The Literature of Arthropods Associated with Soybeans : III, a Bibliography of the Bean Leaf Beetles, Cerotoma Trifurcata

Total Page:16

File Type:pdf, Size:1020Kb

The Literature of Arthropods Associated with Soybeans : III, a Bibliography of the Bean Leaf Beetles, Cerotoma Trifurcata LIBRARY OF THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Y\o.(oG ' €)£) Lz^lQ^^^J SURVEY The Literature of Arthropods Associated—with Soybeans III. A BIBLIOGRAPHY OF THE r u. BEAN LEAF BEETLES Cerotoma trifurcata (Forster) and C. ruficornis (Olivier) (Coleoptera: Chrysomelidae) M. P. NICHOLS • M. KOGAN • G. P. WALDBAUER Biological Notes No. 85 ILLINOIS NATURAL HISTORY SURVEY Urbana, Illinois- February, 1974 STATE OF ILLINOIS Department of Registration and Education Natural History Survey Division The Literature of Arthropods Associated with Soybeans III. A BIBLIOGRAPHY OF THE BEAN LEAF BEETLES Cerotoma trifurcato (Forster) and C. ruficornis (Olivier) (Goleoptera: Ghrysomelidae) M. P. Nichols, M. Kogan, and G. P. Waldbauer Two SPECIES of the genus Ceroioma Chevrolat, (Horn, 1872)' as the synonyms of C. ruficornis. Her- 1837,' are important agricultural pests and have be- zog (1968)' made a detailed study of the color varia- come significant elements of the arthropod fauna asso- tions of C trifiircata. ciated with soybeans in the World. C. trifitrcata New The distribution of each species is known only in (Forster, the only species of the known 1771)Ms genus general terms. C. trifiircata is found from southern to attack soybeans in the continental United States, Canada to the Gulf states, extending from the Atlan- while C. ruficornis (Olivier, 1791)^ occurs primarily tic coast westward to South Dakota in the north and south of the United States. to Arizona in the south. It is also found in Puerto Both species are well defined taxonomically, and Rico. C. ruficornis is widely distributed in the West despite considerable variation in their color and pat- Indies and, on the mainland, occurs in Florida and tem the synonymy is not extensi\e. Tlie primary Texas and from Mexico to northern Venezuela, synonyms of C. trifurcata are C. caminea ( Fabricius, Bean leaf beetles damage several growth stages 1801)," which appears frequently in the literature, of soybeans, with the amount of damage varying from And C. fibulata (Gemiar, 1824)^ Barber (1945)' lists region to region according to the phenology of die C. denticornis (Fabricius, 1792)' and C. sexpunctatus beetles and their host plants. The larvae feed on the 'See entry 161 in the bibliography. 1 See entry 97 in the bibliography. entry the bibliograpliy. „ , 'See 154 in 2 See entry 121 in the bibliography. This paper is published by authority of the State of Illinois, 3«ppJ see enirypntrv ^oo2tK in methp hihlineranhvDiouograpny. jj^g ^^ ^27, Par. 58.12. M, P. Nichols is a Research Associate, 4 See entry 114 in the bibliography. International Programs and Studies, University of Illinois. Dr. Kogan is an Associate Entomologist at the Illinois Natural 5 See entry 130 in the bibliography. History Survey and Associate Professor at the University of 6 See entry 32 in the bibliography. Illinois College of Agriculture. Dr. G P. Waldbauer is a Pro- fessor of Entomology and of Agricultural Entomology at the 7 See entry 113 in the bibliography. University of Illinois. This paper is a contribution of the Illinois Soybean Entomology Team with sup- port from the Illinois Natural History Survey, the University of Illinois Interna- tional Soybean Program (INTSOY), the University of Illinois Departments of Ento- mology and Horticulture, the Illinois Agricultural Experiment Station and the U.S. Department of Agriculture through the regional project S-74, the U.S. Agency for International Development, and National Science Foundation Grant GB-34718, Soy- bean Sub-project. Illinois Soybean Entomology Team: E. J. Armbkust — Biology, Ecology, and Control J. K. BousEMAN — Taxonomy B. J. Ford — Information Storage and Eetrieval G. L. Godfrey — Taxonomy E. R. Jaycox — Pollination M. KoGAN — Host Selection and Nutrition W. H. LucKMANN — Pest Management M. P. Nichols — Information Storage and Retrieval P, W. Price — Community Ecology S. J. Roberts — Biology and Control W. G. RuEsiNK — Ecology', Systems Analysis D. K. Sell — Population Genetics L. J. Stannard — Taxonomy G. P. Waldbauer — Bionomics subterranean parts and adults feed on the foliage and This bibliography follows closely the format and sometimes on the green pods. The information out- style of the two pre\ious publications in this series." lined below is based largely on accounts of the be- Sources of the entries listed were primarily Biological ha^'ior of C. trifuicata. However, it is likely that the Abstracts, The Review of Applied Entomology Series behavior of C. rtificornis differs only in detail. A, Bio-Research Index, Biological and Agricultural C. trifitrcata has two or three complete genera- Index, Index to the Literature of American Economic tions per year throughout its geographic range. Thus, Entomology, and references cited in articles and in- an abundance of adults may coincide with three stages quiries to researchers. All entries except No. 121 were of plant growth. In the Midwest, overwintered adults examined. The references are listed alphabetically by may invade soybean fields soon after gennination author and numbered consecutively. The numbers are and may destroy large numbers of seedlings. Re- arranged in a table (see pages 8 and 9) according planting occasionally has been necessary. Adults of to subject and period of publication. A reference the first generation are usually present during the may be listed under more than one subject. Refer- period of strong vegetative growth. Tliey feed almost ences which apply to C. trifurcata are tabulated by exclusi\'ely on the leaves, and economic damage due number in lightface type. Those which apply to C. to feeding per se results only when populations are ruficornis follow and are in boldface type. References extremely high. However, C. trifurcata also transmits which refer to both species will appear twice under the bean pod mottle virus. The effect of this virus a heading. on yield is not clear, but there is evidence that when Interested researchers are urged to consult the multiple infections occur it may have a synergistic USDA Cooperative Economic Insect Report and the relationship with the soybean mosaic virus. C. rtifi- USDA Insect Pest Survey Bulletin for further infor- cornis is known to transmit the cowpea mosaic virus. mation concerning C. trifurcata. Adults of tlie last generation may accumulate in late SIRIC (Soybean Insect Research and Information maturing fields and attack green pods. In such cases Center, Illinois Natural History Survey and University the yield is directly affected. of Illinois at Urbana-Champaign ) has developed a Intercrop relationships are an important factor to series of computer programs which make possible be considered in pest-management programs involv- more detailed searches of the literature according to ing the bean leaf beetles. Isely (1942)'° reported subject matter. All citations in this bibliography are that in Arkansas enormous populations of adult C. stored on tape, and can be retrieved through a series trifurcata developed on soybeans. Snapbeans for the of key words which define categories considerably fall market were planted in midsummer and were still more refined than those listed in the table on pages green when the early-planted soybeans were losing 8 and 9. The computerized information system their leaves and nearing maturity. The smaller acre- greatly increases the usefulness of the printed bibliog- ages of snapbeans were then suddenly flooded with raphies, and the two together are an important part large numbers of beetles emigrating from the soy- of the effort of the Illinois Soybean Entomology Team bean fields. to search out, compile, and organize for ready access At least four additional species of Cerotoma are the ever-increasing information on soybean entomol- known to be associated with soybeans or