Sleep Inertia in Children

Total Page:16

File Type:pdf, Size:1020Kb

Sleep Inertia in Children SLEEP INERTIA IN CHILDREN THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Mathematical Science in the Graduate School of the Ohio State University By Kelsy Kinderknecht, BS, BA Graduate Program in Mathematics The Ohio State University 2013 Thesis Committee: Dr. Janet Best, PhD, Advisor Dr. Mark Splaingard, MD Dr. Adriana Dawes, PhD c Copyright by Kelsy Kinderknecht 2013 ABSTRACT Sleep inertia is known to cause delayed reaction times and general performance deficits immediately after awakening, but specifics manifested in children are not well defined. This research aims to elucidate the effects of sleep inertia in children aged 5 to 12. Results were that younger children sustained slower reaction times than older children at baseline and upon awakening. All age groups had greater impairment after a second awakening, possibly due to a circadian effect and/or cumulative fatigue. All groups had improved reactions in the final 2 minutes of testing compared to the first 2 minutes after awakening (though reaction times were still slower than at baseline), suggesting partial recovery in sleep inertia with increased time. Recovery from sleep inertia may be due to wake-promoting neuromodulators; the increase in concentration may be responsible for improved performance with extended time awake. The current study constructs a model based on volume transmission of these neuromodulators. The model is capable of producing results similar to those observed in individuals with little variance in reaction time, but the model struggles to produce adequate replications of more variable data. Furthermore, the model cannot produce many of the dynamics found in the observed data, suggesting that the current model, if appropriate at all, requires many alterations. ii ACKNOWLEDGMENTS It has been an honor to work with my advisors, Dr. Janet Best and Dr. Mark Splaingard, on this project, and I cannot thank them enough for their support and encouragement. I would also like to thank my committee member, Dr. Adriana Dawes, for her time and participation in my thesis defense. iii VITA 1989 . Born in Hays, Kansas 2011 . B.Sc. in Mathematics, The University of Kansas 2011 . B.A. in French, The University of Kansas 2011-Present . Graduate Teaching Associate, The Ohio State University FIELDS OF STUDY Major Field: Mathematics Specialization: Mathematical Biology iv TABLE OF CONTENTS Abstract . ii Acknowledgments . iii Vita . iv List of Figures . vii List of Tables . viii CHAPTER PAGE 1 Introduction . 1 1.1 Time Course of Sleep Inertia . 2 1.2 Psychomotor Vigilance Task . 3 1.3 Comparison of Sleepiness and Sleep Inertia . 4 1.4 Current Study . 8 2 Methods . 10 2.1 Methods of Data Collection . 10 2.2 Initial Data Analysis . 11 2.3 Methods of Model Construction . 11 2.3.1 Concentration of Neuromodulator . 13 2.3.2 Response Times as a Function of Concentration . 15 2.4 Numerical Methods . 17 3 Results . 19 3.1 Statistical Analysis of Data . 19 3.2 Comparison of Numerical Results to Model Simulations . 21 3.2.1 Example of 11-12 Year-Old . 22 3.2.2 Example of 5-6 Year-Old . 24 4 Discussion . 28 4.1 Future Work . 28 v 4.2 Conclusion . 30 Bibliography . 32 vi LIST OF FIGURES FIGURE PAGE 1.1 PVT Data in Presence of Sleep Deprivation . 6 2.1 Examples of Two 11-12 Year-Olds . 12 2.2 Concentration of Neuromodulator{Single Release . 15 2.3 Concentration of Neuromodulator{Repeated Release . 15 2.4 Concentration of Neuromodulator - Varying Radius and Firing Rate 16 2.5 Simulated Reaction Time as a Function of Concentration . 16 2.6 Simulated Reaction Time as a Function of Time Elapsed . 17 3.1 PVT Data for Individual 4011 . 23 3.2 Simulation of PVT Data for an 11-12 Year-Old . 24 3.3 PVT Data for Individual 1023 . 25 3.4 Modified Reaction Time as a Function of Concentration . 26 3.5 Simulation of PVT Data for a 5-6 Year-Old . 27 vii LIST OF TABLES TABLE PAGE 2.1 Biological Parameters Used in Concentration Function . 14 3.1 Means and Standard Errors { Entire PVT . 20 3.2 Means and Standard Errors { First and Last 2 Minutes of PVT . 