Study and Interpretation of the Chemical Characteristics of Natural Water Second Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tuning Wettability of Molten Lithium Via a Chemical Strategy for Lithium Metal Anodes
ARTICLE https://doi.org/10.1038/s41467-019-12938-4 OPEN Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes Shu-Hua Wang1, Junpei Yue1, Wei Dong1,2, Tong-Tong Zuo1,2, Jin-Yi Li1,2, Xiaolong Liu1, Xu-Dong Zhang1,2, Lin Liu1,2, Ji-Lei Shi 1,2, Ya-Xia Yin1,2 & Yu-Guo Guo 1,2* Metallic lithium affords the highest theoretical capacity and lowest electrochemical potential and is viewed as a leading contender as an anode for high-energy-density rechargeable 1234567890():,; batteries. However, the poor wettability of molten lithium does not allow it to spread across the surface of lithiophobic substrates, hindering the production and application of this anode. Here we report a general chemical strategy to overcome this dilemma by reacting molten lithium with functional organic coatings or elemental additives. The Gibbs formation energy and newly formed chemical bonds are found to be the governing factor for the wetting behavior. As a result of the improved wettability, a series of ultrathin lithium of 10–20 μm thick is obtained together with impressive electrochemical performance in lithium metal batteries. These findings provide an overall guide for tuning the wettability of molten lithium and offer an affordable strategy for the large-scale production of ultrathin lithium, and could be further extended to other alkali metals, such as sodium and potassium. 1 CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190 Beijing, China. -
X-Ray-Based Spectroscopic Techniques for Characterization of Polymer Nanocomposite Materials at a Molecular Level
polymers Review X-ray-Based Spectroscopic Techniques for Characterization of Polymer Nanocomposite Materials at a Molecular Level 1, 2,3, 1 4, 1, Dongwan Son y, Sangho Cho y , Jieun Nam , Hoik Lee * and Myungwoong Kim * 1 Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea; [email protected] (D.S.); [email protected] (J.N.) 2 Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; [email protected] 3 Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea 4 Research Institute of Industrial Technology Convergence, Korea Institute of Industrial Technology, Ansan 15588, Korea * Correspondence: [email protected] (H.L.); [email protected] (M.K.) These authors equally contributed to this work. y Received: 3 April 2020; Accepted: 23 April 2020; Published: 4 May 2020 Abstract: This review provides detailed fundamental principles of X-ray-based characterization methods, i.e., X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, and near-edge X-ray absorption fine structure, and the development of different techniques based on the principles to gain deeper understandings of chemical structures in polymeric materials. Qualitative and quantitative analyses enable obtaining chemical compositions including the relative and absolute concentrations of specific elements and chemical bonds near the surface of or deep inside the material of interest. More importantly, these techniques help us to access the interface of a polymer and a solid material at a molecular level in a polymer nanocomposite. The collective interpretation of all this information leads us to a better understanding of why specific material properties can be modulated in composite geometry. -
The Spontaneous Generation Controversy (340 BCE–1870 CE)
270 4. Abstraction and Unification ∗ ∗ ∗ “O`uen ˆetes-vous? Que faites-vous? Il faut travailler” (on his death-bed, to his devoted pupils, watching over him). The Spontaneous Generation Controversy (340 BCE–1870 CE) “Omne vivium ex Vivo.” (Latin proverb) Although the theory of spontaneous generation (abiogenesis) can be traced back at least to the Ionian school (600 B.C.), it was Aristotle (384-322 B.C.) who presented the most complete arguments for and the clearest statement of this theory. In his “On the Origin of Animals”, Aristotle states not only that animals originate from other similar animals, but also that living things do arise and always have arisen from lifeless matter. Aristotle’s theory of sponta- neous generation was adopted by the Romans and Neo-Platonic philosophers and, through them, by the early fathers of the Christian Church. With only minor modifications, these philosophers’ ideas on the origin of life, supported by the full force of Christian dogma, dominated the mind of mankind for more that 2000 years. According to this theory, a great variety of organisms could arise from lifeless matter. For example, worms, fireflies, and other insects arose from morning dew or from decaying slime and manure, and earthworms originated from soil, rainwater, and humus. Even higher forms of life could originate spontaneously according to Aristotle. Eels and other kinds of fish came from the wet ooze, sand, slime, and rotting seaweed; frogs and salamanders came from slime. 1846 CE 271 Rather than examining the claims of spontaneous generation more closely, Aristotle’s followers concerned themselves with the production of even more remarkable recipes. -