other grain ogy for the benefit of all professionals working in this legumes in South America. C. facialis Erickson, 1847," area. 1866,'' and C. salvini Baly, are known from Panama, Abbreviations and complete titles of the sources Colombia, and Peru; C. [Andrector] nifxcoUis (Fabri- which appear in the bibliographic entries are to be cius, 1801)" and C. unicornis (Germar, 1824)'" are found in a listing at the end of the paper. known from Brazil. Published information on these We are grateful to Dr. Donald C. Herzog, Depart- species consists of little more than the original de- ment of Entomology, Louisiana State University, for scriptions and listings in faunistic surveys and system- making his bibliography on Cerotoma available to us. atic catalogues. The pertinent literature on the Mrs. Jo Ann Auble typed the introduction and Mr. Brazilian species up to December 1962 may be found Raymond Kotek typed the bibliography and did por- inSilvaetal (1967)". tions of the bibliographic search. Mr. O. F. Glrssen- dorf edited the manuscript and Mr. Lloyd LeMere designed the co\'er which shows a photograph by Mr. Zehr. Their collaboration is gratefully 10 See entry 174 in the bibliography. Wilmer acknowledged. " Erickson. G. F. 1847. Conspectus insectorum Coleopterorura quae in Republica Peruana observata sunt. Arch. Naturgesch. 13(1) :67-185. '2 Baly, G. F. 1866. New genera and species of Gallerucinae. Trans. Entomol. Soc. London (Ser. 3) 2:471-478. 14 Nichols, M. P.. and M. Kogan. 1972. The literature of arthro- pods associated with soybeans. I. A bibliography of the Mexican '3 See entry 114 in the bibliography. bean beetle. Epilachna varivestia Mulsant (Coleoptera: Coccinel- lidae). III. Natur. Hist. Surv. Biol. Notes 77. 20 p. '4 See entry 130 in the bibliography. DeWitt, N. B., and G. L. Godfrey. 1972. The literature of 15 Silva, A. et al. 1967-1968. Quarto catalogo dos insetos que arthropods associated with soybeans. II. A bibliography of the vivem nas plantas do Brasil seus parasites e predadores. Minis- soutliem green stink bug, Nezara viridula (Linnaeus) (Hemip- terio da Agricultura, Rio de Janeiro, Brazil. 2 vols. tera: Pentatomidae). 111. Natur. Hist. Surv. Biol. Notes 78. 23 p. BIBLIOGRAPHY diseases and injurious insects in South Carolina.
Recommended publications
  • Insect Management
    C H A P T E R 5 INSECT MANAGEMENT “change in form.” Pests of field crops undergo either sim- LEARNING OBJECTIVES ple or complete metamorphosis. After completely studying this chapter, you should: Group 1. Simple Metamorphosis I Understand how insects grow and develop. When insects that develop by simple metamorphosis hatch from their eggs, they resemble the adult insects I Understand the difference between simple and com- except that the immatures, or nymphs, do not have plete metamorphosis. wings. Nymphs periodically molt, growing larger. After I Be able to identify general and major insect pests of the final molt, nymphs become adults and generally have alfalfa, corn, dry beans, soybeans, small grains, and wings. Many pests of field crops such as potato leafhop- sugar beets. per, sugarbeet root aphid, tarnished plant bug, and grasshoppers develop by simple metamorphosis. I Be able to describe the life cycles and habitats of the Nymphs and adults are often found together in the crop major field crop pests. and usually eat the same food. Insect damage reduces crop yield or quality, or conta- minates the final product. Insects can also transmit plant diseases. To effectively control insect pests, you should understand how insects grow and develop. Egg Nymphs Adult GROWTH AND DEVELOPMENT A plant bug is an example of an insect with simple Growth metamorphosis. An insect’s body is confined in a protective exoskele- Group 2. Complete Metamorphosis ton. This hard outer covering does not grow continuous- ly. A new, soft exoskeleton is formed under the old one, Insects that develop by complete metamorphosis and the old exoskeleton is shed—a process called molt- make a radical change in appearance from immature to ing.
