X-Ray Analysis of Starburst and AGN Components

Total Page:16

File Type:pdf, Size:1020Kb

X-Ray Analysis of Starburst and AGN Components Technische Universit¨at Munc¨ hen International Max-Planck Research School on Astrophysics Max-Planck-Institut fur¨ Extraterrestrische Physik X-Ray Analysis of Starburst and AGN Components Yi Fan Vollst¨andiger Abdruck der von der Fakult¨at fur¨ Physik der Technischen Universit¨at Munc¨ hen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Ratz Prufer¨ der Dissertation: 1. Hon.-Prof. Dr. G. Hasinger 2. Univ.-Prof. Dr. R. Kruc¨ ken Die Dissertation wurde am 19.04.2007 bei der Technischen Universit¨at Munc¨ hen ein- gereicht und durch die Fakult¨at fur¨ Physik am 14.05.2007 angenommen. SUMMARY The X-ray properties of Starburst and Active Galactic Nuclei (AGN) components of three galaxies (NGC 6240, NGC 2782, and NGC 1386) in the local universe are analysed in this dissertation. These galaxies are well suited to study the physics of Starburst and AGN components. They serve as the nearby laboratories for the corresponding objects at high redshifts. The X-ray observations of these galaxies were performed with the ACIS-S detector of Chandra X-ray observatory. The Chandra ACIS-S imaging spec- troscopy allows us to do both imaging analysis and spectral analysis of the data in great detail. It is possible for us to spatially resolve the different contributing components of the complex sources, do the spectral analysis of these components separately, and derive their physical properties systematically. The Chandra ACIS-S observation of the Ultraluminous Infrared galaxy NGC 6240 which contains a binary AGN, demostrates that starburst and AGN components con- tribute to its X-ray emission. The bright extended emission, both near the AGNs and extending over spatial scales of 10 kpc, probably originates from hot thermal plasma and high-mass X-ray binaries. This emission is attributed to starburst activity. The 2-10 keV luminosity of the bright extended emission correlated with the infrared lu- minosity is a good indicator of the current global star formation rate in the galaxy. Surrounding the bright extended emission, a weak halo component appears to be ex- tended on a scale of ∼40 kpc, with evidence for thermal emission (with a constant temperature kT ∼ 0.6 keV). The northern and southern AGNs located in the center of the galaxy are heavily obscured and the reflection components dominate in the Chan- dra bandpass. Strong neutral Fe Kα lines at 6.4 keV are detected from the two nuclei. The southern nucleus is also found to show ionized iron lines at energies higher than 6.4 keV, indicating the existence of a warm scattering medium. A \jet-like" structure close to the southern nucleus seems to be scattered emission. For the starburst galaxy NGC 2782, the Chandra data allow us to disentangle the X-ray emission from this galaxy, for the first time, into three contributing components. A weak large-scale halo emission extends northward and southward, respectively. The bright extended emission including a southern shell-like emission is correlated with the optical (Hα) and radio bubble structures. The correlation of X-ray and optical/radio emission as well as the thermal-plasma spectrum of the bright extended emission indi- cates starburst-driven superwinds as the origin. In the center of the galaxy, a compact core source dominates in the high energy X-ray band (above 2 keV). We found indica- tions for an Fe Kα line with large equivalent width. Therefore, the emission from this compact core source is most likely the reflected/scattered component of an obscured AGN. However, we can not rule out the possibility of an Ultraluminous X-ray source (ULX) in the center of this galaxy, even though we consider it unlikely. In the Seyfert 2 galaxy NGC 1386, the soft X-ray extended emission is spatially resolved and