comprehensive. Summary of search information: 1. Internet sources: general search for “kombucha” 2. OVID and PubMed search “kombucha” AND “illness” 3. Personal communication with federal and provincial agencies Background information: Kombucha Tea (KT, sometimes called Manchurian tea or Kargasok tea) is a slightly sweet, mildy acidic tea beverage consumed worldwide, which has seen significant sales growth in North American markets from recent years.1 KT is prepared by fermenting sweetened black or green tea preparations with a symbiotic culture of bacteria and yeast (SCOBY), often referred to as the “mushroom” (misnamed because of its appearance) or as a “mother” (for its ability to reproduce). The floating mat is a biofilm layer made up of bacteria and cellulose that is more correctly referred to as a pellicle. The culture comes in different varieties, but is generally made up of a variable amount of Gluconacetobacter, Lactobacillus, and Acetobacter (genera of acetic acid bacteria)
    [Show full text]
  • Notes on the History of Tea
    Notes on the History of Tea It is surprising how incomplete our knowledge is. We are all aware that we import coffee from tropical America. But where do we obtain our tea? What is tea? From what plant does it come? How long have we been drinking it? All these questions passed through my mind as I read the manuscript of the pre- ceding article. To answer some of my questions, and yours, I gathered together the following notes. The tea of commerce consists of the more or less fermented, rolled and dried immature leaves of Camellia sinensis. There are two botanical varieties of the tea plant. One, var. sinensis, the original chinese tea, is a shrub up to 20 feet tall, native in southern and western Yunnan, spread by cultivation through- out southern and central China, and introduced by cultivation throughout the warm temperate regions of the world. The other, var. assamica, the Assam tea, is a forest tree, 60 feet or more tall, native in the area between Assam and southern China. Var. sinensis is apparently about as hardy as Camellia japonica (the common Camellia). The flowers are white, nodding, fra- grant, and produced variously from June to January, but usually in October. The name is derived from the chinese Te. An alter- nate chinese name seems to be cha, which passed into Hindi and Arabic as chha, anglicized at an early date as Chaw. The United States consumes about 115 million pounds of tea annually. The major tea exporting countries are India, Ceylon, Japan, Indonesia, and the countries of eastern Africa.
    [Show full text]
  • An Exploratory Value Chain Analysis for Burmese Pickled Tea (LAPHET)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. An Exploratory Value Chain Analysis for Burmese Pickled Tea (LAPHET) A thesis presented in partial fulfilment of the requirements for the degree of Masters of AgriCommerce in Agribusiness Institute of Agriculture and Environment MASSEY UNIVERSITY Palmerston North, NEW ZEALAND SO PYAY THAR 2016 i ABSTRACT Laphet (pickled tea) is a well-known traditional cuisine of Myanmar consisting of tea leaves fermented into a pickle. It has a unique taste different from tea used for drinking and has health benefits. Despite the fact that pickled tea is a popular food in Myanmar, no research has been done to analyse its value chain and evaluate its potential in the global market. This study is an exploratory research and aims to examine the value chain of pickled tea from production to the final consumer and to evaluate how to improve the quality in the value chain. In addition, the improvements to the integrity to the pickled tea value chain are addressed. The value chain analysis revealed the maJor actors in the pickled tea value chain and described the process as tea leaves pass through several intermediaries with value being added at each stage before reaching the end consumer. The chain is governed by wholesalers and manufacturers who have capital advantage over the other chain actors. Therefore, farmers get the lower share of the price margin.