    [Show full text]
  • Common Defoliating Beetles in Soybean
    W 392 COMMON DEFOLIATING BEETLES IN SOYBEAN Scott Graham, Graduate Research Assistant Scott Stewart, Professor Department of Entomology and Plant Pathology typically emerge from eggs in less than two weeks JAPANESE BEETLE and then feed on grass roots. The larvae go through three instars, becoming fully grown by nine weeks Classification and Description after hatch. Full-grown, third instar white grubs tun- nel down in the soil to overwinter. After winter, white The Japanese beetle, Popillia japonica, is a scarab grubs crawl back up in the root zone to continue beetle commonly found in Tennessee. This beetle feeding until they enter a prepupal stage for roughly can be a pest of gardens, trees, shrubs, turfgrass 10 days. Adults emerge after an 8-20 day pupation and agricultural fields. Adults have a bright metallic period, depending on weather conditions. green head and thorax with copper-colored elytra (hardened wings) and a row of five spots of white Pest Status and Injury hairs on each side of the abdomen below the wings. They are oval shaped and vary in length from 8 to 11 Japanese beetles primarily feed on the upper foli- millimeters and a width of 5 to 7 millimeters. Larvae age of plants or on blooms, consuming leaf tissue or “white grubs” are found in the soil and vary in col- between veins leaving a lace-like skeleton. Although or from white to light gray and have a brown head. not a common problem, Japanese beetles may cause Japanese beetle white grubs have three pairs of legs. significant defoliation of soybean in Tennessee.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Insectos Asociados a La Flor De Caesalpinia Pulcherrima (L.) Swartz, En Un Sitio Urbano De Tabasco, México
    ISSN 1021-0296 REVISTA NICARAGUENSE DE ENTOMOLOGIA N° 130. ___________ __ Julio 2017 Insectos asociados a la flor de Caesalpinia pulcherrima (L.) Swartz, en un sitio urbano de Tabasco, México Por Concepción Hernández Mayo & Saúl Sánchez Soto PUBLICACIÓN DEL MUSEO ENTOMOLÓGICO ASOCIACIÓN NICARAGÜENSE DE ENTOMOLOGÍA LEON - - - NICARAGUA Revista Nicaragüense de Entomología. Número 130. 2017. La Revista Nicaragüense de Entomología (ISSN 1021-0296) es una publicación reconocida en la Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Red ALyC) e indexada en los índices: Zoological Record, Entomological Abstracts, Life Sciences Collections, Review of Medical and Veterinary Entomology and Review of Agricultural Entomology. Los artículos de esta publicación están reportados en las Páginas de Contenido de CATIE, Costa Rica y en las Páginas de Contenido de CIAT, Colombia. Todos los artículos que en ella se publican son sometidos a un sistema de doble arbitraje por especialistas en el tema. The Revista Nicaragüense de Entomología (ISSN 1021-0296) is a journal listed in the Latin-American Index of Scientific Journals. It is indexed in: Zoological Records, Entomological, Life Sciences Collections, Review of Medical and Veterinary Entomology and Review of Agricultural Entomology. Reported in CATIE, Costa Rica and CIAT, Colombia. Two independent specialists referee all published papers. Consejo Editorial Jean Michel Maes Fernando Hernández-Baz Editor General Editor Asociado Museo Entomológico Universidad Veracruzana Nicaragua México José Clavijo Albertos Silvia A. Mazzucconi Universidad Central de Universidad de Buenos Aires Venezuela Argentina Weston Opitz Don Windsor Kansas Wesleyan University Smithsonian Tropical Research United States of America Institute, Panama Miguel Ángel Morón Ríos Jack Schuster Instituto de Ecología, A.C.
    [Show full text]
  • Case Study – Pests and Diseases Date: ______
    Name: _______________ Student Handout 5: Case Study – Pests and Diseases Date: ________________ Instructions: Split the class into two groups and assign each group a case study to research. Case Study 1: Farmers: Bob & Sally Jenson Location: Minnesota, USA Crop: Soybeans Problem: Bean Leaf Beetle1 Agronomist Report: An agronomist inspected this crop and noticed that all stages of plant growth were impacted. There is a decrease in crop yield and poor seed quality. The beetles are feeding on pods and breaking the pods, as well as scarring the leaves allowing for fungal pathogens to enter. Last, the agronomist report said this beetle was carrying a virus to the plant called bean pod mottle virus, which is mainly a concern if the Jenson’s are selling their soybeans for food because it affects the seed coat quality. 1. Research the Bean Leaf Beetle 2. Identify at least one solution to address this pest Case Study 2: Farmers: Shad & Lita Meena Location: Kenya, Africa Crop: Maize Problem: Maize Lethal Necrosis Disease (MLND)2 Agronomist Report: An agronomist inspected this crop and noticed a 30 percent loss in yields! The agronomist could see the leaves were dry, there were malformed ears, sometimes even no ears on the plants and some of the the ears were rotting. The agronomist let the Meena family know the disease was likely from a long drought, poor soil fertility and poor agricultural practices. 1. Research the Maize Lethal Necrosis Disease 2. Identify at least one solution to address this disease Answer Key Student Handout 5: Case Study - Pests and Diseases Case Study 1: Bean Leaf Beetle Possible solutions: Cold winters can be an asset in reducing the beetle population.