coincident with the optical [OIII] emission from the narrow line region (NLR). The spectrum of the extended emission can be fitted by a black-body or a bremsstrahlung model. A soft X-ray structure north of the nucleus is correlated with an optical blob in the [OIII] images. This structure is in the outer part of the NLR. The large equivalent width of the Fe Kα line in combination with the ratio of the [OIII] and X-ray luminosity suggests that the AGN in NGC 1386 is also heavily obscured. iii iv ZUSAMMENFASSUNG In der vorliegenden Dissertation werden die R¨ontgeneigenschaften von Starburst - und aktiven galaktischen Kern (AGN) - Komponenten dreier Galaxien (NGC 6240, NGC 2782, NGC 1386) im lokalen Universum analysiert. Diese Galaxien eignen sich gut dazu, die Physik von Starburst und AGN Komponenten zu untersuchen. Sie dienen als nahe Laboratorien fur¨ die entsprechenden Objekte bei h¨oheren Rotverschiebun- gen. Die Beobachtungen dieser drei Galaxien wurden mit dem ACIS-S Detektor des R¨ontgensatelliten Chandra durchgefuhrt.¨ Die abbildende Spektroskopie mit Chandra's ACIS-S erlaubt es uns, eine sehr genaue Analyse sowohl von direkten Abbildungen, als auch von Spektren durchzufuhren.¨ So ist es damit m¨oglich, die unterschiedlichen beitragenden Komponenten der komplexen Quellen r¨aumlich aufzul¨osen, ihre Spektren zu analysieren und ihre physikalischen Eigenschaften systematisch herzuleiten. Die Beobachtung der extrem leutchkr¨aftigen Infrarotgalaxie NGC 6240, die einen Doppel-AGN-Kern enth¨alt, mit dem ACIS-S Detektor demonstriert, dass Starburst und AGN Komponenten zu ihrer R¨ontgenemission beitragen. Die helle ausgedehnte Emission, nahe der AGNs ist ub¨ er einen r¨aumlichen Bereich von 10 kpc ausgedehnt, und wird wahrscheinlich von heissem thermischem Plasma und von massereichen R¨ontgen- doppelsternen erzeugt. Diese Emission ist der Starburst-Aktivit¨at zuzuordnen. Die 2-10 keV Helligkeit der hellen ausgedehnten Emission, die mit der Infrarothelligkeit ko- rreliert ist, ist ein guter Indikator fur¨ die derzeitige Sternentstehungsrate der Galaxie. Diese helle ausgedehnte Emission ist von einer schwachen Halokomponente umgeben, die sich bis auf ∼ 40 kpc ausdehnt, in der es Anzeichen fur¨ thermische Emission gibt (mit einer konstanten Temperatur von kT ∼ 0.6 keV). Die n¨ordlichen und sudlic¨ hen AGNs im Zentrum der Galaxie sind stark verdunkelt, so daß ihre reflektierenden Kom- ponenten im Chandra Energieband dominieren. Stark ausgepr¨agte neutrale Fe Kα Lin- ien wurden in beiden Kernen nachgewiesen. Im Spektrum des sudlic¨ hen Kerns findet man außerdem Linien von ionisiertem Eisen bei Energien h¨oher als 6.4 keV, was auf die Existenz eines warmen Streumediums schliessen l¨asst. Eine Jet-¨ahnliche Struktur nahe des sudlic¨ hen Kerns scheint durch gestreute Strahlung zustandezukommen. Fur¨ die Starburstgalaxie NGC 2782 erlauben die Chandra-Daten es uns zum er- sten mal, die R¨ontgenemission in drei beitragende Komponenten aufzuspalten. Eine schwache Halostrahlung breitet sich jeweils nach Norden und Suden¨ aus. Die helle ausgedehnte Strahlung, die auch eine schalenartige Struktur im Suden¨ beinhaltet, ist mit einer blasenartigen optischen (Hα) und Radio Struktur korreliert. Die Korrelation der optischen/Radio Emission, so wie das thermische Spektrum der hellen ausgedehn- ten Strahlung legen einen durch Starburst getriebenen Superwind als Ursache nahe. Im Zentrum der Galaxie dominiert eine kompakte Quelle die harte R¨ontgenstrahlung (oberhalb von 2 keV). Wir finden Anzeichen fur¨ eine Eisenlinie mit hoher Aquiv¨ alent- breite, deshalb ist die Emission dieser kompakten Kernquelle h¨ochstwahrscheinlich auf die reflektierte/gestreute Komponente eines verdeckten AGN zuruc¨ kzufuhren,¨ wobei eine ultraleuchtkr¨aftige Quelle im Zentrum dieser Galaxie nicht ausgeschlossen werden kann, auch wenn das eher unwahrscheinlich ist. Die weiche