21 viii CHAPTER 1 INTRODUCTION Sleep inertia is the period of grogginess that occurs immediately after awakening and that causes delayed reaction times and general deficits in alertness and behavioral performance [7, 11]. Sleep inertia may affect a variety of abilities, such as spatial memory, logical reasoning, mental arithmetic, grip strength, and response times [2, 7, 9]. It should be noted that the sleep stage from which a person awakens may affect the severity of sleep inertia and that performance decrements may be worse or last longer after an individual awakens from slow-wave sleep [2, 7, 12, 11]. Furthermore, it is likely that a sleep-deprived individual will suffer more severe effects of sleep inertia than one who is fully rested [2, 7]. Another factor affecting sleep inertia is an individual's circadian clock, which affects body temperature. A subject awakened at a particularly low point of the circadian temperature cycle will likely suffer from more severe sleep inertia [2]. There are few methods that have been proven to lessen the effects of sleep inertia: some studies have found that bright lighting, snacks, and/or showering immediately after awakening do not seem to decrease the effects or time course of sleep inertia (as measured by subjective sleepiness and performance on an arithmetic task) [9], while others have found bright lighting to have some dissipating effect on sleep inertia [6]. However, caffeine may help to reduce the time course of sleep inertia (as measured by psychomotor vigilance task, discussed later) if taken immediately after awakening [6, 16], and constant low-dose caffeine administration 1 almost completely eliminates sleep inertia after 2-hour naps under conditions of sleep deprivation [16]. 1.1 Time Course of Sleep Inertia The time course of sleep inertia is not well-defined: In extreme cases, impairment may be present for several hours [9], but often individuals recover within a few min- utes. These varying time courses may be the result of the type of task used to measure sleep inertia, as the dynamics and time course are likely different for different tasks [7]. Several studies have been conducted to determine the length of time required to recover from sleep inertia effects, with somewhat conflicting findings. In one study that used both subjective sleepiness (using a visual analogue scale) and a 2-minute addition task to measure sleep inertia, it was found that performance on both of these tasks increases asymptotically and does not approach the asymptote until 2-4 hours after waking, even under normal sleeping patterns (without sleep deprivation) [9]. It should be noted that this study was conducted only in subjects awakening from Stage N1 or N2 or REM sleep, but, since awakening from slow-wave sleep has been hypothesized to amplify sleep inertia effects, it can be expected that sleep inertia will last at least as long when an individual is awakened from N3 (slow-wave) sleep. Other studies have confirmed that sleep inertia effects can last up to an hour or more, even in the absence of sleep deprivation [13, 11], while others still maintain that the effects dissipate within 20-30 minutes [13]. The current study will observe only the first 10-15 minutes after awakening, a time period during which most sources agree sleep inertia is still present. 2 1.2 Psychomotor Vigilance Task The current study used a 10-minute visual psychomotor vigilance task (PVT). During the PVT, subjects are given a hand-held device with an LED display window and are instructed to closely observe the window. Each stimulus appears in bright red in the window, with intervals between stimuli following a random uniform distribution between 2 to 10 seconds. The subject is instructed to press a button as soon as the stimulus appears; the stimulus will remain visible in the window until a button is pressed. When the stimulus appears, the PVT device begins a counter in milliseconds, which stops as soon as the subject presses the button, at which time the response time is displayed to the subject for 1 second. If a subject presses the wrong button, presses a button in the absence of a stimulus, holds the button down for too long, or does not respond for more than 65 seconds, an error message will be recorded instead of the response time [1]. Most often, adults taking a PVT have responses below 500 ms; thus, a response above 500 ms is unusual and is often referred to as a \lapse." However, there are inter-individual differences and some subjects with slower response times may have many responses above 500 ms. Furthermore, children have much slower responses than adults in general, and they often present reactions of longer than 500ms. For these reasons, some studies define lapses as response times greater than twice the mean response time, rather than simply those greater than 500 ms [3, 6]. Response times of greater than 30 seconds or less than 100 ms are very rare and likely the result of an error or a coincidental pressing of the button before a subject realized a stimulus was present; thus, we disregard such response times in our study. The PVT was developed specifically to analyze the dynamics of the interactions between an individual's circadian clock and homeostatic sleep drive. It was designed so that it has a minimal learning curve, the duration of the task is relatively short, 3 there are a large number of stimuli in that relatively short period, and it maintains inter-individual differences.