    [Show full text]
  • Literature on the Chrysomelidae from CHRYSOMELA Newsletter, Numbers 1-41 October 1979 Through April 2001 May 18, 2001 (Rev
    Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-41 October 1979 through April 2001 May 18, 2001 (rev. 1)—(2,635 citations) Terry N. Seeno, Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions and additions are planned and will be numbered sequentially. Because the literature on leaf beetles is so expansive, these citations focus mainly on biosystematic references. They Adobe Acrobat® 4.0 was used to distill the list into a PDF were taken directly from the publication, reprint, or file, which is searchable using standard search procedures. author’s notes and not copied from other bibliographies. If you want to add to the literature in this bibliography, Even though great care was taken during the data entering please contact me. All contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata de Gratiana spadicea (Klug, 1829) (Coleoptera, Chrysomelidae, DuPortei, a new sub-species of the Galerucinae (Coleoptera: Chrysomel- Cassidinae) em condições de laboratório. Rev. Bras. Entomol. idae) with a review of the species of Phyllobrotica in the Lyman 30(1):105-113, 7 figs., 2 tabs. Museum Collection. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and species of European Cryptocephalus. Experientia 38:774-775, 11 figs. other structures in a female Trirhabda virgata (Chrysomelidae) with a summary of similar teratological observations in the Coleoptera.
    [Show full text]
  • Bean Leaf Beetle Michael L
    Insects and Diseases AGRICULTURAL MU Guide PUBLISHED BY MU EXTENSION, UNIVERSITY OF MISSOURI-COLUMBIA muextension.missouri.edu/xplor/ Soybean Pest Management: Bean Leaf Beetle Michael L. Boyd and Wayne C. Bailey State Extension Entomology Specialists The bean leaf beetle, Cerotoma trifurcata (Forster), is Facts at a Glance one of the most important soybean pests in the United • There are two generations of bean leaf beetle per States. It is tied for second among all pest species attack- year in Missouri. ing soybean foliage, pods and seeds. This insect was • Both larvae and adults are soybean pests. Larvae once an infrequent soybean pest in the Midwest; attack the roots; adults, the foliage and pods. however, in the 1970s, soybean growers began reporting • Adult foliar damage (rounded holes) differs from increased incidence of bean leaf beetle feeding damage. caterpillar damage (ragged edges); whereas, direct Description and life cycle pod damage (outer pod wall) is less severe than that 1 caused by grasshoppers (seeds destroyed). This small beetle (at least ⁄4-inch in length) over- • Pod damage by adults is most crucial because also winters as adults beneath leaf litter in wood lots adjacent it can lead to secondary disease infections of the to soybean fields. Once spring temperatures reach 50–55 pods and seeds and thereby lower seed quality and degrees F, adults become active and seek available host quantity. plants (such as grasses, soybean plants and other legumes). Adult coloration (red, orange, tan or gray) and markings (dots, strips, or both) may vary among indi- viduals or populations; however, all adults possess a black triangle at the base of their forewings (Figures 1 and 2).