R¨ontgenstrahlung in der Seyfert-2 Galaxie NGC 1386 wurde r¨aumlich aufgel¨ost und f¨allt mit der optischen [O III] Emission der schmalen Emissionslinien- region (NLR) zusammen. Das Spektrum der ausgedehnten Strahlung kann durch ein v vi Schwarzk¨orperstrahlungs - oder ein Bremsstrahlungs-Modell angen¨ahert werden. Eine klumpenartige Struktur im weichen R¨ontgenband n¨ordlich des Kerns ist mit einem Emissionsgebiet im optischen [O III] verbunden. Diese Struktur ist im ausseren¨ Teil der NLR. Die große Aquiv¨ alentbreite der Fe Kα Linie in Verbindung mit dem Verh¨altnis von [O III] und der R¨ontgenhelligkeit legen nahe, dass der AGN in NGC 1386 ebenso stark obskuriert ist. TABLE OF CONTENTS SUMMARY iii ZUSAMMENFASSUNG v LIST OF FIGURES x LIST OF TABLES xi 1 INTRODUCTION 1 1.1 Obscured Active Galactic Nuclei . 1 1.2 Starbursts . 3 1.2.1 Starburst-driven Superwinds . 3 1.2.2 X-ray spectral components of Starburst galaxies . 4 1.3 Ultraluminous Infrared Galaxies . 4 1.4 The Chandra Mission . 6 1.4.1 Overview . 6 1.4.2 On-orbit performance . 7 1.4.3 Scientific performance . 8 1.5 The aims and the selected objects . 8 1.6 Outline of this dissertation . 10 2 NGC 6240 11 2.1 Introduction . 11 2.1.1 Previous observations . 12 2.1.2 Chandra observations and data reduction . 12 2.2 Imaging analysis . 13 2.2.1 Morphology and different contributing components . 13 2.2.2 Specification of individual regions . 17 2.2.3 Metallicity map . 22 2.2.4 X-ray/optical counterparts and the absolute astrometric accuracy 22 2.3 Spectral analysis . 23 2.3.1 Spectral fitting descriptions . 23 2.3.2 Halo emission . 26 2.3.3 Three loops: Region 1, 2 and 3 . 29 2.3.4 The Extended Region . 37 2.3.5 The binary AGN emission . 41 2.3.6 The jet-like structure . 49 2.4 Discussion . 51 2.4.1 Large scale halo emission . 51 2.4.2 Bright X-ray emission from the Extended Region . 52 2.4.3 Estimate of an upper limit for the luminosity of off-nuclear X-ray sources . 53 2.4.4 The nuclear emission . 55 2.5 Summary . 56 vii viii 3 NGC 2782 58 3.1 Introduction . 58 3.2 Observations and data reduction . 59 3.3 Imaging analysis .
Recommended publications
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • The Outermost Hii Regions of Nearby Galaxies
    THE OUTERMOST HII REGIONS OF NEARBY GALAXIES by Jessica K. Werk A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy and Astrophysics) in The University of Michigan 2010 Doctoral Committee: Professor Mario L. Mateo, Co-Chair Associate Professor Mary E. Putman, Co-Chair, Columbia University Professor Fred C. Adams Professor Lee W. Hartmann Associate Professor Marion S. Oey Professor Gerhardt R. Meurer, University of Western Australia Jessica K. Werk Copyright c 2010 All Rights Reserved To Mom and Dad, for all your love and encouragement while I was taking up space. ii ACKNOWLEDGMENTS I owe a deep debt of gratitude to a long list of individuals, institutions, and substances that have seen me through the last six years of graduate school. My first undergraduate advisor in Astronomy, Kathryn Johnston, was also my first Astronomy Professor. She piqued my interest in the subject from day one with her enthusiasm and knowledge. I don’t doubt that I would be studying something far less interesting if it weren’t for her. John Salzer, my next and last undergraduate advisor, not only taught me so much about observing and organization, but also is responsible for convincing me to go on in Astronomy. Were it not for John, I’d probably be making a lot more money right now doing something totally mind-numbing and soul-crushing. And Laura Chomiuk, a fellow Wesleyan Astronomy Alumnus, has been there for me through everything − problem sets and personal heartbreak alike. To know her as a friend, goat-lover, and scientist has meant so much to me over the last 10 years, that confining my gratitude to these couple sentences just seems wrong.