Recommended publications
  • S46. Parasomnias.Pdf
    PARASOMNIAS S46 (1) Parasomnias Last updated: May 8, 2019 Clinical Features ............................................................................................................................... 2 SLEEP TERRORS (S. PAVOR NOCTURNUS) ............................................................................................... 2 SLEEPWALKING (S. SOMNAMBULISM) .................................................................................................... 3 CONFUSIONAL AROUSALS (S. SLEEP DRUNKENNESS, SEVERE SLEEP INERTIA) ........................................ 3 Diagnosis .......................................................................................................................................... 3 Management ..................................................................................................................................... 3 HYPNIC JERKS (S. SLEEP STARTS) .......................................................................................................... 4 RHYTHMIC MOVEMENT DISORDER ........................................................................................................ 4 SLEEP TALKING (S. SOMNILOQUY) ......................................................................................................... 4 NOCTURNAL LEG CRAMPS ..................................................................................................................... 4 REM SLEEP BEHAVIORAL DISORDER (RBD) ........................................................................................ 4
    [Show full text]
  • Medical MARIJUANA’S Effect on Sleep
    QUARTER THREE 2019 / VOLUME 28 / NUMBER 03 Medical MARIJUANA’S Effect on Sleep WHAT’S INSIDE ADHD and Delayed Sleep Phase Syndrome May Be Linked Circadian Rhythm Sleep Disorders: An Overview Caffeine and Sleep The Pros and Cons of Group Setups Alice 6 PSG systems FULL PAGE AD Table of Contents QUARTER THREE 2019 VOLUME 28 / NUMBER 03 Medical Marijuana’s Effect on Sleep By Joseph Anderson, RPSGT, CCSH, RST, RPFT, CRT-NPS Many states are adopting the use of marijuana for medical purposes even though federal law does not yet support marijuana to be used in this context. This article discusses its medical use, as well as its use in society historically and today. 10 Attention Deficit Hyperactivity Disorder and Delayed Sleep Phase Syndrome May Be Linked 15 By Regina Patrick, RPSGT, RST Circadian Rhythm Sleep Disorders: An Overview 18 By Peter Mansbach, Ph.D. Caffeine and Sleep 21 By Brendan Duffy, RPSGT, RST, CCSH The Pros and Cons of Group Setups 24 By Sarah Brennecka DEPARTMENTS President & Editor’s Message – 07 Trends – 25 In the Moonlight – 29 Compliance Corner – 30 FULL PAGE AD QUARTER THREE 2019 VOLUME 28 / NUMBER 03 THE OFFICIAL PUBLICATION OF AAST ABOUT A2Zzz CONTRIBUTORS A2Zzz is published quarterly by AAST. DISCLAIMER EDITOR The statements and opinions contained SUBMISSIONS Rita Brooks. MEd, RPSGT, REEG/ in articles and editorials in this magazine EPT, FAAST Original articles submitted by AAST are solely those of the authors thereof members and by invited authors will be and not of AAST. The appearance of MANAGING EDITOR considered for publication. Published products and services, and statements Alexa Schlosser articles become the permanent property contained in advertisements, are the sole of AAST.