    [Show full text]
  • Camellia Sinensis – Green Tea
    New! Photo supplied by Zealong Tea Estate Camellia sinensis – Green Tea Camellia sinensis 1:2 Fluid extract Historical Use & Research Summary Tea has a long history of medicinal and culinary use dating back over 5000 years in a number of Asian countries. It was Common Names: Green tea used in traditional Chinese and Ayurvedic medicine systems Botanical family: Theaceae for a variety of health conditions, from heart health and Leaf regulating body temperature and blood sugar, to improving Part Used: 1 digestion, mental function and eyesight . Dosage: 20-60 ml per week Green tea, the unoxidised leaf of Camellia sinensis, contains Primary Active Constituents: Catechins (epigallocatechin-3- nearly 4000 bioactive compounds, with the health gallate (EGCG), epigallocatechin (EGC), epicatechin gallate promoting effects largely attributed to the most- (ECG), epicatechin (EC)); kaempferol, quercetin, myricetin; therapeutically active catechins (flavanols), together with proanthocyanidins; xanthine alkaloids (caffeine, theobromine, the flavonols (predominately kaempferol, quercetin, and theophylline); amino acids ( theanine, glutamic acid); tannins. myricetin), which collectively make up approximately 30- 40% of green tea fresh leaf dry weight2,3,4. Green tea Cautions & contraindications: Caution in those with marked contains a higher polyphenol and lower caffeine content iron-deficient anaemia due to the theoretical inhibitory effect than black tea (which is fully-oxidised, therefore a higher of tannins on non-haem iron absorption. High doses of
    [Show full text]
  • Bushells Blue Label Tea Leaves 3Kg, CON 62252008 Rev 2
    Page 1 of 3 Product Data Sheet Specification: CON_62252008 Revision: 2 Description: CON BLUE LABEL PACKET TEA 3kg Date Created: 27-Sep-2016 Date: 13-Feb-2017 General Information Description Label and customer information for Bushells Blue Label tea 3kg IMPORTANT NOTICE: The product information provided is for the latest product on the market. However, to ensure you have the correct information, related to the product you are currently using, ALWAYS REFER TO THE PRODUCT LABEL. Product Name Country Brand Name Product Name Australia Bushells Blue label 3kg Legal Description Country Descriptive Name Note Australia Bushells Blue label 3kg The tea of flavour General Function and Purpose Black tea Additional Customer Info Unilever product code: 62052008 ( formerly 03001001 ) TUN 19310062030012 APN 19310062030012 Number of units per shipper: 1 Shipper Dimensions: 186 x 241 x 241 (L x W x H in mm) Gross shipper weight: 3.4kg Number ofshippers per layer: 30 Number of shippers per pallet: 120 Ingredient Declaration Ingredients Declaration Black tea Claims and Declarations Declarations Property Value UOM Comment Weight 3 kg Date Marking Text (Best Before Date) DDMMYY, HHMM Page 2 of 3 Product Data Sheet Specification: CON_62252008 Revision: 2 Description: CON BLUE LABEL PACKET TEA 3kg Date Created: 27-Sep-2016 Date: 13-Feb-2017 Shelf Life Property Conditions Value UOM Comment Shelf Life Total 24 month(s) Product Origin Property Of Manufacture Of Packing Comment Country Indonesia Indonesia Blended and packed in Indonesia from local and imported teas Risk of Cross Contamination during Processing Information captured in the following property groups relates to the total allergen status of a product i.e.
    [Show full text]
  • Camellia Sinensis-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Camellia sinensis-Derived Ingredients as Used in Cosmetics Status: Draft Final Report for Panel Review Release Date: August 18, 2014 Panel Meeting Date: September 8-9, 2014 The 2014 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Lillian C. Becker, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 Washington, DC 20036-4702 ph 202.331.0651 fax 202.331.0088 [email protected] i Commitment & Credibility since 1976 MEMORANDUM To: CIR Expert Panel and Liaisons From: Lillian C. Becker, M.S. Scientific Analyst and Writer Date: August 18, 2014 Subject: Camellia sinensis – Derived Ingredients As Used In Cosmetics This is the Draft Final Report of Camellia sinensis-derived ingredients. In June 2014, the Panel changed the conclusion to safe as used when formulated to be non-sensitizing for all leaf-derived ingredients and the catechins. The Panel retained the insufficient data conclusion for camellia sinensis flower extract, camellia sinensis flower/leaf/stem juice, camellia sinensis root extract, camellia sinensis seed coat powder, camellia sinensis seed extract, camellia sinensis seed powder, and hydrolyzed camellia sinensis seed extract. To make a determination of safety for these ingredients, the Panel indicated that the following data are needed: • method of manufacture • characterization of these ingredients • human sensitization data, in particular for camellia sinensis leaf powder at 50% • concentration of use in cosmetics No new data have been submitted.
    [Show full text]