Surface Reactions and Chemical Bonding in Heterogeneous Catalysis
Surface reactions and chemical bonding in heterogeneous catalysis Henrik Öberg Doctoral Thesis in Chemical Physics at Stockholm University 2014 Thesis for the Degree of Doctor of Philosophy in Chemical Physics Department of Physics Stockholm University Stockholm 2014 c Henrik Oberg¨ ISBN 978-91-7447-893-8 Abstract This thesis summarizes studies which focus on addressing, using both theoretical and experimental methods, fundamental questions about surface phenomena, such as chemical reactions and bonding, related to processes in heterogeneous catalysis. The main focus is on the theoretical approach and this aspect of the results. The included articles are collected into three categories of which the first contains detailed studies of model systems in heterogeneous catalysis. For example, the trimerization of acetylene adsorbed on Cu(110) is measured using vibrational spectroscopy and modeled within the framework of Density Functional Theory (DFT) and quantitative agreement of the reaction barriers is obtained. In the second category, aspects of fuel cell catalysis are discussed. O2 dissociation is rate-limiting for the reduction of oxygen (ORR) under certain conditions and we find that adsorbate-adsorbate interactions are decisive when modeling this reaction step. Oxidation of Pt(111) (Pt is the electrocatalyst), which may alter the overall activity of the catalyst, is found to start via a PtO-like surface oxide while formation of a-PtO2 trilayers precedes bulk oxidation. When considering alternative catalyst materials for the ORR, their stability needs to be investigated in detail under realistic conditions. The Pt/Cu(111) skin alloy offers a promising candidate but segregation of Cu atoms to the surface is induced by O adsorption. -
Questions & Answers for the New Chemicals Program
Note: Effective January 19, 2016, PMNs must be submitted electronically. Learn more about the new e-PMN requirements. Questions & Answers for the New Chemicals Program (Q&A) U.S. Environmental Protection Agency Office of Pollution Prevention and Toxics Washington, DC 20460 2004 -1- TABLE OF CONTENTS Page 1. GENERAL PROGRAM INFORMATION 100. General ............................................................................................................ 1-1 101. Guidance for Completion of §5 Submission Form ......................................... 1-6 102. Inventory Searches/Bona Fides ....................................................................... 1-17 103. Chemical Identification ................................................................................... 1-22 104. Nomenclature .................................................................................................. 1-26 105. Inventory Issues ................................................................................................ 1-31 106. Review Process ............................................................................................... 1-31 107. Notice of Commencement .............................................................................. 1-33 108. User Fee .......................................................................................................... 1-35 109. Consolidated Notices ...................................................................................... 1-39 110. Joint Submissions .......................................................................................... -
TSCA Inventory Representation for Products Containing Two Or More
mixtures.txt TOXIC SUBSTANCES CONTROL ACT INVENTORY REPRESENTATION FOR PRODUCTS CONTAINING TWO OR MORE SUBSTANCES: FORMULATED AND STATUTORY MIXTURES I. Introduction This paper explains the conventions that are applied to listings of certain mixtures for the Chemical Substance Inventory that is maintained by the U.S. Environmental Protection Agency (EPA) under the Toxic Substances Control Act (TSCA). This paper discusses the Inventory representation of mixtures of substances that do not react together (i.e., formulated mixtures) as well as those combinations that are formed during certain manufacturing activities and are designated as mixtures by the Agency (i.e., statutory mixtures). Complex reaction products are covered in a separate paper. The Agency's goal in developing this paper is to make it easier for the users of the Inventory to interpret Inventory listings and to understand how new mixtures would be identified for Inventory inclusion. Fundamental to the Inventory as a whole is the