    [Show full text]
  • 260202 Sleep Inertia, Naps, and Memory
    260202 Sleep Inertia, Naps, and Memory 3 Contact Hours Sleep Inertia, Naps, and Memory Notes Care has been taken to confirm the accuracy of information presented in this course. The authors, editors, and the publisher, however, cannot accept any responsibility for errors or omissions or for the consequences from application of the information in this course and make no warranty, expressed or implied, with respect to its contents. The authors and the publisher have exerted every effort to ensure that drug selections and dosages set forth in this course are in accord with current recommendations and practice at time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package inserts of all drugs for any change in indications of dosage and for added warnings and precautions. This is particularly when the recommended agent is a new and/or infrequently employed drug. COPYRIGHT STATEMENT ©2006 Institute for Continuing Education Revised 2007 All rights reserved. The Institute of Continuing Education retains intellectual property rights to these courses that may not be reproduced and transmitted in any form, by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system without the Institute’s written permission. Any commercial use of these materials in whole or in part by any means is strictly prohibited. 2 Sleep Inertia, Naps, and Memory Instructions for This Continuing Education Module Welcome to the Institute for Continuing Education. The course, test and evaluation form are all conveniently located within Notes this module to keep things easy-to-manage.
    [Show full text]
  • Ac 120-100 06/07/10
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Date: 06/07/10 AC No: 120-100 Subject: Basics of Aviation Fatigue Initiated by: AFS-200 Change: 1. PURPOSE. This advisory circular (AC): • Summarizes the content of the FAA international symposium on fatigue, “Aviation Fatigue Management Symposium: Partnerships for Solutions”, June 17-19, 2008; • Describes fundamental concepts of human cognitive fatigue and how it relates to safe performance of duties by employees in the aviation industry; • Provides information on conditions that contribute to cognitive fatigue; and • Provides information on how individuals and aviation service providers can reduce fatigue and/or mitigate the effects of fatigue. 2. APPLICABILITY. This AC is not mandatory and does not constitute a regulation. 3. DEFINITIONS. a. Circadian Challenge. Circadian challenge refers to the difficulty of operating in opposition to an individual’s normal circadian rhythms or internal biological clock. This occurs when the internal biological clock and the sleep/wake cycle do not match the local time. For example, the sleep period is occurring at an adverse circadian phase when the body wants to be awake. Engaging in activities that are opposite of this natural biological system represents the circadian challenge (e.g., night work, shift work, jet lag). b. Cognitive Performance. Cognitive performance refers to the ability to process thought and engage in conscious intellectual activity, e.g., reaction times, problem solving, vigilant attention, memory, cognitive throughput. Various studies have demonstrated the negative effects of sleep loss on cognitive performance. c. Circadian Rhythm. A circadian rhythm is a daily alteration in a person’s behavior and physiology controlled by an internal biological clock located in the brain.
    [Show full text]
  • Fatigue and Sleep Management
    EUROCONTROL EUROCONTROL Fatigue and Sleep Management Personal strategies for decreasing the effects of fatigue in Air Traffic Control 1 Fatigue and Sleep Management 2 For shift workers, fatigue and sleep debt can become a challenge and difficult to cope with. We have designed this booklet to give you knowledge and strategies that you can apply in your daily lives in order to help you better manage your sleep. When reading this booklet , bear in mind that whilst some of the ideas/suggestions may seem a little eccentric, people are different, and something that may work for one person may not work for another. Find what works for you, then you will be one step closer to getting a good night’s sleep and feeling less tired. Sweet dreams! 3 4 CONTENTS General Introduction to Fatigue, Sleep and Shift work.............................................................................................. 6 Circadian Rhythms and Sleep Patterns ........................................................................................................................................ 9 Shift work – A Better Understanding .........................................................................................................................................27 Tips and Tools for Fatigue and Sleep Management .....................................................................................................37 Bedtime Rituals ...................................................................................................................................................................................................37
    [Show full text]
  • Time Course of Sleep Inertia Dissipation in Memory Tasks