    [Show full text]
  • Arxiv:2011.06570V1 [Astro-Ph.GA] 12 Nov 2020 Eral fields of Astrophysics
    Draft version November 13, 2020 Typeset using LATEX twocolumn style in AASTeX63 Fundamental Reference AGN Monitoring Experiment (FRAMEx) I: Jumping Out of the Plane with the VLBA Travis C. Fischer ,1, 2 Nathan J. Secrest ,2 Megan C. Johnson ,2 Bryan N. Dorland ,2 Phillip J. Cigan ,2 Luis C. Fernandez ,3 Lucas R. Hunt ,2 Michael Koss ,4 Henrique R. Schmitt ,5 and Norbert Zacharias 2 1AURA for ESA, Space Telescope Science Institute, Baltimore, MD, USA, 3700 San Martin Drive, Baltimore, MD 21218, USA 2U.S. Naval Observatory, 3450 Massachusetts Ave NW, Washington, DC 20392-5420, USA 3Department of Physics and Astronomy, George Mason University, MS3F3, 4400 University Drive, Fairfax, VA 22030, USA 4Eureka Scientific, 2452 Delmer Street Suite 100, Oakland, CA 94602-3017, USA 5Naval Research Laboratory, Washington, DC 20375, USA ABSTRACT We present the first results from the Fundamental Reference AGN Monitoring Experiment (FRAMEx), an observational campaign dedicated to understanding the physical processes that affect the apparent positions and morphologies of AGNs. In this work, we obtained simultaneous Swift X-ray Telescope (XRT) and Very Long Baseline Array (VLBA) radio observations for a snapshot campaign of 25 local AGNs that form a volume-complete sample with hard X-ray (14{195 keV) luminosities above 1042 erg s−1, out to a distance of 40 Mpc. Despite achieving an observation depth of ∼ 20 µJy, we find that 16 of 25 AGNs in our sample are not detected with the VLBA on milli-arcsecond (sub-parsec) scales, and the corresponding core radio luminosity upper limits are systematically below predictions from the Fundamental Plane of black hole activity.
    [Show full text]
  • Spitzer's Perspective of Polycyclic Aromatic Hydrocarbons in Galaxies
    REVIEW ARTICLE https://doi.org/10.1038/s41550-020-1051-1 Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies Aigen Li Polycyclic aromatic hydrocarbon (PAH) molecules are abundant and widespread throughout the Universe, as revealed by their distinctive set of emission bands at 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7 μm, which are characteristic of their vibrational modes. They are ubiquitously seen in a wide variety of astrophysical regions, ranging from planet-forming disks around young stars to the interstellar medium of the Milky Way and other galaxies out to high redshifts at z ≳ 4. PAHs profoundly influence the thermal budget and chemistry of the interstellar medium by dominating the photoelectric heating of the gas and controlling the ionization balance. Here I review the current state of knowledge of the astrophysics of PAHs, focusing on their observational characteristics obtained from the Spitzer Space Telescope and their diagnostic power for probing the local physical and chemi- cal conditions and processes. Special attention is paid to the spectral properties of PAHs and their variations revealed by the Infrared Spectrograph onboard Spitzer across a much broader range of extragalactic environments (for example, distant galax- ies, early-type galaxies, galactic halos, active galactic nuclei and low-metallicity galaxies) than was previously possible with the Infrared Space Observatory or any other telescope facilities. Also highlighted is the relation between the PAH abundance and the galaxy metallicity established for the first time by Spitzer. n the early 1970s, a new chapter in astrochemistry was opened by some of the longstanding unexplained interstellar phenomena (for Gillett et al.1 who, on the basis of ground observations, detected example, the 2,175 Å extinction bump9,16,19, the diffuse interstellar three prominent emission bands peaking at 8.6, 11.3 and 12.7 μm bands20, the blue and extended red photoluminescence emission21 I 22,23 in the 8–14 μm spectra of two planetary nebulae, NGC 7027 and and the ‘anomalous microwave emission’ ).