principle that entries on the Inventory are identified as precisely as possible for the commercial chemical substance, as reported by the submitter. Substances that are chemically indistinguishable, or even identical, may be listed differently on the Inventory, depending on the degree of knowledge that the submitters possess and report about such substances, as well as how submitters intend to represent the chemical identities to the Agency and to customers. Although these chemically indistinguishable substances are named differently on the Inventory, this is not a "nomenclature" issue, but an issue of substance representation. Submitters should be aware that their choice for substance representation plays an important role in the Agency's determination of how the substance will be listed on the Inventory. -
Inorganic Chemistry for Dummies® Published by John Wiley & Sons, Inc
Inorganic Chemistry Inorganic Chemistry by Michael L. Matson and Alvin W. Orbaek Inorganic Chemistry For Dummies® Published by John Wiley & Sons, Inc. 111 River St. Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis- sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley. com/go/permissions. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trade- marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book. -
(XPS) • X-Ray Photoelectron Spectroscopy
Introduction to X-ray Photoelectron Spectroscopy (XPS) • X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate the chemical composition of surfaces. • XPS which makes use of the photoelectric effect, was developed in the mid-1960’s by Kai Siegbahn and his research group at the University of Uppsala, Sweden. Photoemission of Electrons Ejected Photoelectron Incident X-ray Free Electron Level (vacuum) Conduction Band Fermi Level Valence Band ¾ XPS spectral lines are identified by the shell from which the electron was ejected 2p L2,L3 (1s, 2s, 2p, etc.). ¾ The ejected photoelectron has kinetic 2s L1 energy: ¾ KE= hv – BE - φ 1s K 1s K ¾ Following this process, the atom will release energy by the emission of a photon or Auger Electron. Auger Electron Emission Free Electron Level Conduction Band Conduction Band Fermi Level Valence Band Valence Band 2p 2p L2,L3 2s 2s L1 1s 1s K ¾ L electron falls to fill core level vacancy (step 1). ¾ KLL Auger electron emitted to conserve energy released in step 1. ¾ The kinetic energy of the emitted Auger electron is: KE=E(K)-E(L2)-E(L3). XPS Energy Scale - Binding energy BEBE == hvhv -- KEKE -- ΦΦspec Where: BE= Electron Binding Energy KE= Electron Kinetic Energy Φspec= Spectrometer Work Function Photoelectron line energies: Not Dependent on photon energy. Auger electron line energies: Dependent on photon energy. XPS spectrum of Vanadium Auger electrons Note the stepped background • Only electrons close to surface -
History of Microbiology: Spontaneous Generation Theory
HISTORY OF MICROBIOLOGY: SPONTANEOUS GENERATION THEORY Microbiology often has been defined as the study of organisms and agents too small to be seen clearly by the unaided eye—that is, the study of microorganisms. Because objects less than about one millimeter in diameter cannot be seen clearly and must be examined with a microscope, microbiology is concerned primarily with organisms and agents this small and smaller. Microbial World Microorganisms are everywhere. Almost every natural surface is colonized by microbes (including our skin). Some microorganisms can live quite happily in boiling hot springs, whereas others form complex microbial communities in frozen sea ice. Most microorganisms are harmless to humans. You swallow millions of microbes every day with no ill effects. In fact, we are dependent on microbes to help us digest our food and to protect our bodies from pathogens. Microbes also keep the biosphere running by carrying out essential functions such as decomposition of dead animals and plants. Microbes are the dominant form of life on planet Earth. More than half the biomass on Earth consists of microorganisms, whereas animals constitute only 15% of the mass of living organisms on Earth. This Microbiology course deals with • How and where they live • Their structure • How they derive food and energy • Functions of soil micro flora • Role in nutrient transformation • Relation with plant • Importance in Industries The microorganisms can be divided into two distinct groups based on the nucleus structure: Prokaryotes – The organism lacking true nucleus (membrane enclosed chromosome and nucleolus) and other organelles like mitochondria, golgi body, entoplasmic reticulum etc. are referred as Prokaryotes. -
The Periodic Table