    [Show full text]
  • The Mexican Bean Beetle in Connecticut
    Bulletin 332 December, 1931 THE. MEXICAN BEAN BEETLE IN CONNECTICUT ROGER B. FRIEND and NEELY TURNER CONTROLLING THE BEAN BEETLE Hean heetle injury may I,? avoided by sprayi~~gor dusting com- I,ine<l \vitli certain cultural practices. Spr:iying is more effective. 'Therr are two generatinns of the illsect a year and 110th larvae and adtilt.; feed on the plants. Spray Magnesium arsctiate .... 3 lhs. Casein lime ....... 2 lbs. Water .....100 gals. Dust Magnesirini ai-srnatc .... 111). flydrated lime ...... 5 11>s. or l3:irinm flo<bsilicate ..... 1 111. IIydmtrd lime ........ 5 Ills. To Apply Insecticide 1. Hl~plyahnut June 15 and Ji~ne25 to ?a~-Iyplantings. For later plantinjis, ahnl~tJi1520, JII~T30. atid August 0. Limn and pole healls may rnll1il.e :it1 lire ap]ilic:ltir,ns. 2. Alqily to the under sirlc of leaves. 3. Cover the entire scirface. 4. Spray or dust before the injury is severe. Afterwards it is too late. 5. The iiisecticidcs ~nentionctlalluue shoulrl not be used aftrr the pods are lialf-grown unless the l~eansare waslle(l before mar- lieting. A pyrethrum-soap mixture may be used instead. Cultural Practices 1. Destroy the hibernating quarters of the adults near cultivated fields. 2. Plow under or pull up and destroy all beans as soon as the , crop is harvested. 3. The shorter the growing period, the less time the plants are exposed to attack. Pro~nioterapid growth and early maturity by thin planting, proper fertiliration, and thorough cultivation. THE MEXICAN BEAN BEETLE IN CONNECTICUT History and distriht~tion ...... 73 Culti~mlcontrol ...........
    [Show full text]
  • A Review of the Natural Enemies of Beetles in the Subtribe Diabroticina (Coleoptera: Chrysomelidae): Implications for Sustainable Pest Management S
    This article was downloaded by: [USDA National Agricultural Library] On: 13 May 2009 Access details: Access Details: [subscription number 908592637] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): implications for sustainable pest management S. Toepfer a; T. Haye a; M. Erlandson b; M. Goettel c; J. G. Lundgren d; R. G. Kleespies e; D. C. Weber f; G. Cabrera Walsh g; A. Peters h; R. -U. Ehlers i; H. Strasser j; D. Moore k; S. Keller l; S. Vidal m; U. Kuhlmann a a CABI Europe-Switzerland, Delémont, Switzerland b Agriculture & Agri-Food Canada, Saskatoon, SK, Canada c Agriculture & Agri-Food Canada, Lethbridge, AB, Canada d NCARL, USDA-ARS, Brookings, SD, USA e Julius Kühn-Institute, Institute for Biological Control, Darmstadt, Germany f IIBBL, USDA-ARS, Beltsville, MD, USA g South American USDA-ARS, Buenos Aires, Argentina h e-nema, Schwentinental, Germany i Christian-Albrechts-University, Kiel, Germany j University of Innsbruck, Austria k CABI, Egham, UK l Agroscope ART, Reckenholz, Switzerland m University of Goettingen, Germany Online Publication Date: 01 January 2009 To cite this Article Toepfer, S., Haye, T., Erlandson, M., Goettel, M., Lundgren, J. G., Kleespies, R. G., Weber, D. C., Walsh, G. Cabrera, Peters, A., Ehlers, R. -U., Strasser, H., Moore, D., Keller, S., Vidal, S.