    [Show full text]
  • Basaurch in Space Science
    S#ITHSONIA# 1XSTITUTION ASTROPHYSICAL OBSERVATORY Basaurch in Space Science SPECiAL REPORT SA0 Special Report No. 195 STATISTICAL l3"a OF THE MASSES AFJD EVOLUTION OF GAUXIES by Thornton L. Page Smithsonian Institution Astrophys ical Observatory -ridge, Massachusetts OU38 STA!TISTICAL EVIDENCE OF THE MASSES AND EVOLUTION OF GALAXIES' 2 Thornton L. Page Abstract.--Measured velocities in pairs, groups, and clusters of galaxies have been used to estimate average masses. In pairs, these estimates depend strongly on the morphological type of the galaxies involved. In clusters, the measured motions imply much larger average masses, or the existence of intergalac- tic matter, or instability, and present a serious difficulty in identifying the members of clusters. Other measurable characteristics of galaxies in pairs -- their orientations, dimensions, types, and luminosities -- are also correlated, suggesting a common origin; but the effects of selection, as pointed out by Neyman, are sham to affect the results. These studies are all related to the problem of evolution of galaxies summarized in a brief resumc?. Int r oduct ion The masses of galaxies are important in several areas of astronomy and physics. In cosmology the mean mass is used to derive the average density of matter in the universe, a quantity which is related to the curvature of space in the cosmological models of general relativity. In any theory of the ori- gin and evolution of galaxies, the masses are important in the dynamical as- pects. Also, the wide range in mass estimates must be explained by a statis- tical theory of the origin of galaxies. Sevision of a chapter prepared early in 1965 for a Festschrift honoring Jerzy Neyman, Emeritus Professor of Statistics, University of California, Berkeley, California.
    [Show full text]
  • VI. the Morphology of Extended Discs in UV and H I
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Faculty Scholarship 12-2012 Quantified H I morphology : VI. The morphology of extended discs in UV and H I. Benne W. Holwerda University of Louisville N. Pirzkal Space Telescope Science Institute J. S. Heiner Universidad Nacional Autonoma de Mexico Follow this and additional works at: https://ir.library.louisville.edu/faculty Part of the Astrophysics and Astronomy Commons Original Publication Information Holwerda, B. W., N. Pirzkal and J. S. Heiner. "Quantified H I Morphology - VI. The Morphology of Extended Discs in UV and H I." 2012. Monthly Notices of the Royal Astronomical Society 427(4): 3159-3175. This Article is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. For more information, please contact [email protected]. Mon. Not. R. Astron. Soc. 427, 3159–3175 (2012) doi:10.1111/j.1365-2966.2012.21975.x Quantified H I morphology – VI. The morphology of extended discs in UV and H I B. W. Holwerda,1 N. Pirzkal2 andJ.S.Heiner3 1European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noordwijk, the Netherlands 2Space Telescope Science Institute, Baltimore, MD 21218, USA 3Centro de Radiastronom´ıa y Astrof´ısica, Universidad Nacional Autonoma´ de Mexico,´ 58190 Morelia, Michoacan,´ Mexico Accepted 2012 August 22. Received 2012 August 22; in original form 2012 March 2 ABSTRACT Extended ultraviolet (XUV) discs have been found in a substantial fraction of late-type – S0, spiral and irregular – galaxies.