Radiochim. Acta 2019; 107(9–11): 865–877 Robert Eichler* The periodic table – an experimenter’s guide to transactinide chemistry https://doi.org/10.1515/ract-2018-3080 typical for alkali metals, or as H−, similar to halogens. Received November 14, 2018; accepted February 18, 2019; published It becomes metallic at high pressures [3]. Helium has online March 16, 2019 the most enhanced chemical inertness amongst all elements with the highest first ionization potential Abstract: The fundamental principles of the periodic table and lowest polarizability leading to an extremely low guide the research and development of the challenging boiling point of −268.9 °C, close to absolute zero. Fur- experiments with transactinide elements. This guidance thermore, it shows a rare state of superfluidity as a is elucidated together with experimental results from gas liquid below ~−271 °C. phase chemical studies of the transactinide elements with – The group of alkali metals exhibited at the left-hand the atomic numbers 104–108 and 112–114. Some deduced edge of the periodic table represents the most reactive chemical properties of these superheavy elements are pre- metals with increasing reactivity along the group. The sented here in conjunction with trends established by the heavier members even ignite at room temperature in periodic table. Finally, prospects are presented for further contact with air. chemical investigations of transactinides based on trends – On the right-hand edge of the periodic table the group in the periodic table. of noble gases reveals unprecedented atomic stabili- Keywords: Periodic table, trends, transactinides, gas ties and thus exceptional chemical inertness, fading phase, predictions. -
Lecture 17 Auger Electron Spectroscopy Auger – History Cloud Chamber
Lecture 17 Auger Electron Spectroscopy Auger – history cloud chamber Although Auger emission is intense, it was not used until 1950’s. Evolution of vacuum technology and the application of Auger Spectroscopy - Advances in space technology Various ways to estimate Auger electron kinetic energy (z) (z) EKL1 L23 = Ek –EL1 –EL23 (z + ) - A (z) (z) (z) (z) = Ek –EL1 –EL23 - [EL2,3 (z+1) – EL2,3 ] Exyz = Ex –½(Ex(z) + Ey(z+1)) – ½ (E2(z) + E2(z+1)) - A has been found to vary from 0.5 + 1.5. Relaxation more important than ESCA. Auger energy is independent of sample work function. Electron loses energy equal to the work function of the sample during emission but gains or loses energy equal to the difference in the work function of the sample and the analyser. Thus the energy is dependent only on the work function of the analyser. Use of dN(E)/dE plot Instrumentation Early analysers What happens to the system after Auger emission Chemical differences When core electrons are involved in Auger, the chemical shifts are similar to XPS. - For S2O3 , the chemical shifts between +6 and –2 oxidation states are 7eV for k shell and 6 eV for p. The chemical shift for Auger is given as E = E1 -2E (LII,III) = 5 eV The experimental value is 4.7 eV Chemical sifts of core levels - change in relaxation energy. Characteristics Electron and photon excitation (XAES). Auger emission is possible for elements z >3. Lithium is a special case. No Auger in the gas phase but shows in the solid state. -
Oxidation State Analyses of Uranium with Emphasis on Chemical Speciation in Geological Media
University of Helsinki View metadata, citation and similar papers at core.ac.uk Faculty of Science brought to you by CORE Department of Chemistry provided by Helsingin yliopiston digitaalinen arkisto Laboratory of Radiochemistry Finland OXIDATION STATE ANALYSES OF URANIUM WITH EMPHASIS ON CHEMICAL SPECIATION IN GEOLOGICAL MEDIA Heini Ervanne Academic Dissertation To be presented with the permission of the Faculty of Science of the University of Helsinki for public criticism in the Main lecture hall A110 of the Kumpula Chemistry Department on May 14th, 2004, at 12 o’clock noon. Helsinki 2004 ISSN 0358-7746 ISBN 952-10-1825-9 (nid.) ISBN 952-10-1826-7 (PDF) http://ethesis.helsinki.fi Helsinki 2004 Yliopistopaino ABSTRACT OXIDATION STATE ANALYSES OF URANIUM WITH EMPHASIS ON CHEMICAL SPECIATION IN GEOLOGICAL MEDIA This thesis focuses on chemical methods suitable for the determination of uranium redox species in geological materials. Nd-coprecipitation method was studied for the determination of uranium oxidation states in ground waters. This method is ideally suited for the separation of uranium oxidation states in the fi eld, which means that problems associated with the instability of U(IV) during transport are avoided. An alternative method, such as ion exchange, is recommended for the analysis of high saline and calcium- and iron-rich ground waters. U(IV)/Utot was 2.8- 7.2% in ground waters in oxidizing conditions and 60-93% in anoxic conditions. From thermodynamic model calculations applied to results from anoxic ground waters it was concluded that uranium can act as redox buffer in granitic ground waters. An ion exchange method was developed for the analysis of uranium oxidation states in different solid materials of geological origin.