    applied sciences Article Time Course of Sleep Inertia Dissipation in Memory Tasks Miranda Occhionero 1,*, Marco Fabbri 2 , Lorenzo Tonetti 1 , Monica Martoni 3 and Vincenzo Natale 1 1 Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy; [email protected] (L.T.); [email protected] (V.N.) 2 Department of Psychology, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; [email protected] 3 Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-05-1209-1871 Abstract: Sleep inertia (SI) refers to a complex psychophysiological phenomenon, observed after awakening, that can be described as the gradual recovery of waking-like status. The time course of cognitive performance dissipation in an everyday life condition is still unclear, especially in terms of the sleep stage at awakening (REM or NREM-stage 2) and the relative effects on perfor- mance. The present study aimed to investigate the SI dissipation in different memory performances upon spontaneous morning awakening after uninterrupted nighttime sleep. Eighteen young adults (7 females; mean age 24.9 ± 3.14 years) spent seven non-consecutive nights (one baseline, three REM awakenings and three St2 awakenings) in the laboratory under standard polysomnographic (PSG) control. Participants were tested after three REM awakenings and three St2 awakenings, and three times at 11:00 a.m. as a control condition. In each testing session, participants filled in the Global Vigor and Affect Scale and carried out one memory task (episodic, semantic, or procedural task). For each condition, participants were tested every 10 min within a time window of 80 min.
    [Show full text]
  • Effects of Sleep Deprivation on Fire Fighters and EMS Responders
    Effects of Sleep Deprivation on Fire Fighters and EMS Responders Effects of Sleep Deprivation on Fire Fighters and EMS Responders Effects of Sleep Deprivation on Fire Fighters and EMS Responders Effects of Sleep Deprivation on Fire Fighters and EMS Responders Final Report, June 2007 Diane L. Elliot, MD, FACP, FACSM Kerry S. Kuehl, MD, DrPH Division of Health Promotion & Sports Medicine Oregon Health & Science University Portland, Oregon Acknowledgments This report was supported by a cooperative agreement between the International Association of Fire Chiefs (IAFC) and the United States Fire Administration (USFA), with assistance from the faculty of Or- egon Health & Science University, to examine the issue of sleep dep- rivation and fire fighters and EMS responders. Throughout this work’s preparation, we have collaborated with Victoria Lee, Program Man- ager for the IAFC, whose assistance has been instrumental in success- fully completing the project. The information contained in this report has been reviewed by the members of the International Association of Fire Chiefs’ Safety, Health and Survival Section; Emergency Medi- cal Services Section and Volunteer and Combination Officers Sec- tion; and the National Volunteer Fire Council (NVFC). We also grate- fully acknowledge the assistance of our colleagues Esther Moe, PhD, MPH, and Carol DeFrancesco, MA, RD. i Effects of Sleep Deprivation on Fire Fighters and EMS Responders Preface The U.S. fire service is full of some of the most passionate individuals any industry could ever have. Our passion, drive and determination are in many cases the drivers that cause us to take many of the courageous actions that have become legendary in our business.
    [Show full text]
  • Sleep Inertia and Alcohol Impairment in Young Adults: Neurocognitive Effects and Interactions Implications for Fire Escape Behaviours
    Sleep inertia and alcohol impairment in young adults: Neurocognitive effects and interactions Implications for fire escape behaviours Melanie Joy Tokley, BPsyc(Hons) Submitted in partial fulfilment of the requirements of the degree of Doctor of Psychology (Clinical Neuropsychology) School of Social Sciences & Psychology Victoria University, Melbourne AUSTRALIA June 2009 ABSTRACT Alcohol intoxication is known to considerably increase the probability of death from fire across the lifespan, to the extent that it has been isolated as the single most significant risk factor. The study investigated the combined effects of sleep inertia and alcohol impairment on fire emergency-relevant cognitive performance indicators in a young adult population. Mental tracking, visual scanning, psychomotor speed, working memory and sustained, selective, and divided attention functions were assessed for performance decrements and reference to speed-accuracy trade-off effects. Participants were 24 young adults (18-26 years) who participated in a repeated-measures study over 2 non- consecutive nights; 1 night with alcohol administration and 1 ‘sober’ night. During the alcohol administration night, 10-minute testing blocks occurred under (1) baseline sober and (2) baseline 0.05 blood alcohol concentration (BAC) conditions. Subsequently, subjects were awoken from stage 4 sleep and assessed in two consecutive 10-minute blocks (3) and (4). Self-reports of sleepiness and clearheadedness were also taken. The same procedure was used during the sober night (with condition (2) excluded). All cognitive functions assessed showed an alcohol effect (i.e., decrements between sober baseline (1) and conditions of alcohol (2)), and an even larger sleep inertia effect (i.e., greater decrements between sober baseline (1) and conditions of sleep inertia alone (3) and (4)).