    [Show full text]
  • Superwind Evolution Bravo-Guerrero, Jimena; Stevens, Ian
    Superwind evolution Bravo-Guerrero, Jimena; Stevens, Ian DOI: 10.1093/mnras/stx327 License: Other (please specify with Rights Statement) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Bravo-guerrero, J & Stevens, IR 2017, 'Superwind evolution: the young starburst-driven wind galaxy NGC 2782', Royal Astronomical Society. Monthly Notices, vol. 467, no. 4, pp. 3788-3800. https://doi.org/10.1093/mnras/stx327 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 16/08/2018 This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • DOCTORAL THESIS Arxiv:1312.1643V1 [Astro-Ph.GA] 5
    Charles University in Prague Faculty of Mathematics and Physics DOCTORAL THESIS Ivana Ebrov´a Shell galaxies: kinematical signature of shells, satellite galaxy disruption and dynamical friction Astronomical Institute of the Academy of Sciences of the Czech Republic Supervisor of the doctoral thesis: RNDr. Bruno Jungwiert, Ph.D. arXiv:1312.1643v1 [astro-ph.GA] 5 Dec 2013 Study program: Physics Specialization: Theoretical Physics, Astronomy and Astrophysics Prague 2013 This research has made use of NASA's Astrophysics Data System, micronised purified flavonoid fraction, and a lot of iso-butyl-propanoic-phenolic acid. Typeset in LYX, an open source document processor. For graphical presentation, we used Gnuplot, the PGPLOT (a graphics subroutine library written by Tim Pearson) and scripts and programs written by Miroslav Kˇr´ıˇzekusing Python and matplotlib. Calculations and simulations have been carried out using Maple 10, Wolfram Mathematica 7.0, and own software written in pro- gramming language FORTRAN 77, Fortran 90 and Fortran 95. The software for simulation of shell galaxy formation using test particles are based on the source code of the MERGE 9 (written by Bruno Jungwiert, 2006; unpublished); kinematics of shell galaxies in the framework of the model of radial oscillations has been studied using the smove software (written by Lucie J´ılkov´a,2011; unpublished); self-consistent simulations have been done by Kateˇrina Bartoˇskov´awith GADGET-2 (Springel, 2005). We acknowledge support from the following sources: grant No. 205/08/H005 by Czech Science Foundation; research plan AV0Z10030501 by Academy of Sciences of the Czech Republic; and the project SVV-267301 by Charles University in Prague.
    [Show full text]
  • Surface Photometry of Spiral Galaxies in NIR: Structural Parameters of Disks and Bulges
    A&A 368, 16–37 (2001) Astronomy DOI: 10.1051/0004-6361:20000335 & c ESO 2001 Astrophysics Surface photometry of spiral galaxies in NIR: Structural parameters of disks and bulges C. M¨ollenhoff and J. Heidt? Landessternwarte, K¨onigstuhl 12, 69117 Heidelberg, Germany Received 29 August 2000 / Accepted 14 November 2000 Abstract. A sample of 40 bright spiral galaxies (BT < 12) with low inclination and without bar was observed with JHK filters. For this purpose the MAGIC NICMOS3 camera at the 2.2 m telescope of the Calar Alto observatory, Spain was used. With a newly developed 2-dimensional algorithm the distribution of the surface brightness was fitted simultaneously by corresponding functions for the disk- and bulge-structure. While the disk was fitted with an exponential function, the bulge profile was fitted with a generalized de Vaucouleurs Rβ law, with the concentration parameter β =1/n as a further fit variable. The correlation of the resulting structural parameters of disks and bulges lead to some interesting relations: 1. The use of a variable exponent β is necessary for a realistic description of the bulge structure; 2. Disks and bulges show similar correlations between effective radius, effective surface brightness and luminosity; 3. They populate a common strip in the fundamental plane; 4. From the correlations between β and Hubble type some conclusions about the formation and evolution of spiral galaxies can be drawn. Key words. galaxies: spiral – galaxies: structure – galaxies: photometry – galaxies: fundamental parameters – galaxies: statistics – galaxies: formation 1. Introduction of these objects. (e.g. Bender & M¨ollenhoff 1987; Bender et al.