    [Show full text]
  • Bean Leaf Beetle: Impact of Leaf Feeding Injury on Snap Beans, Host Plant Choice and Role As a Vector of Bean Pod Mottle Virus in Virginia
    BEAN LEAF BEETLE: IMPACT OF LEAF FEEDING INJURY ON SNAP BEANS, HOST PLANT CHOICE AND ROLE AS A VECTOR OF BEAN POD MOTTLE VIRUS IN VIRGINIA Meredith Edana Cassell Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Life Science In Entomology Thomas P. Kuhar, Co-Chair Peter B. Schultz, Co-Chair Douglas G. Pfeiffer Scott M. Salom Sue A. Tolin April 12, 2011 Blacksburg, VA Keywords: Cerotoma trifurcata, Snap Bean, Bean Pod Mottle Virus, Mechanical Defoliation, Feeding Preference, Exclusion Cage BEAN LEAF BEETLE: IMPACT OF LEAF FEEDING INJURY ON SNAP BEANS, HOST PLANT CHOICE AND ROLE AS A VECTOR OF BEAN POD MOTTLE VIRUS IN VIRGINIA Meredith Edana Cassell ABSTRACT The bean leaf beetle (BLB), Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), is a pest of commercially produced legumes in eastern Virginia and much of the soybean production areas of the United States. To better understand the economic injury level of this pest for snap bean production, field cage and manual-defoliation studies were conducted in Virginia. In the manual-defoliation study, snap bean plants had significant yield loss when > 25% of leaf area was removed over a two week period. In the field cage experiments, I was unable to establish beetle densities per plant that were significant enough to impact yield despite releasing up to 1,000 beetles in a cage with 60 bean plants. BLB densities averaged 2.7 BLB per plant in those high density cages. To better understand host plant selection by BLB, laboratory and field choice experiments were conducted in snap bean, lima bean, and soybeans.
    [Show full text]
  • Population Dynamics of Bean Leaf Beetle, <I>Cerotoma Trifurcata</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2013 Population Dynamics of Bean Leaf Beetle, Cerotoma trifurcata (Coleoptera: Chrysomelidae) on Edamame Soybean Plants In Nebraska Bamphitlhi Tiroesele Botswana College of Agriculture Thomas E. Hunt University of Nebraska-Lincoln, [email protected] Robert J. Wright University of Nebraska, [email protected] John E. Foster University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Tiroesele, Bamphitlhi; Hunt, Thomas E.; Wright, Robert J.; and Foster, John E., "Population Dynamics of Bean Leaf Beetle, Cerotoma trifurcata (Coleoptera: Chrysomelidae) on Edamame Soybean Plants In Nebraska" (2013). Faculty Publications: Department of Entomology. 398. http://digitalcommons.unl.edu/entomologyfacpub/398 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. European Journal of Sustainable Development (2013), 2, 1, 19-30 ISSN: 2239-5938 Population Dynamics of Bean Leaf Beetle, Cerotoma trifurcata (Coleoptera: Chrysomelidae) on Edamame Soybean Plants In Nebraska By aBamphitlhi Tiroesele*, cThomas E. Hunt, bRobert Wright and bJohn E. Foster. Abstract Edamame soybeans are a speciality food item for fresh and processed markets and they are harvested at a physiologically immature (R6) stage. Bean leaf beetle, Cerotoma trifurcata, is a sporadic pest of soybean in Nebraska, however, its pest status and abundance has increased in the recent years due to an increase in soybean acreage.
    [Show full text]
  • Literature Cited in Chrysomela from 1979 to 2003 Newsletters 1 Through 42
    Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-42 October 1979 through June 2003 (2,852 citations) Terry N. Seeno, Past Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions will be numbered sequentially. Because the literature on leaf beetles is so expansive, Adobe InDesign 2.0 was used to prepare and distill these citations focus mainly on biosystematic references. the list into a PDF file, which is searchable using standard They were taken directly from the publication, reprint, or search procedures. If you want to add to the literature in author’s notes and not copied from other bibliographies. this bibliography, please contact the newsletter editor. All Even though great care was taken during the data entering contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata DuPortei, Cassidinae) em condições de laboratório. Rev. Bras. Entomol. 30(1): a new sub-species of the Galerucinae (Coleoptera: Chrysomelidae) with 105-113, 7 figs., 2 tabs. a review of the species of Phyllobrotica in the Lyman Museum Collec- tion. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight species of European Cryptocephalus. Experientia 38:774-775, 11 figs. Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and other structures in a female Trirhabda virgata (Chrysomelidae) with a Alegre, C. and E. Petitpierre. 1984. Karyotypic Analyses in Four summary of similar teratological observations in the Coleoptera. Dtsch. Species of Hispinae (Col.: Chrysomelidae).
    [Show full text]