    [Show full text]
  • The Spectrum of Disorders Causing Violence During Sleep Carlos H
    Schenck Sleep Science and Practice (2019) 3:2 Sleep Science and Practice https://doi.org/10.1186/s41606-019-0034-6 REVIEW Open Access The spectrum of disorders causing violence during sleep Carlos H. Schenck Abstract Violent behavior during sleep is a common problem, affecting > 2% of the population > 15 years old as found in two large epidemiologic studies. The differential diagnosis of sleep related injury and violence includes: REM sleep behavior disorder (RBD); NREM sleep parasomnias (sleepwalking, sleep terrors); parasomnia overlap disorder (RBD + NREM sleep parasomnias); obstructive sleep apnea; sexsomnia (sleep related abnormal sexual behaviors); sleep related dissociative disorder; trauma-associated sleep disorder/post-traumatic stress disorder; periodic limb movement disorder; rhythmic movement disorder; nocturnal scratching disorder; nocturnal seizures; and miscellaneous/mixed conditions. Careful clinical interviews, preferably with bed partners participating, and extensive, hospital-based, technologist-attended, overnight video-polysomnography (for one or more nights), is crucial for determining the accurate diagnosis that will guide proper therapy. Most of the disorders mentioned above are classified as parasomnias in the International Classification of Sleep Disorders, 3rd Edition, with parasomnias defined as abnormal behavioral, experiential and/or autonomic nervous system activity during entry into sleep, during any stage of sleep, and during emergence from any stage of sleep. Parasomnias are often manifestations of “state dissociation” in which components of one state of being (wake, REM sleep, NREM sleep) intrude into, and become admixed, with other states of being, with clinical consequences. There are forensic implications related to the parasomnias, with inadvertent and unintentional assaults, murder, and “pseudo-suicide” resulting from aggressive and violent behaviors arising from sleep with suspended awareness and judgement.
    [Show full text]
  • Tips for Better Sleep
    Tips for Better Sleep Environment • Use low wattage, incandescent lights in the bedroom. These should be less than 2500 Kelvin on the color temperature scale (warm white as opposed to cool light or daylight), Avoid blue, LED, fluorescent, or halogen lighting o Try not to turn the light on if you must get up in the night, or use low wattage, motion-activated night lights o Take note of any device LEDs, such as ones on fans, chargers, etc. Cover these as needed. o Avoid alarm clocks that always have the display on • Take the TV out of the bedroom, or avoid using it • Make the sleep environment dark, quiet, and cool o White noise, fans, and calming music can help o Use items like blackout curtains and sleeping masks as needed • Bedding o Invest in quality bedding made with natural fibers: cotton, silk, real linen, etc. o Change mattresses and pillows at recommended times Routine/ Pre-Sleep • Maintain a consistent sleep/wake schedule o Naps included* • Start pre-sleep routine 1-2 hours before bed • Stop working or doing stimulating activities • Avoid technology: No TV, phone on silent and placed face down, lights covered on fans/humidifiers/air filters/etc. o No screens 1-2 hours prior to bed o If you must work using technology, turn down the brightness, and use an app to reduce blue wavelength exposure (e.g. flux, Night Shift on iPhones, etc.) • Try not to exercise before bed • Try practicing meditation, deep breathing, mindfulness, and other calming techniques • Listen to calming music Nutrition and Food Services (06/2020) www.nutrition.va.gov • Take a shower or bath • Use socks or a heating pad for cold feet • Practice Cognitive Behavioral Therapy techniques for insomnia (CBTI) o Discuss with behavioral health provider • Can’t stop thinking about your to do list for tomorrow? Make a list so you won’t forget and get it off your mind.