    [Show full text]
  • The Molecule-Rich Tail of the Peculiar Galaxy NGC 2782 (Arp 215)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The Molecule-Rich Tail of the Peculiar Galaxy NGC 2782 (Arp 215) Beverly J. Smith CASA, University of Colorado, Box 389, Boulder CO 80309 Curtis Struck Department of Physics and Astronomy, Iowa State University, Ames IA 50012 Jeffrey D. P. Kenney Yale University Astronomy Department, New Haven CT 06520-8101 Shardha Jogee Department of Astronomy, Caltech, Pasadena CA 91125 Received ; accepted –2– ABSTRACT We present the first detection of a large quantity of molecular gas in the extended tail of an interacting galaxy. Using the NRAO 12m telescope, we have detected CO (1 0) at five locations in the eastern tail of the peculiar − starburst galaxy NGC 2782. The CO velocities and narrow (FWHM 50 ∼ 1 km s− ) line widths in these positions agree with those seen in HI, confirming that the molecular gas is indeed associated with the tail rather than the main disk. As noted previously, the gas in this tail has an apparent ‘counter-rotation’ compared to gas in the core of the galaxy, probably because the tails do not lie in the same plane as the disk. Assuming the standard Galactic conversion NH /ICO factor, these observations indicate a total molecular gas mass of 6 2 × 8 10 M in this tail. This may be an underestimate of the total H2 mass if the gas is metal-poor. This molecular gas mass, and the implied H2/HI mass ratio of 0.6, are higher than that found in many dwarf irregular galaxies.
    [Show full text]
  • Object Index
    Object index 9C 99, 196. IC 9970, 424. A 85, 55,61. IC 4296, 424. A 545, 62. IC 4767, 9. A 559, 424. I Zw 18, 339. A 978, 54. A 1950, 424. Leo II, 168. A 1971, 54. Leo Triplet, 241. A 1419, 55. Local Group, 172, 330, 353, 379, 439, A 1515+2146, 10. 447. A 1847, 424. A 1927, 54. M 49, 142, 143. A 2029, 55. M 51, 7, 131, 270, 271, 296. A 2670, 61. M 67, 88. AM 2244-651, 409, 410. M 81, 7, 131, 132, 163, 241, 271. Andromeda, 144. M 82, 241,273. Arp 152, 223. M 89, 208. Arp 155, 223. M84, 196. Arp 157, 223. M 87, 27, 70, 71, 126, 142, 143, 151, Arp 220, 296. 192,193,196,201,205,381,403. M 92, 88. Carina, 164, 165, 166, 167, 169, 170, M 100, 7, 132. 171. M 101, 239, 240, 241, 242, 243, 247, Centaurus A, 27, 144, 146, 151. 248,273. w Cen, 172. M 104, 107. CGCG 157076, 460. Maffei II, 209. Coma Cluster, 18, 19, 21, 70. Magellanic Cloud, Large (LMC), 256,449. Magellanic Cloud, Small (SMC), 256,447, DDO 154, 163. 449. DDO 170, 163. Magellanic Clouds, 241, 251, 252, 273. Draco, 163, 164, 165, 166, 168, 169, 170, Magellanic galaxies, 94. 171,173. Magellanic stream, 273. Magellanic types, 18. E 294 -21 , 119. Malin 1, 8. E 406-90, 119. Milky Way, 85, 86, 87, 91, 92, 93, 94, 176, 241, 273, 278. F 568-6, 8. Mkn 948, 241.
    [Show full text]
  • Galaxy Observing March
    GALAXY OBSERVING MARCH This month’s notes cover right ascension 8h to 9h. This part of the sky picks up parts of Ursa Major, Lynx, Cancer and Hydra. It is an area which is richer in galaxy than has been the case in the first two months observing notes as we are now looking out in to deep space rather than through the Milky-way. The finest pair of galaxies in the sky are found in this section of the sky. M81 (2) and M82 (3) can be found in Ursa Major by drawing a line from Phecda and Dubhe and extending it by the same length again. These galaxies are truly awesome in my ten inch scope. M81 is a bright oval and M82 is an edge on galaxy with distinctive markings along its length. With a low power eyepiece it is possible to get them both in the same field of view. These two are visible in binoculars. The galaxies are part of a group of 30 or so and are about 12 million light years away which is relatively close in galaxy terms! The next brightest galaxy in this section of sky is NGC 2903 (6). It is a fine bright oval galaxy just to the right of the sickle of Leo. It is one of the brightest non messier galaxies and one of my favourites. It nestles next to a triangle of three stars and is just possible to pick up with large binoculars in a dark sky. There a five other “bright” galaxies in this months review.
    [Show full text]