    [Show full text]
  • Idiopathic-Hypersomnia-.Pdf
    Research & Reviews: Neuroscience Idiopathic Hypersomnia Diksha Gupta1* and Trisha Chatterjee2 1Amity Institute of Pharmacy, Amity University, India 2Department of Biotechnology, Amity University, India Review Article Received date: 08/11/2016 ABSTRACT Accepted date: 27/01/2017 Sleep is an unconsciousness form by which the person Published date: 06/02/2017 could be aroused by sensory or other stimuli. These days due to psychological and social dysfunction our daily routine affects the *For Correspondence quality of our life, according to survey much health related issues are being reported due to lack of sleep. An ancient literature Gupta D, Amity University, Noida, UP, India, Tel: review was given and explained the theory about the leading 8588829759. symptom of idiopathic hypersomnia was sleep drunkenness and the first patient was thus diagnosed with prolonged nocturnal E-mail: [email protected] sleep accompanied by excessive daytime sleepiness with long naps and difficult awakening. A severe issue with this disease is Keywords: Idiopathic hypersomnia, Lengthy that most people tend to suffer from "Depression". Due to ischemic sleep, Narcolepsy, Obstructive sleep changes along the border of mesencephalon and diencephalon and post-traumatic etiology in other, people thus suffer from "sleep apnea, Narcolepsy, Bruxism, Non-rapid eye drunkenness". The term idiopathic hypersomnia was given a variety movement, Hypersomnia of clinical labels including idiopathic central nervous hypersomnia or hypersomnolence, functional hypersomnia, mixed or harmonious hypersomnia, hypersomnia with automatic behavior, and non-rapid eye movement (NREM) narcolepsy. Two different clinical forms were recommended —idiopathic hypersomnia with long sleep time and IH without long sleep time which then reappeared in the latest International Classification of Sleep Disorders.
    [Show full text]
  • The Human Sleep–Wake Cycle Reconsidered from a Thermoregulatory Point of View ⁎ Kurt Kräuchi
    Physiology & Behavior 90 (2007) 236–245 The human sleep–wake cycle reconsidered from a thermoregulatory point of view ⁎ Kurt Kräuchi Centre for Chronobiology, Psychiatric University Clinics, Wilhelm Klein Strasse 27, 4025 Basel, Switzerland Received 21 August 2006; accepted 4 September 2006 Abstract Sleep is typically initiated on the declining portion of the circadian rhythm of core body temperature (CBT) when its rate of change, and body heat loss, is maximal. Distal vasodilatation plays a primary role in the circadian regulation of body heat loss and is strongly associated with sleepiness and sleep induction. In contrast, sleep (i.e. non-REM sleep and slow-wave activity, SWA) has no or only a minor thermoregulatory function. Two lines of evidence support this statement. First, detailed analyses of thermoregulatory changes before and after lights off show clearly that they start before stage 2 sleep begins. Second, accumulation of sleep pressure with increasing time awake, increases subjective sleepiness and SWA during the succeeding recovery night, but does not influence the thermoregulatory system. Taken together, the circadian modulation of sleepiness and sleep induction is clearly associated with thermoregulatory changes, but the thermoregulatory system seems to be independent of the sleepiness/sleep regulatory system. A simplified model is presented which attempts to explain the relationship between these two systems. It is based on the main hypothesis that all thermoregulatory effects which lead to an increase in the core/shell ratio (e.g. a reduced shell by increased distal skin temperature) lead to increased sleepiness and, as a consequence, to increased sleep propensity. However, the sleepiness/sleep regulatory system feeds back onto the thermoregulatory system only indirectly via sleep-related behaviors (e.g.
    [Show full text]